
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Partitioning Deep Neural Networks
for Optimally Pipelined Inference on Heterogeneous

IoT Devices with Low Latency Networks
Woobean Seo1, Saehwa Kim2, and Seongsoo Hong1

Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea1
Department of Information Communications Engineering, Hankuk-University of Foreign Studies, Yongin, Republic of Korea2

wbseo@redwood.snu.ac.kr, ksaehwa@hufs.ac.kr, and sshong@redwood.snu.ac.kr

Abstract—Pipeline parallelization is an effective technique that
enables the efficient execution of deep neural network (DNN)
inference on resource-constrained IoT devices. To support pipeline
parallelization on heterogeneous computing nodes with low-
latency networks, we propose DNNPipe, a DNN partitioning
algorithm that constructs a pipeline plan for a given DNN. The
primary objective of DNNPipe is to maximize the throughput of
DNN inference while minimizing the runtime overhead of DNN
partitioning, which is repeatedly executed in dynamically
changing IoT environments. To achieve this, DNNPipe uses
dynamic programming for an exhaustive exploration to find the
optimal pipeline plan whose maximum stage execution time is no
greater than that of any other possible pipeline plan. Additionally,
it aggressively prunes suboptimal pipeline plans using an upper
bound on the minimum value among all possible pipeline plans'
maximum stage execution times. Experimental results
demonstrate that DNNPipe significantly reduces its execution time
and iteration counts compared to PipeEdge, the fastest known
optimal DNN partitioning algorithm.

Keywords—IoT, DNN, embedded AI, pipeline parallelization,
DNN partitioning.

I. INTRODUCTION
The proliferation of Internet of Things (IoT)

technology and the adoption of AI in various IoT
applications has led to an increased demand for real-time
processing of streaming data on deep neural networks
(DNN). However, the limited processing power of IoT
devices often poses a challenge to the efficient execution
of even simple AI models, resulting in high latency and
low throughput. To address this challenge, pipeline
parallelization has emerged as a promising solution that
enables the efficient execution of DNN inference on
resource-constrained IoT devices.

Pipeline parallelization relies on DNN partitioning,
which divides DNN layers into multiple stages and
distributes their workload across multiple heterogeneous
computing nodes. It can accelerate DNN inference
through parallel and pipelined execution.

A DNN partitioning algorithm needs to maximize the
throughput of the DNN inference while minimizing its
runtime overhead. Note that the throughput of pipelined
DNN inference is determined by the pipeline stage with
the maximum execution time.

Many optimal DNN partitioning algorithms that
maximize the throughput of DNN inference have been
actively investigated in [1], [2], but they have high time
complexity due to their reliance on brute-force algorithms.

PipeEdge [3], which is known as the fastest optimal DNN
partitioning algorithm, uses dynamic programming (DP)
to reduce its time complexity. However, it still has a high
time complexity, incurring a significant runtime overhead.

In this paper, we propose a DP-based optimal DNN
partitioning algorithm, which we call DNNPipe. It divides
an input DNN into a series of pipeline stages and assigns
each stage to a specific computing node. The resulting
partitioned DNN model, together with the allocation of its
stages to computing nodes is referred to as a pipeline plan.

Although an optimal DNN partitioning algorithm tends
to be computationally intensive, minimizing its runtime
overhead is crucial to ensure efficient execution, as the
dynamic nature of an IoT environment, where devices
frequently join and leave the network, requires frequent
re-execution of DNN partitioning.

DNNPipe efficiently prunes suboptimal pipeline plans
by using an upper bound on the minimum value among
all possible pipeline plans' maximum stage execution
times. Our experimental results show that DNNPipe
significantly reduces its execution time and iteration
counts compared to PipeEdge.

II. PROBLEM FORMULATION
We consider a system with 𝑁 heterogeneous devices

connected by a low-latency network. We assume a
network in which the maximum communication latency
between adjacent stages is less than the maximum stage
execution time. This allows us to focus on optimizing
only the computation time of each stage. We define a
DNN model as a sequence of layers, where each layer can
be either a single layer or a block of layers, such as a
transformer block, and both are treated as a unit of
partitioning.

Let 𝐶 = {𝑐ଵ , 𝑐ଶ , …, 𝑐ே} represent the set of the
performance scaling factors of 𝑁 devices relative to
device 1. Similarly, let 𝐸 = {𝑒ଵ, 𝑒ଶ, …, 𝑒௅} denote the set
of execution times of 𝐿 layers when each layer is executed
on device 1. With this, the execution time of layer 𝑖, when
running on device 𝑗, is 𝑒௜/𝑐௝.

A pipeline plan 𝑃௞ is a sequence of stages σଵ, σଶ, ...,
σ௜, …, σ|௉ೖ|. We also represent stage σ௜ with a tuple (𝑓௜,

𝑙௜, 𝑑௜) which dictates that σ௜ executes the layers from 𝑓௜

to 𝑙௜ inclusively on device 𝑑௜. The execution time of stage
σ௜ is denoted by ST(σ௜) = ST(𝑓௜, 𝑙௜, 𝑑௜) = ∑ 𝑒௝

௟೔
௝ୀ௙೔

/𝑐ௗ೔
.

We further denote the maximum stage execution time
of 𝑃௞ by 𝑀𝑆𝑇௞ . By definition, the optimal pipeline plan
is the plan whose maximum stage execution time is no
greater than that of any other possible pipeline plan. We
denote the optimal pipeline plan and its maximum stage
execution time by 𝑃∗and 𝑀𝑆𝑇∗, respectively.

III. SOLUTION APPROACH
The key idea behind DNNPipe is to derive an upper

bound on 𝑀𝑆𝑇∗and prune a pipeline plan that has a stage
whose execution time is greater than this upper bound. We
derive the upper bound as follows:

 𝑀𝑆𝑇∗෣ =
ஊ೐೔∈ಶ(௘೔)

ஊ೎ೕ∈಴൫௖ೕ൯
+

୫ୟ୶
೐೔∈ಶ

(௘೔)

୫୧୬
೎ೕ∈಴

൫௖ೕ൯
 

We let 𝐼𝑆𝑇 = Σ௘೔∈ா(𝑒௜) Σ௖ೕ∈஼൫𝑐௝൯ൗ . Note that 𝐼𝑆𝑇
represents the share of the workload that is assigned to
device 1. If we distribute this share to device 𝑗 in
proportion to its performance scaling factor 𝑐௝ , each
device will have the same execution time 𝐼𝑆𝑇 as device 1.
Thus, 𝐼𝑆𝑇 is the most balanced ideal stage execution time.

The 𝐼𝑆𝑇 is an ideal value in the sense that it assumes a
single layer can be divided between two adjacent devices.
In reality, a device either contains a whole layer or not at
all. This causes a difference between a stage’s possible
execution time and 𝐼𝑆𝑇 , and the amount of such
difference is bounded by max

௘೔∈ா
 (𝑒௜)/min

௖ೕ∈஼
 (𝑐௝). By adding

this bound to 𝐼𝑆𝑇, we have 𝑀𝑆𝑇∗෣ . We prove that 𝑀𝑆𝑇∗෣ is
a proper upper bound on 𝑀𝑆𝑇∗, as follows.
Theorem 1. 𝑀𝑆𝑇∗෣ ≥ 𝑀𝑆𝑇∗
Proof: We show that ∃𝑃௞ such that 𝑀𝑆𝑇௞ ≤ 𝑀𝑆𝑇∗෣ . For
any DNN, we can make 𝑃௞ = σଵ , σଶ , …, σ|௉ೖ| while

assigning each stage σ௜ such that ST(𝑓௜ , 𝑙௜ , 𝑑௜) −𝑒௟೔
/

𝑐ௗ೔
≤IST<ST(𝑓௜, 𝑙௜, 𝑑௜). The last stage σห௉ೖห may not be

satisfied, in which case it has ST(σ|௉ೖ|)< IST because

Σ஢೔∈௉ೖ൛𝑐ௗ೔
∙ 𝑆𝑇(σ௜)ൟ = Σ௘ೕ∈ா൫𝑒௝൯ = 𝐼𝑆𝑇 ∙ Σ௖೘∈஼(𝑐௠) .

Note that if ST(σ|௉ೖ|) ≥ IST, Σ஢೔∈௉ೖ൛𝑐ௗ೔
∙ 𝑆𝑇(σ௜)ൟ >

Σ௘೔∈ா(𝑒௜) . Since 𝑒௟೔
/𝑐ௗ೔

≤ max
௘ೕ∈ா

 (𝑒௝)/min
௖೗∈஼

 (𝑐௟) , for all σ௜

in 𝑃௞ , ST(σ௜) ≤ IST +max
௘ೕ∈ா

 (𝑒௝)/ min
௖೘∈஼

 (𝑐௠) = 𝑀𝑆𝑇∗෣ .

Since 𝑀𝑆𝑇௞ ≤ 𝑀𝑆𝑇∗෣ and 𝑀𝑆𝑇∗ ≤ 𝑀𝑆𝑇௞ , it follows
that 𝑀𝑆𝑇∗ ≤ 𝑀𝑆𝑇∗෣ .

Algorithm 1 shows the pseudocode of DNNPipe. For a
given 𝐸 and 𝐶, DNNPipe first calculates 𝑀𝑆𝑇∗෣ . It uses the
table DP to store the intermediate results for dynamic
programming. To explore all possible device
configurations that could be involved in pipelining,
DNNPipe iterates over a power set, which is a set of all
subsets of N devices ordered by increasing cardinality.
Note that DNNPipe extends each plan one stage at a time,
rather than generating each possible plan in its entirety.

Each partially extended plan represents the plan with the
minimum of the maximum stage execution times among
partial plans to date when layers 1 to i − 1 are pipelined
with devices in S. DNNPipe then assigns the next stage
with layers i to j to device k, which has not yet been
assigned, and calculates ST(i, j, k). If this exceeds 𝑀𝑆𝑇∗෣ ,
the plan is pruned.

IV. EXPERIMENTAL RESULTS
We have performed experiments to compare DNNPipe

with PipeEdge. We randomly generated 𝐸 and 𝐶 with a
uniform distribution in the range of [50, 250] and [0.1,
2.0], respectively. We ran the experiments with 100
random 𝐸 and 𝐶 values, varying the parameters as
follows: (1) 𝑁 from 3 to 9 with 𝐿 fixed at 300, and (2) 𝐿
from 50 to 400 with 𝑁 fixed at 8.

DNNPipe reduces execution times by 33% to 72% and
iteration counts by 47.4% to 73.4% compared to
PipeEdge, with the performance gap widening as N and L
increase.

V. CONCLUSION
We proposed DNNPipe, an efficient and optimal DP-

based DNN partitioning algorithm. The key contribution
lies in DNNPipe’s aggressive pruning strategy, which
exploits an upper bound on the minimum value among all
possible pipeline plans' maximum stage execution times.
This allows us to prune suboptimal plans early and focus
on the exploration in promising regions of the solution
space. Our experimental results show that DNNPipe
significantly reduces execution time compared to the
fastest known optimal DNN partitioning algorithm.

ACKNOWLEDGEMENT
This work was supported by Institute of Information & communications

Technology Planning & Evaluation (IITP) grant funded by the Korea
government (MSIT) (No.2021-0-00697, Development of Validation Technology
for Operation Rights SW Safety and Response according to Fallback MRC of
Edge-Based Autonomous Driving Function).

REFERENCES
[1] X. Chen, et al., "DNNOff: Offloading DNN-Based Intelligent IoT

Applications in Mobile Edge Computing," IEEE Transactions on
Industrial Informatics, vol. 18, no. 4, 2ST022.

[2] M. Xu, et al., "DeepWear: Adaptive local offloading for on-wearable deep
learning," IEEE Transactions on Mobile Computing, vol. 19, no. 2, 2020.
for CNNs Leveraging Apache TVM," IEEE Access, vol. 11, 2023.

[3] Y. Hu, et al., “PipeEdge: Pipeline Parallelism for Large-Scale Model
Inference on Heterogeneous Edge Devices,” Proc. of Euromicro
Conference on Digital System Design, 2022.

Algorithm 1: DNNPipe
Input: N, L, C, E
Output: The optimal pipeline plan P*
1 𝑀𝑆𝑇∗෣← sum(E)/sum(C) + max(E)/min(C) // by Eq. (1)
2 DP ← initialize_table(N, L); // create and initialize DP table
3 foreach (∀S, S ∈ ordered_power_set({1, 2, …, N})) {
4 foreach (∀k, k ∈ {1,2, …, N} − S) {
5 foreach (∀i, 1 ≤ i ≤ L) {
6 foreach (∀j, i ≤ j ≤ L){
7 if (ST(i, j, k) > 𝑀𝑆𝑇∗෣) break; // to apply 𝑀𝑆𝑇∗෣ by Theorem 1
8 update(DP, S, i, j, k, ST(i, j, k)); // update the DP table
9 }}}} // end-if/foreach
10 P* ← get_optimal_plan(DP); // get optimal pipeline plan from DP table
11 return P*

