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Abstract—The emergence of software-defined vehicles (SDVs) 

introduces significant challenges in dynamically deploying services 

with diverse criticality semantics. To address this issue, we present 

a framework for the dynamic mapping of mixed-criticality 

applications (MCAs) onto a mixed-criticality runtime system 

(MCR) with probabilistic guarantees. We model an SDV service, 

such as a Docker container, as an MCA and provide an MCR 

based on a finite-state machine. We present an approach that maps 

the criticality levels of an MCA to those of the MCR, tracks 

available resources in the MCR, converts the resource demands of 

an MCA, and performs admission control to ensure the MCR 

remains schedulable. This framework enables the reliable and 

prioritized execution of critical SDV functions while appropriately 

managing less critical tasks. 
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I. INTRODUCTION 

As the software-defined vehicle (SDV) has emerged as 
an innovative technology in the modern automotive 
industry, it is receiving significant attention and having a 
substantial impact on how automotive systems are 
designed and manufactured. Technically defined, an SDV 
refers to a vehicular system in which software determines 
the features and functions of the vehicle. Consequently, an 
SDV is characterized by its reliance on software to control 
and manage various aspects of the vehicle's operations. 

Unlike traditional vehicles, where hardware 
components are tightly coupled with specific functions, an 
SDV features a more flexible and modular architecture. 
This allows for easier updates, customization, and the 
introduction of new features through dynamic software 
updates. 

However, such benefits come with a cost. An SDV is a 
highly complex distributed real-time system that must 
overcome numerous technical challenges, including (1) 
ensuring real-time performance, (2) providing fault 
tolerance and resilience, (3) managing complexity and 
scalability, (4) enabling seamless integration and 
interoperability, (5) managing resource allocation and 
optimization, and (6) dynamically deploying diverse 
safety-critical services with different criticality semantics. 

Among these challenges, we focus particularly on the 
last issue since an SDV must handle various services with 
different levels of criticality at runtime, ensuring that the 

most critical functions are prioritized and executed reliably, 
while less critical tasks are managed appropriately. 

This issue poses challenging technical difficulties. 
SDV services often include tasks with diverse criticalities 
such as mission-critical and safety-critical tasks, and their 
timely and reliable execution must be guaranteed at 
runtime via an admission control mechanism, despite the 
differences between the environment in which they are 
developed and the actual environment in which they are 
deployed and executed. 

To address this problem, we present a sophisticated 
framework for admission control and dynamic mapping of 
mixed-criticality applications (MCA) onto a mixed-
criticality runtime system (MCR) with probabilistic 
guarantees. In doing so, we model a deployable SDV 
service, such as a Docker container [1], as an MCA having 
domain-specific criticality semantics. We in turn provide 
an MCR based on a finite-state machine. Finally, we 
introduce an approach that maps an MCA onto the MCR 
during the deployment stage if admissible. To the best of 
our knowledge, this is the first attempt to dynamically 
deploy mixed-criticality vehicular services into the SDV 
with probabilistic guarantees. 

II. PROBLEM FORMULATION 

A mixed-criticality system (MCS) is a system that runs 
tasks with varying levels of criticality. Its objective is to 
guarantee the deadlines of high-criticality tasks, possibly 
by sacrificing low-criticality tasks [2], [3], [4]. To 
distinguish between high and low criticality at runtime, the 
MCS uses indicators called modes, each of which 
corresponds to a criticality level of the MCS. By definition, 
the MCS in a mode with criticality level 𝑗 guarantees that 
all the admitted high-criticality tasks with a criticality level 
equal to or higher than 𝑗 remain schedulable. 

We apply a probabilistic model to an MCS, which 
transforms the MCS into our MCR. A mode in the MCR 
has a pre-calculated probability which is the likelihood of 
the MCR to be at the mode or below it. We refer to this 
probability as the overall mode probability (OMP). This 
enables a probabilistic guarantee of an admitted task 
because a task with a criticality level 𝑗  is always 



guaranteed as long as the MCR stays at or below mode 𝑗, 
according to the MCR’s definition as stated above. 

We define our MCR as a finite-state machine  
{𝒬, Σ, δ, 𝑞0} with criticality levels from 0 to 𝑚, with 0 
being non-critical, 1 the least critical, and 𝑚  the most 
critical. 𝒬 ={𝑞0, 𝑞1, … , 𝑞𝑚} is the mode set where 𝑞𝑗 is a 

mode with criticality level 𝑗. A mode  𝑞𝑗  is assigned an 

OMP denoted by 𝑝𝑗. A mode is associated with the amount 

of available resources such as CPU bandwidth. As 
resources become scarce, the MCR transitions to a more 
critical mode. Σ = {𝑢𝑝 ,  𝑑𝑜𝑤𝑛}  is a set of triggers for 
mode change: 𝑢𝑝 for mode change from 𝑞𝑗  to 𝑞𝑗+1  and 

𝑑𝑜𝑤𝑛 for mode change from 𝑞𝑗 to 𝑞𝑗−1. δ is the transition 

function of 𝒬 × Σ → 𝒬 and 𝑞0 is the initial mode. 
The MCR runs a set of admitted tasks 𝒯 = {𝜏1, 𝜏2, … , 

𝜏𝑛}. A task 𝜏𝑖 has four attributes (𝑙𝑖, 𝑐𝑖, 𝑡𝑖, 𝑑𝑖) that denote 
the criticality level, the worst-case execution time 
(WCET), the minimum inter-arrival time, and the deadline 
of 𝜏𝑖, respectively [2]. 

An MCA, denoted by a tuple (𝒮 ,  𝒯 ′), is a Docker 
container containing tasks with diverse criticality levels 
that range from 0 to 𝑚′ . In 𝒮 = {𝑠0 , 𝑠1 , …  , 𝑠𝑚′} , 𝑠𝑗 

represents the required probability of success (RPS) for 
tasks at criticality level 𝑗 with 0 being non-critical, 1 the 
least critical, and 𝑚′  the most critical. 𝑠0  is always 0, 
denoting the RPS of the non-critical level. 𝒯 ′ is a set of 
tasks of an MCA, with each task 𝜏𝑖

′ ∈ 𝒯 ′ is characterized 

by (𝑙𝑖
′, 𝑐𝑖

′, 𝑡𝑖
′, 𝑑𝑖

′) just like a task in MCR. 
Since the number of criticality levels of an MCA may 

vary depending on applications, our solution approach 
needs to map the criticality levels of an MCA to the modes 
of the MCR and perform admission control of the MCA. 

III. SOLUTION APPROACH 

Our approach depicted in Fig. 1 maps the criticality 
levels of an MCA to those of the MCR, keeps track of 
available resources in the MCR, converts the resource 
demands of an MCA into the units of the resources 
provisioned by the MCR, and performs admission control 
of the MCA. 

Specifically, when a deployment request of an MCA is 
issued, our approach invokes the mapping function 𝑓(𝑘) 
for each criticality level 𝑘 of an MCA. 

 𝑓(𝑘) = {
min{𝑗 ∈ [0, 𝑚]|𝑝𝑗 ≥ 𝑠𝑘} , if 𝑝𝑚 ≥ 𝑠𝑘

−1,                                          otherwise 
  () 

Note that the 𝑓(𝑘) preserves the criticality semantics 
of an admitted MCA. It maps a criticality level 𝑘 of an 
MCA to the criticality level 𝑗 of an MCR that guarantees 
at least 𝑠𝑘. If the MCA has a criticality level 𝑘 such that 
𝑓(𝑘) = −1, the MCA is rejected. 

If all tasks of the MCA are successfully mapped to the 
MCR, our approach invokes the admission controller to 
perform the schedulability analysis with those tasks. If the 
MCR remains schedulable, the MCA is finally admitted. 

The following is an example to illustrate our approach. 
• MCR: 𝒬 = {𝑞0, 𝑞1, 𝑞2, 𝑞3} with OMPs of 0.5, 0.7, 

0.8, and 0.9, respectively. 
• MCA: 𝒮 = {0, 0.6, 0.85} and 𝒯 ′ = {𝜏1

′ = (0, 35, 10, 
10), 𝜏2

′ = (1, 20, 5, 5), 𝜏3
′ = (2, 10, 2, 2)} 

• Mapping result: 𝑓(0) = 0, 𝑓(1) = 1, 𝑓(2) = 3 
• If admitted, 𝜏1

′  will run as a best-effort task, 𝜏2
′  with 

a 70% guarantee, and 𝜏3
′  with a 90% guarantee. 

IV. CONCLUSION AND FUTURE WORK 

In this paper, we proposed a framework for the 
dynamic mapping of MCAs with different criticality 
semantics for SDVs. This work lays the foundation for 
further research in the dynamic management of mixed-
criticality applications in SDVs. As our research 
progresses, we will develop a probabilistic model for OMP, 
realize the admission controller, and include in our model 
other resources besides CPU bandwidth. 
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Fig. 1. Overview of dynamic deployment of an MCA onto an MCR. 


