
Dynamic Mapping of Mixed-Criticality Applications

onto a Mixed-Criticality Runtime System with

Probabilistic Guarantees

Namcheol Lee1, Seongsoo Hong1, and Saehwa Kim2

Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea1

Department of Information and Communication Engineering, Hankuk-University of Foreign Studies, Yongin, Republic of Korea2

{nclee, sshong}@redwood.snu.ac.kr and ksaehwa@hufs.ac.kr

Abstract—The emergence of software-defined vehicles (SDVs)

introduces significant challenges in dynamically deploying services

with diverse criticality semantics. To address this issue, we present

a framework for the dynamic mapping of mixed-criticality

applications (MCAs) onto a mixed-criticality runtime system

(MCR) with probabilistic guarantees. We model an SDV service,

such as a Docker container, as an MCA and provide an MCR

based on a finite-state machine. We present an approach that maps

the criticality levels of an MCA to those of the MCR, tracks

available resources in the MCR, converts the resource demands of

an MCA, and performs admission control to ensure the MCR

remains schedulable. This framework enables the reliable and

prioritized execution of critical SDV functions while appropriately

managing less critical tasks.

Keywords—software-defined vehicle, mixed-criticality system,

deployable service, admission control, real-time scheduling

I. INTRODUCTION

As the software-defined vehicle (SDV) has emerged as
an innovative technology in the modern automotive
industry, it is receiving significant attention and having a
substantial impact on how automotive systems are
designed and manufactured. Technically defined, an SDV
refers to a vehicular system in which software determines
the features and functions of the vehicle. Consequently, an
SDV is characterized by its reliance on software to control
and manage various aspects of the vehicle's operations.

Unlike traditional vehicles, where hardware
components are tightly coupled with specific functions, an
SDV features a more flexible and modular architecture.
This allows for easier updates, customization, and the
introduction of new features through dynamic software
updates.

However, such benefits come with a cost. An SDV is a
highly complex distributed real-time system that must
overcome numerous technical challenges, including (1)
ensuring real-time performance, (2) providing fault
tolerance and resilience, (3) managing complexity and
scalability, (4) enabling seamless integration and
interoperability, (5) managing resource allocation and
optimization, and (6) dynamically deploying diverse
safety-critical services with different criticality semantics.

Among these challenges, we focus particularly on the
last issue since an SDV must handle various services with
different levels of criticality at runtime, ensuring that the

most critical functions are prioritized and executed reliably,
while less critical tasks are managed appropriately.

This issue poses challenging technical difficulties.
SDV services often include tasks with diverse criticalities
such as mission-critical and safety-critical tasks, and their
timely and reliable execution must be guaranteed at
runtime via an admission control mechanism, despite the
differences between the environment in which they are
developed and the actual environment in which they are
deployed and executed.

To address this problem, we present a sophisticated
framework for admission control and dynamic mapping of
mixed-criticality applications (MCA) onto a mixed-
criticality runtime system (MCR) with probabilistic
guarantees. In doing so, we model a deployable SDV
service, such as a Docker container [1], as an MCA having
domain-specific criticality semantics. We in turn provide
an MCR based on a finite-state machine. Finally, we
introduce an approach that maps an MCA onto the MCR
during the deployment stage if admissible. To the best of
our knowledge, this is the first attempt to dynamically
deploy mixed-criticality vehicular services into the SDV
with probabilistic guarantees.

II. PROBLEM FORMULATION

A mixed-criticality system (MCS) is a system that runs
tasks with varying levels of criticality. Its objective is to
guarantee the deadlines of high-criticality tasks, possibly
by sacrificing low-criticality tasks [2], [3], [4]. To
distinguish between high and low criticality at runtime, the
MCS uses indicators called modes, each of which
corresponds to a criticality level of the MCS. By definition,
the MCS in a mode with criticality level 𝑗 guarantees that
all the admitted high-criticality tasks with a criticality level
equal to or higher than 𝑗 remain schedulable.

We apply a probabilistic model to an MCS, which
transforms the MCS into our MCR. A mode in the MCR
has a pre-calculated probability which is the likelihood of
the MCR to be at the mode or below it. We refer to this
probability as the overall mode probability (OMP). This
enables a probabilistic guarantee of an admitted task
because a task with a criticality level 𝑗 is always

guaranteed as long as the MCR stays at or below mode 𝑗,
according to the MCR’s definition as stated above.

We define our MCR as a finite-state machine
{𝒬, Σ, δ, 𝑞0} with criticality levels from 0 to 𝑚, with 0
being non-critical, 1 the least critical, and 𝑚 the most
critical. 𝒬 ={𝑞0, 𝑞1, … , 𝑞𝑚} is the mode set where 𝑞𝑗 is a

mode with criticality level 𝑗. A mode 𝑞𝑗 is assigned an

OMP denoted by 𝑝𝑗. A mode is associated with the amount

of available resources such as CPU bandwidth. As
resources become scarce, the MCR transitions to a more
critical mode. Σ = {𝑢𝑝 , 𝑑𝑜𝑤𝑛} is a set of triggers for
mode change: 𝑢𝑝 for mode change from 𝑞𝑗 to 𝑞𝑗+1 and

𝑑𝑜𝑤𝑛 for mode change from 𝑞𝑗 to 𝑞𝑗−1. δ is the transition

function of 𝒬 × Σ → 𝒬 and 𝑞0 is the initial mode.
The MCR runs a set of admitted tasks 𝒯 = {𝜏1, 𝜏2, … ,

𝜏𝑛}. A task 𝜏𝑖 has four attributes (𝑙𝑖, 𝑐𝑖, 𝑡𝑖, 𝑑𝑖) that denote
the criticality level, the worst-case execution time
(WCET), the minimum inter-arrival time, and the deadline
of 𝜏𝑖, respectively [2].

An MCA, denoted by a tuple (𝒮 , 𝒯 ′), is a Docker
container containing tasks with diverse criticality levels
that range from 0 to 𝑚′ . In 𝒮 = {𝑠0 , 𝑠1 , … , 𝑠𝑚′} , 𝑠𝑗

represents the required probability of success (RPS) for
tasks at criticality level 𝑗 with 0 being non-critical, 1 the
least critical, and 𝑚′ the most critical. 𝑠0 is always 0,
denoting the RPS of the non-critical level. 𝒯 ′ is a set of
tasks of an MCA, with each task 𝜏𝑖

′ ∈ 𝒯 ′ is characterized

by (𝑙𝑖
′, 𝑐𝑖

′, 𝑡𝑖
′, 𝑑𝑖

′) just like a task in MCR.
Since the number of criticality levels of an MCA may

vary depending on applications, our solution approach
needs to map the criticality levels of an MCA to the modes
of the MCR and perform admission control of the MCA.

III. SOLUTION APPROACH

Our approach depicted in Fig. 1 maps the criticality
levels of an MCA to those of the MCR, keeps track of
available resources in the MCR, converts the resource
demands of an MCA into the units of the resources
provisioned by the MCR, and performs admission control
of the MCA.

Specifically, when a deployment request of an MCA is
issued, our approach invokes the mapping function 𝑓(𝑘)
for each criticality level 𝑘 of an MCA.

 𝑓(𝑘) = {
min{𝑗 ∈ [0, 𝑚]|𝑝𝑗 ≥ 𝑠𝑘} , if 𝑝𝑚 ≥ 𝑠𝑘

−1, otherwise
 ()

Note that the 𝑓(𝑘) preserves the criticality semantics
of an admitted MCA. It maps a criticality level 𝑘 of an
MCA to the criticality level 𝑗 of an MCR that guarantees
at least 𝑠𝑘. If the MCA has a criticality level 𝑘 such that
𝑓(𝑘) = −1, the MCA is rejected.

If all tasks of the MCA are successfully mapped to the
MCR, our approach invokes the admission controller to
perform the schedulability analysis with those tasks. If the
MCR remains schedulable, the MCA is finally admitted.

The following is an example to illustrate our approach.
• MCR: 𝒬 = {𝑞0, 𝑞1, 𝑞2, 𝑞3} with OMPs of 0.5, 0.7,

0.8, and 0.9, respectively.
• MCA: 𝒮 = {0, 0.6, 0.85} and 𝒯 ′ = {𝜏1

′ = (0, 35, 10,
10), 𝜏2

′ = (1, 20, 5, 5), 𝜏3
′ = (2, 10, 2, 2)}

• Mapping result: 𝑓(0) = 0, 𝑓(1) = 1, 𝑓(2) = 3
• If admitted, 𝜏1

′ will run as a best-effort task, 𝜏2
′ with

a 70% guarantee, and 𝜏3
′ with a 90% guarantee.

IV. CONCLUSION AND FUTURE WORK

In this paper, we proposed a framework for the
dynamic mapping of MCAs with different criticality
semantics for SDVs. This work lays the foundation for
further research in the dynamic management of mixed-
criticality applications in SDVs. As our research
progresses, we will develop a probabilistic model for OMP,
realize the admission controller, and include in our model
other resources besides CPU bandwidth.

ACKNOWLEDGMENT

This work was supported by the Technology Innovation Program (RS-2023-
00254158, “Development and Its Validation of Software-Defined Vehicle’s
Central Vehicle Computer Technology Applying Multiple Vehicle Domains for
E/E Architecture”) funded by the Ministry of Trade Industry & Energy (MOTIE,
Korea).

REFERENCES

[1] D. Merkel, “Docker: Lightweight Linux containers for consistent development
and deployment,” Linux J., vol. 2014, no. 239, Mar. 2014, Art. no. 2. [Online].
Available: https://dl.acm.org/citation.cfm?id=2600241

[2] A. Burns and R. Davis, “A survey of research into mixed criticality systems,”
ACM Comput. Surveys, vol. 50, no. 6, pp. 1–37, 2017.

[3] S. Vestal, “Preemptive scheduling of multi-criticality systems with varying
degrees of execution time assurance,” in Proc. IEEE Real-Time Syst. Symp.,
2007, pp. 239–243.

[4] A. Burns and S. Baruah, “Towards a more practical model for mixed criticality
systems,” in Proc. 1st Workshop Mixed Criticality Syst., 2013, pp. 1–6.

Fig. 1. Overview of dynamic deployment of an MCA onto an MCR.

