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Abstract—Pipeline parallelization is an effective technique that 
enables the efficient execution of deep neural network (DNN) 
inference on resource-constrained IoT devices. To support pipeline 
parallelization on heterogeneous computing nodes with low-
latency networks, we propose DNNPipe, a DNN partitioning 
algorithm that constructs a pipeline plan for a given DNN. The 
primary objective of DNNPipe is to maximize the throughput of 
DNN inference while minimizing the runtime overhead of DNN 
partitioning, which is repeatedly executed in dynamically 
changing IoT environments. To achieve this, DNNPipe uses 
dynamic programming for an exhaustive exploration to find the 
optimal pipeline plan whose maximum stage execution time is no 
greater than that of any other possible pipeline plan. Additionally, 
it aggressively prunes suboptimal pipeline plans using an upper 
bound on the minimum value among all possible pipeline plans' 
maximum stage execution times. Experimental results 
demonstrate that DNNPipe significantly reduces its execution time 
and iteration counts compared to PipeEdge, the fastest known 
optimal DNN partitioning algorithm. 
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I. INTRODUCTION 
The proliferation of Internet of Things (IoT) 

technology and the adoption of AI in various IoT 
applications has led to an increased demand for real-time 
processing of streaming data on deep neural networks 
(DNN). However, the limited processing power of IoT 
devices often poses a challenge to the efficient execution 
of even simple AI models, resulting in high latency and 
low throughput. To address this challenge, pipeline 
parallelization has emerged as a promising solution that 
enables the efficient execution of DNN inference on 
resource-constrained IoT devices. 

Pipeline parallelization relies on DNN partitioning, 
which divides DNN layers into multiple stages and 
distributes their workload across multiple heterogeneous 
computing nodes. It can accelerate DNN inference 
through parallel and pipelined execution. 

A DNN partitioning algorithm needs to maximize the 
throughput of the DNN inference while minimizing its 
runtime overhead. Note that the throughput of pipelined 
DNN inference is determined by the pipeline stage with 
the maximum execution time. 

Many optimal DNN partitioning algorithms that 
maximize the throughput of DNN inference have been 
actively investigated in [1], [2], but they have high time 
complexity due to their reliance on brute-force algorithms. 

PipeEdge [3], which is known as the fastest optimal DNN 
partitioning algorithm, uses dynamic programming (DP) 
to reduce its time complexity. However, it still has a high 
time complexity, incurring a significant runtime overhead. 

In this paper, we propose a DP-based optimal DNN 
partitioning algorithm, which we call DNNPipe. It divides 
an input DNN into a series of pipeline stages and assigns 
each stage to a specific computing node. The resulting 
partitioned DNN model, together with the allocation of its 
stages to computing nodes is referred to as a pipeline plan. 

Although an optimal DNN partitioning algorithm tends 
to be computationally intensive, minimizing its runtime 
overhead is crucial to ensure efficient execution, as the 
dynamic nature of an IoT environment, where devices 
frequently join and leave the network, requires frequent 
re-execution of DNN partitioning. 

DNNPipe efficiently prunes suboptimal pipeline plans 
by using an upper bound on the minimum value among 
all possible pipeline plans' maximum stage execution 
times. Our experimental results show that DNNPipe 
significantly reduces its execution time and iteration 
counts compared to PipeEdge. 

II. PROBLEM FORMULATION 
We consider a system with 𝑁  heterogeneous devices 

connected by a low-latency network. We assume a 
network in which the maximum communication latency 
between adjacent stages is less than the maximum stage 
execution time. This allows us to focus on optimizing 
only the computation time of each stage. We define a 
DNN model as a sequence of layers, where each layer can 
be either a single layer or a block of layers, such as a 
transformer block, and both are treated as a unit of 
partitioning. 

Let 𝐶 =  {𝑐ଵ , 𝑐ଶ , …, 𝑐ே}  represent the set of the 
performance scaling factors of 𝑁  devices relative to 
device 1. Similarly, let 𝐸 =  {𝑒ଵ, 𝑒ଶ, …, 𝑒௅} denote the set 
of execution times of 𝐿 layers when each layer is executed 
on device 1. With this, the execution time of layer 𝑖, when 
running on device 𝑗, is 𝑒௜/𝑐௝. 

A pipeline plan 𝑃௞ is a sequence of stages σଵ, σଶ, ..., 
σ௜, …, σ|௉ೖ|. We also represent stage σ௜ with a tuple (𝑓௜, 

𝑙௜, 𝑑௜) which dictates that σ௜ executes the layers from 𝑓௜ 



to 𝑙௜ inclusively on device 𝑑௜. The execution time of stage 
σ௜ is denoted by ST(σ௜) = ST(𝑓௜, 𝑙௜, 𝑑௜) = ∑ 𝑒௝

௟೔
௝ୀ௙೔

/𝑐ௗ೔
.  

We further denote the maximum stage execution time 
of 𝑃௞ by 𝑀𝑆𝑇௞  .  By definition, the optimal pipeline plan 
is the plan whose maximum stage execution time is no 
greater than that of any other possible pipeline plan. We 
denote the optimal pipeline plan and its maximum stage 
execution time by 𝑃∗and 𝑀𝑆𝑇∗, respectively. 

III. SOLUTION APPROACH 
The key idea behind DNNPipe is to derive an upper 

bound on 𝑀𝑆𝑇∗and prune a pipeline plan that has a stage 
whose execution time is greater than this upper bound. We 
derive the upper bound as follows: 

 𝑀𝑆𝑇∗෣ =
ஊ೐೔∈ಶ(௘೔)

ஊ೎ೕ∈಴൫௖ೕ൯
+

୫ୟ୶
೐೔∈ಶ

(௘೔)

୫୧୬
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൫௖ೕ൯
 

We let 𝐼𝑆𝑇 =  Σ௘೔∈ா(𝑒௜) Σ௖ೕ∈஼൫𝑐௝൯ൗ . Note that  𝐼𝑆𝑇 
represents the share of the workload that is assigned to 
device 1. If we distribute this share to device 𝑗  in 
proportion to its performance scaling factor 𝑐௝ , each 
device will have the same execution time 𝐼𝑆𝑇 as device 1. 
Thus, 𝐼𝑆𝑇 is the most balanced ideal stage execution time. 

The 𝐼𝑆𝑇 is an ideal value in the sense that it assumes a 
single layer can be divided between two adjacent devices. 
In reality, a device either contains a whole layer or not at 
all. This causes a difference between a stage’s possible 
execution time  and 𝐼𝑆𝑇 , and the amount of such 
difference is bounded by max

௘೔∈ா
 (𝑒௜)/min

௖ೕ∈஼
 (𝑐௝). By adding 

this bound to 𝐼𝑆𝑇, we have 𝑀𝑆𝑇∗෣ . We prove that 𝑀𝑆𝑇∗෣ is 
a proper upper bound on 𝑀𝑆𝑇∗, as follows. 
Theorem 1. 𝑀𝑆𝑇∗෣ ≥ 𝑀𝑆𝑇∗ 
Proof: We show that ∃𝑃௞ such that 𝑀𝑆𝑇௞ ≤ 𝑀𝑆𝑇∗෣ . For 
any DNN, we can make 𝑃௞  = σଵ , σଶ , …, σ|௉ೖ| while 

assigning each stage σ௜  such that ST( 𝑓௜ , 𝑙௜ , 𝑑௜ ) −𝑒௟೔
/

𝑐ௗ೔
≤IST<ST(𝑓௜, 𝑙௜, 𝑑௜). The last stage σห௉ೖห may not be 

satisfied, in which case it has ST(σ|௉ೖ| )< IST because 

Σ஢೔∈௉ೖ൛𝑐ௗ೔
∙ 𝑆𝑇(σ௜)ൟ = Σ௘ೕ∈ா൫𝑒௝൯ = 𝐼𝑆𝑇 ∙ Σ௖೘∈஼(𝑐௠) . 

Note that if ST( σ|௉ೖ| ) ≥ IST, Σ஢೔∈௉ೖ൛𝑐ௗ೔
∙ 𝑆𝑇(σ௜)ൟ >

Σ௘೔∈ா(𝑒௜) . Since 𝑒௟೔
/𝑐ௗ೔

≤ max
௘ೕ∈ா

 (𝑒௝)/min
௖೗∈஼

 (𝑐௟) , for all σ௜ 

in 𝑃௞ , ST( σ௜ ) ≤ IST +max
௘ೕ∈ா

 (𝑒௝)/ min
௖೘∈஼

 (𝑐௠) = 𝑀𝑆𝑇∗෣  . 

Since 𝑀𝑆𝑇௞ ≤ 𝑀𝑆𝑇∗෣   and 𝑀𝑆𝑇∗ ≤ 𝑀𝑆𝑇௞ , it follows 
that 𝑀𝑆𝑇∗ ≤ 𝑀𝑆𝑇∗෣ . 

Algorithm 1 shows the pseudocode of DNNPipe. For a 
given 𝐸 and 𝐶, DNNPipe first calculates 𝑀𝑆𝑇∗෣ . It uses the 
table DP to store the intermediate results for dynamic 
programming. To explore all possible device 
configurations that could be involved in pipelining, 
DNNPipe iterates over a power set, which is a set of all 
subsets of N devices ordered by increasing cardinality. 
Note that DNNPipe extends each plan one stage at a time, 
rather than generating each possible plan in its entirety. 

Each partially extended plan represents the plan with the 
minimum of the maximum stage execution times among 
partial plans to date when layers 1 to i − 1 are pipelined 
with devices in S. DNNPipe then assigns the next stage 
with layers i to j to device k, which has not yet been 
assigned, and calculates ST(i, j, k). If this exceeds 𝑀𝑆𝑇∗෣ , 
the plan is pruned. 

IV. EXPERIMENTAL RESULTS 
We have performed experiments to compare DNNPipe 

with PipeEdge. We randomly generated 𝐸  and 𝐶  with a 
uniform distribution in the range of [50, 250] and [0.1, 
2.0], respectively. We ran the experiments with 100 
random 𝐸  and 𝐶  values, varying the parameters as 
follows: (1) 𝑁 from 3 to 9 with 𝐿 fixed at 300, and (2) 𝐿 
from 50 to 400 with 𝑁 fixed at 8.  

DNNPipe reduces execution times by 33% to 72% and 
iteration counts by 47.4% to 73.4% compared to 
PipeEdge, with the performance gap widening as N and L 
increase.  

V. CONCLUSION 
We proposed DNNPipe, an efficient and optimal DP-

based DNN partitioning algorithm. The key contribution 
lies in DNNPipe’s aggressive pruning strategy, which 
exploits an upper bound on the minimum value among all 
possible pipeline plans' maximum stage execution times. 
This allows us to prune suboptimal plans early and focus 
on the exploration in promising regions of the solution 
space. Our experimental results show that DNNPipe 
significantly reduces execution time compared to the 
fastest known optimal DNN partitioning algorithm. 
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Algorithm 1: DNNPipe 
Input: N, L, C, E 
Output: The optimal pipeline plan P* 
1 𝑀𝑆𝑇∗෣← sum(E)/sum(C) + max(E)/min(C) // by Eq. (1) 
2 DP ← initialize_table(N, L); // create and initialize DP table 
3 foreach (∀S, S ∈ ordered_power_set({1, 2, …, N})) { 
4    foreach (∀k, k ∈ {1,2, …, N} − S) { 
5       foreach (∀i, 1 ≤ i ≤ L) { 
6          foreach (∀j, i ≤ j ≤ L){  
7             if (ST(i, j, k) > 𝑀𝑆𝑇∗෣ ) break; // to apply 𝑀𝑆𝑇∗෣  by Theorem 1 
8             update(DP, S, i, j, k, ST(i, j, k)); // update the DP table  
9 }}}} // end-if/foreach 
10 P* ← get_optimal_plan(DP); // get optimal pipeline plan from DP table 
11 return P* 
 


