
XXX-X-XXXX-XXXX-X/XX/$XX.00 © 20XX IEEE

Memory-Aware DVFS Governing Policy for

Improved Energy-Saving in the Linux Kernel

Philkyue Shin, Dahun Kim, and Seongsoo Hong

Department of Electrical and Computer Engineering

Seoul National University

Seoul, Republic of Korea

{pkshin, dhkim, sshong}@redwood.snu.ac.kr

Abstract—Energy-aware computing is one of the most critical

issues in modern computing systems. Linux has introduced the

schedutil governor since its 4.7 kernel release, which dynamically

scales the processor frequency level to reduce energy consumption.

Although it has been widely used in most Linux-based systems, the

governor often makes inaccurate decisions in frequency selection,

thus leading to unnecessary energy consumption. In this paper, we

propose an enhanced governor as an alternative. We first

rigorously analyze the schedutil’s policy and then find out that it

does not take into account memory stalls when characterizing

CPU performance via CPI (cycles per instruction). This yields

inherent inaccuracy, particularly in modern SoCs where multiple

CPU cores and accelerators incur a huge amount of memory

traffic over the system bus. To rectify this problem, we

reformulate the CPU performance estimation function of the

schedutil governor via the memory stall cycle ratio so that it can

dynamically reflect the effects of changes in the processor’s

frequency and the system’s memory contention. We show that our

CPU performance estimation function is easily integrated into

schedutil. We also show that the memory stall cycle ratio, the key

element of the function, can be efficiently calculated at runtime

with performance monitoring units (PMU) commonly available in

most modern SoCs. We have implemented our governor and

conducted extensive experiments to validate its effectiveness.

Experimental results show that our governor saves more energy

than schedutil by up to 28.91% without noticeable performance

degradation.

Keywords—dynamic voltage and frequency scaling (DVFS),

energy efficiency, memory stall, schedutil governor

I. INTRODUCTION

Energy-aware computing has been an issue of utmost
importance in a wide variety of modern computing systems
ranging from massively parallel distributed server clusters to
small hand-held mobile devices. Numerous operating system-
level power reduction techniques and algorithms have been
investigated in both industry and academia. Two representative
techniques are power state management (PSM) and dynamic
voltage and frequency scaling (DVFS).

The PSM strategy puts the entire system or some of its idle
components into a low-power or power-off state whenever
possible. The cpuidle subsystem of the Linux kernel is a well-

known example of the PSM strategy [1]. It utilizes CPU idle
states and CPU hotplug that dynamically disables and enables
CPU cores.

The DVFS strategy has been the subject of extensive
research since it offers great potential for energy conservation.
Optionally coupled with CPU allocation and scheduling
algorithms, many DVFS policies have been proposed to reduce
energy consumption by finding the optimal operating frequency
and/or voltage of the underlying processor. Among those, the
task-level DVFS policies work in two steps for each runnable
task in the system: (1) They estimate a task’s execution time and
idle time for a pre-specified future time interval, and (2) they
reclaim the estimated idle time for the slow but energy-efficient
execution of the task. If the estimated idle time is accurate
enough and the idle time reclamation is faithfully carried out, the
system can save energy without degrading the externally
observable performance of the task [2].

As the DVFS mechanism has been widely incorporated into
modern popular SoCs, the DVFS policies have been
implemented into various operating systems. Linux is
representative of such operating systems [3]. Specifically, the
Linux kernel provides several CPUFreq governors, each of

which realizes a specific policy for controlling how the
processor frequency level is scaled. Since its 4.7 kernel release,
Linux has offered the schedutil governor, which is now

successfully and widely exploited in Android smartphones.
Moreover, the recently emerging energy-aware scheduler (EAS)
mandates it as a collaborating DVFS governor [4]. Similarly, in
the server domain, the transition from the long-standing
powersave governor to the schedutil governor has been

taking place since Linux 5.7 kernel release [5]. As such, the
schedutil governor is applied in many Linux-installed

systems.

Despite such accomplishment, much of the underlying
theory and operation of the schedutil governor has not been

well analyzed in the literature. In this paper, we analyze the
governor and uncover its effectiveness and limitations. The key
idea behind this governor is that it estimates the acceptable
performance of each task in the system and finds a frequency for

future execution that will ensure the desired performance while
leaving only indispensable idle time.

The schedutil governor measures the performance of a

task in terms of an instruction rate. The instruction rate is
defined as the number of instructions executed per unit time
interval. The governor estimates the desired instruction rate of a
task from its past behavior using the exponential moving
average. It then translates a task’s desired instruction rate into a
processor bandwidth demand in terms of the number of cycles
per unit time interval. We call it the cycle rate. The governor
adds together the bandwidth demands of all the tasks that will
be running on the processor. It then adds another 25% of the total
processor bandwidth demand to reserve the idle time that will
accommodate inevitable task blocking due to task
synchronization and IO waiting. This way the governor can
select a processor frequency that meets both the processor’s
bandwidth demand and idle time requirement.

The schedutil governor effectively reduces energy

consumption through dynamic performance estimation and
improved integration with the kernel scheduler. Suppose the
governor predicted a smaller desired performance value for a
task than the actual value due to an unusual transient condition.
Then the task would be running at a lower frequency than
necessary and thus consume CPU cycles in the reserved idle
time to make up for the lack of cycles. This would increase the
estimated desired performance value of the task in the future.
Conversely, an overestimated desired performance value of a
task would increase idle time, which would eventually reduce
the estimated desired performance of the task.

Unfortunately, the schedutil governor shows an

important drawback when it comes to modern SoCs that possess
multiple CPU cores and accelerators such as graphics processing
units (GPU) and neural processing units (NPU). Since their
usual workloads include memory-intensive programs such as
deep learning and graphics applications, they are prone to
experiencing nontrivial memory contention and exhibit a huge
variance in memory access time. Since a CPU core stalls and
wastes cycles for nothing during memory access, memory stall
cycles affect the number of cycles per instruction (CPI) of a
processor. In our experiment that we report in Section III, such
CPI value varies significantly with the operating frequency. This
phenomenon will become more evident in the future as the
performance gap between the processing units and the memory
grows.

When estimating CPU performance via CPI, the
schedutil governor took a rather simplistic approach in that

it regarded the CPI value of a processor as an intrinsic value,
regardless of memory stall cycles inside a processor. Such
inaccurate modeling of a processor’s CPI value becomes an
obstacle to finding the optimal frequency quickly. Suppose the
number of memory stall cycles per instruction decreases. The
governor will still operate at the current frequency that is
unnecessarily high for the decreased memory stall cycles. Even
if the governor gradually lowers the frequency after calculating
the desired performance of tasks, energy will be wasted
meanwhile. Conversely, suppose the number of memory stall
cycles per instruction increases. Then the governor will

gradually increase the frequency, but it will degrade tasks’
performance until the processor reaches the desired frequency.

As an alternative, we propose an enhanced governor that can
reduce the average frequency of the system without degrading
the performance of a given workload, compared to the original
schedutil governor. We name our governor the memory-

aware schedutil governor or mSchedutil for short. To

address the abovementioned limitation of schedutil, we

propose a dynamic CPU performance estimation function using
the memory stall cycle ratio that can be efficiently calculated
with performance monitoring units (PMU) commonly available
in most modern SoCs. We replace the original CPU performance
estimation function of schedutil with our function.

We have implemented mSchedutil on the NVIDIA

Jetson AGX Xavier platform, which is one of the most popular
SoCs that possess multiple CPU cores and accelerators. We have
evaluated mSchedutil with various synthetic and real-world

workloads. The results show that mSchedutil saves more

energy than schedutil by up to 28.91% without noticeable

performance degradation. We observe that mSchedutil

becomes more effective when the system’s memory contention
intensifies and the system’s load increases. Our experimental
result also shows that mSchedutil incurs only negligible

runtime overhead. We make the source code of mSchedutil,

along with experimental workloads, publicly available so that
anybody can evaluate or use mSchedutil freely.

The remainder of this paper is organized as follows. Section
II surveys existing memory-aware DVFS policies. Section III
presents an in-depth analysis of the schedutil governor. It

explains the governor’s operational behavior and the
mathematical equation that determines the next frequency.
Section IV describes the problem at hand. Section V describes
our solution, mSchedutil. Section VI describes the

implementation of mSchedutil along with the memory stall

cycle ratio estimation method. Section VII reports on the
experimental evaluation. Finally, Section VIII concludes this
paper.

II. RELATED WORK

DVFS-based policies have proven to be effective in reducing
energy consumption in a wide variety of computing systems and
thus have been extensively investigated in both academia and
industry. Many of them target memory-intensive workloads
such as deep learning and graphics applications. In such
workloads, memory stalls may have a great impact on the energy
efficiency of a processor. As such, researchers have examined
the effect of memory stalls on energy efficiency and proposed
memory-aware DVFS scaling policies [6-15].

Such policies can be classified into system-level and task-
level depending on whether they measure the impact of memory
stalls on the entire system or on each task in the system. The
system-level DVFS policies develop analytical models that
evaluate the amount of energy consumption changed due to
memory stalls. Spiliopoulos et al. proposed stall-based and miss-
based models which estimated memory stall time using PMU.
They, in turn, developed an energy estimation model [6]
utilizing the estimated memory stall time, frequency, voltage,

and IPC of a processor. Su et al. estimated the system’s energy
consumption using a linear regression model and memory stall
time measured with the special PMU and the other nine PMU
events in x86 [7]. Liang et al. proposed a function of the memory
access rate and frequency of a processor to estimate the system’s
energy consumption [8]. Gupta et al. proposed a regression-
based energy estimation model using the cache miss rate,
voltage, and frequency of a processor [9].

One of the advantages of the system-level DVFS policies is
that they can achieve intuitive energy-related goals such as
power capping. However, it is often quite difficult to generalize
them to be applicable to various SoC architectures. This is
because each SoC has different energy-related characteristics
such as power gating, which are difficult to model, and because
they often rely on special or dedicated PMU events.

The task-level DVFS policies estimate a task’s idle time
varied due to memory stalls and reclaim the estimated idle time
for the slow but energy-efficient execution of the task. Such
policies are subdivided into prior knowledge-guided and
runtime-driven depending on how they estimate the idle time.

The prior knowledge-guided DVFS policies estimate idle
time based on the prior knowledge given by a compiler or an
application. For example, some applications have QoS or
deadline constraints. After estimating the execution time, one
can easily calculate the slack time from the timing constraints.
Hsieh et al. used an application’s memory utilization and
memory access rate to capture its memory access behavior [10].
Using such values and past behavior, they estimated the
execution time of a mobile game. They then calculated CPU and
GPU frequencies in such a way that they could reclaim the slack
time while maintaining the desired frame rate of the mobile
game. Bahn et al. designed a genetic algorithm that aimed at
minimizing the power consumption in processors and memory
while satisfying the deadline constraints of all jobs [11]. To do
so, they included the memory footprint and the number of
memory read/write operations in their job model and evaluated
the worst-case execution time. Lu et al. attempted to locate code
sections that had substantial slacks with the aid of a compiler
[12]. They suggested decreasing the frequency while executing
such code sections.

The prior knowledge-guided DVFS policies are capable of
significantly reducing energy consumption in real-time and QoS
applications. Obviously, they are not suitable for general-
purpose computing systems that run applications whose timing
characteristics are not known in advance.

The runtime-driven DVFS policies estimate the idle time of
a task from its past behavior. Choi et al. constructed regression
models that calculated the idle time for the expected workload
using the ratio of the total off-chip access time to the total on-
chip computation time [13]. Hsu and Feng presented a β
algorithm that estimated idle time using the intensity level of off-
chip accesses [14]. They measured the intensity level by the
number of executed instructions per second. Cho et al.
introduced a notion of operational intensity, which was defined
as the number of memory operations per byte access [15]. They
found the optimal frequency that matched the operational
intensity using the roofline model.

The schedutil and mSchedutil governor are runtime-

driven DVFS policies like those found in [13], [14], and [15].
The schedutil governor can quickly respond to changes in

running tasks since it traces the amount of performed work on
an individual task basis.

Despite its advantage, schedutil lacks support for

memory-aware frequency scaling since it does not consider
memory stalls when modeling the performance of a core. Thus,
we develop and propose mSchedutil as an alternative.

III. ANALYSIS OF SCHEDUTIL GOVERNOR

In this section, we present our analysis of schedutil. We

first explain how the governor works in five steps and then
rigorously derive the governor’s equation to calculate the next
frequency. Finally, we show the limitation of the governor with
experiments.

A. Operational Behavior

The schedutil governor is designed to recompute the

frequency whenever one or more processors in the system
experience workload changes. When a task is migrated to a
processor with higher performance or the aggregated desired
instruction rate of a processor gets smaller, schedutil

ensures that the processor runs at a lower frequency; otherwise,
the processor runs at a higher frequency. For each processor, the
schedutil iterates the following steps in series.

[Step 1: Triggering] The governor is invoked by not only
the periodic scheduling tick but also the task scheduler of the
kernel.

[Step 2: Monitoring] The governor keeps track of the
instruction rate for each task running on a processor.

[Step 3: Prediction] Upon its invocation, the governor
estimates the desired instruction rate of each task for the future.
It then adds together the estimated instruction rates of all the
tasks to be running on the processor.

[Step 4: Cycle Conversion] The governor calculates the
processor bandwidth demand needed for executing the total
estimated instruction rate in terms of cycle rate.

[Step 5: Frequency Calculation] The governor computes
the frequency for the future such that the processor can offer 80%
of its total cycle rate for its tasks and leave the rest 20% as idle
time.

The triggering step enables the governor to respond to the
sporadic changes in the processor bandwidth demand as well as
allows it to perform periodic decision-making. When a task is
migrated into or out of a processor or when a task is forked or
terminated on a processor, the kernel’s task scheduler is called,
which in turn invokes the governor. The tick scheduler also
periodically triggers the governor.

The monitoring step allows the governor to have full
knowledge of the past progress of each task in terms of the
instruction rate. To delve into this step, we first introduce a
governor epoch which is a time interval delimited by two

successive governor invocations. Fig. 1 depicts the 𝑖𝑡ℎ governor

epoch. The 𝑖𝑡ℎ governor epoch begins with the 𝑖𝑡ℎ governor

invocation and ends with the (𝑖 + 1)𝑠𝑡. Each governor epoch is
subdivided into one or more unit time intervals. Fig. 1 shows

that the 𝑖𝑡ℎ governor epoch consists of 𝑛 unit time intervals.

Using several values measured at runtime, the governor

calculates the instruction rate 𝑖𝑟𝑖,𝑗(𝜏) of a task 𝜏 in the 𝑗𝑡ℎ unit

time interval of the 𝑖𝑡ℎ governor epoch for 1 ≤ 𝑗 ≤ 𝑛 , as
follows:

𝑖𝑟𝑖,𝑗(𝜏) =
𝑒𝑖,𝑗(𝜏)

𝑇
∙ 𝑓𝑖(𝑝𝑖(𝜏)) ∙ 𝐼𝑃𝐶(𝑝𝑖(𝜏)) (1)

where 𝑒𝑖,𝑗(𝜏) is the time spent to execute 𝜏 in the 𝑗𝑡ℎ unit time

interval of the 𝑖𝑡ℎ governor epoch and 𝑝𝑖(𝜏) , 𝑓𝑖(𝑝𝑖(𝜏)) and

𝐼𝑃𝐶(𝑝𝑖(𝜏)) are respectively the processor hosting 𝜏 , its

frequency, and its IPC value in the 𝑖𝑡ℎgovernor epoch. 𝐼𝑃𝐶(𝑝)
is treated as an intrinsic value of the processor 𝑝. 𝑇 is simply the
unit time interval size, which is 1ms in the current Linux
implementation.

Let 𝑖𝑟𝑖(𝜏) be the estimate of the desired instruction rate of 𝜏

for the 𝑖𝑡ℎ governor epoch. On the (𝑖 + 1)𝑠𝑡governor invocation,

the prediction step computes 𝑖𝑟𝑖+1(𝜏) by repetitively calculating
the exponential moving average of 𝑖𝑟𝑖,𝑗(𝜏) as follows:

𝑒𝑚𝑎 (𝑖𝑟𝑖,𝑗(𝜏)) = 𝛼 ∙ 𝑖𝑟𝑖,𝑗(𝜏) +

(1 − 𝛼) ∙ 𝑒𝑚𝑎 (𝑖𝑟𝑖,𝑗−1(𝜏))

(2)

where 𝑒𝑚𝑎 (𝑖𝑟𝑖,0(𝜏)) = 𝑖𝑟𝑖(𝜏) and (1 − 𝛼)32 = 0.5 . In the

current Linux implementation, the smoothing factor 𝛼 is
determined such that the instruction rate measured 32ms ago is
weighted half as much as the instruction rate measured 1ms ago.
The 32ms is selected by the rule of thumb.

𝑖𝑟𝑖+1(𝜏) equals to 𝑒𝑚𝑎 (𝑖𝑟𝑖,𝑛(𝜏)) as shown in Fig. 1. We

thus simply have:

𝑖𝑟𝑖+1(𝜏) = 𝑒𝑚𝑎 (𝑖𝑟𝑖,𝑛(𝜏)) (3)

In turn, the governor adds up 𝑖𝑟𝑖+1(𝜏) of all tasks 𝜏 in the

processor 𝑝𝑖+1 ’s runqueue and computes 𝑖𝑟𝑖+1(𝑝𝑖+1) .

𝑖𝑟𝑖+1(𝑝𝑖+1) is the total estimated desired instruction rate of 𝑝𝑖+1
for the (𝑖 + 1)𝑠𝑡 governor epoch.

𝑖𝑟𝑖+1(𝑝𝑖+1) = ∑ 𝑖𝑟𝑖+1(𝜏)

𝜏∈𝑝𝑖+1

 (4)

The cycle conversion step translates 𝑖𝑟𝑖+1(𝑝𝑖+1) into the
cycle rate 𝑐𝑟𝑖+1(𝑝𝑖+1) by dividing it by the intrinsic IPC value

of 𝑝𝑖+1. As a result, we get the following equation containing
the CPI value, the reciprocal of the IPC value.

𝑐𝑟𝑖+1(𝑝𝑖+1) = 𝑖𝑟𝑖+1(𝑝𝑖+1) ∙
1

𝐼𝑃𝐶(𝑝𝑖+1)

= 𝑖𝑟𝑖+1(𝑝𝑖+1) ∙ 𝐶𝑃𝐼(𝑝𝑖+1)

(5)

From 𝑐𝑟𝑖+1(𝑝𝑖+1), the frequency calculation step determines
the frequency 𝑓𝑖+1(𝑝𝑖+1) for the (𝑖 + 1)𝑠𝑡 governor epoch that
allows the processor 𝑝𝑖+1 to spend 80% of its CPU cycles
running the tasks in the runqueue and reserves the remaining 20%
as idle time.

𝑓𝑖+1(𝑝𝑖+1) = 1.25 ∙ 𝑐𝑟𝑖+1(𝑝𝑖+1) (6)

We have explained how the schedutil calculates

𝑓𝑖+1(𝑝𝑖+1) with six equations. We merge all these equations, as
follows.

𝑓𝑖+1(𝑝𝑖+1) = 1.25 ∙ 𝑐𝑟𝑖+1(𝑝𝑖+1)

= 1.25 ∙ 𝑖𝑟𝑖+1(𝑝𝑖+1) ∙ 𝐶𝑃𝐼(𝑝𝑖+1)

= 1.25 ∙ ∑ 𝑒𝑚𝑎 (𝑖𝑟𝑖,𝑛(𝜏))

𝜏∈𝑝𝑖+1

∙ 𝐶𝑃𝐼(𝑝𝑖+1)

= 1.25 ∙

∑ 𝑒𝑚𝑎 (
𝑒𝑖,𝑛(𝜏)

𝑇
∙ 𝑓𝑖(𝑝𝑖(𝜏)) ∙

𝐶𝑃𝐼(𝑝𝑖+1)

𝐶𝑃𝐼(𝑝𝑖(𝜏))
)

𝜏∈𝑝𝑖+1

(7)

We refer to (7) as the frequency equation of schedutil.

B. Inherent Inaccuracy

The schedutil governor is indeed effective in practice.

Also, it can be easily implemented and executed only with a
small computational cost and memory space. Note that its major

computational burden lies in computing 𝑒𝑚𝑎 (𝑖𝑟𝑖,𝑗(𝜏)) for each

task. Even this can be done cheaply by using the previously

computed 𝑒𝑚𝑎 (𝑖𝑟𝑖,𝑗−1(𝜏)) and calculating 𝑖𝑟𝑖,𝑗(𝜏).

Unfortunately, the schedutil governor has a noticeable

downside that arises due to a simplified assumption on a
processor’s performance characteristics. Note that it models a
processor’s CPI value as a 𝐶𝑃𝐼(𝑝) function, which always
returns a constant CPI value for a given processor 𝑝. However,
we argue that a processor’s CPI changes more drastically in the
modern SoCs than the schedutil originally expected, due to

increased memory contention. To show that our argument holds,
we have performed an experiment.

In this experiment, we ran SPECrate 2017 on the NVIDIA
Jetson AGX Xavier platform with a constant amount of memory
contention being applied to the running benchmark [16]. We
then measured CPI values while changing the frequency of the
CPU. We repeated the measurement with each of the 23
benchmarks in SPECrate 2017. We found out that the CPI
linearly increases with the frequency in all the measurements.
To pictorially demonstrate the relationship between the
frequency and the CPI, we selected the first three measurements
and plot them in Fig. 2.

Fig. 1. A governor epoch divided into multiple unit time intervals.

 Epoch (+) Epoch

 Unit Time Interval

 +

 (,) (,) (,)

 (+ ,)

The linear relationship between the frequency and the CPI of
a processor comes from memory stalls occurring inside the
processor during memory access. Note that for given memory
access time, the memory stall cycle count of a processor is
proportional to the operating frequency. We refer to such
varying memory stall cycle count per instruction as memory stall
CPI or mCPI for short.

In addition to such memory stall cycles, a processor’s CPI
includes the cycles for the processor to spend executing the
instruction. For a given CPU instruction, such execution cycles
are intrinsic to the CPU design and the cycle count remains
constant regardless of the operating frequency. We call it
computation CPI or cCPI for short.

Obviously, CPI is the summation of cCPI and mCPI. The
cCPI is simply the y-intercept of the linear CPI function of the
frequency since the CPI of a processor converges to its intrinsic
cCPI value as the operating frequency converges to zero.
Similarly, the mCPI is a multiplier of the frequency and the slope
of the CPI function. In Fig. 2, we color cCPI in light gray, and
mCPI in dark gray.

In order to eliminate the inherent inaccuracy of the
schedutil, one needs to be able to compute the CPI value at

the beginning of every governor epoch when the schedutil

governor is invoked. Unfortunately, it is quite difficult to
compute it since the slope of the CPI function dynamically
changes with the workload running on the system.

IV. PROBLEM DESCRIPTION

In this paper, we aim at enhancing the schedutil

governor of the Linux kernel by addressing its inherent
inaccuracy which was analyzed in the previous section.
Specifically, we attempt to reduce the energy consumption of
the CPU in the system while maintaining the rate of instructions
that are executed by the running tasks, compared to the original
governor.

To achieve this, we model the CPI as a linear function of the
frequency for a given workload so that we can calculate a more
accurate CPI value than the original governor when the
frequency equation (7) is called. This surely lowers the average
operating frequency of the CPU. Thus, the problem at hand is to
formulate a new frequency equation for mSchedutil with the

new CPI function and evaluate the equation dynamically when
needed.

In this section, we first briefly describe the target system
model and then formally present our problem.

A. Target System Architecture

Our target system is an SoC possessing multiple CPU cores
and one or more accelerators. The system has a multi-level cache
and onboard memory. The main memory is shared by all the
processing units in the SoC. Since the memory controller
operates with its own frequency and voltage level, memory
access latency is not affected by the CPU frequency. Fig. 3
pictorially shows the target architecture that is typical of modern
SoCs including the NVIDIA Jetson AGX Xavier platform.

B. Problem Definition

To formally present our problem, we start with some
necessary definitions. We define a more accurate CPI value
function 𝐶𝑃𝐼(𝑝, 𝑓) than 𝐶𝑃𝐼(𝑝). We elaborate on this function
using mCPI and cCPI. We then reformulate the frequency
equation of schedutil by substituting 𝐶𝑃𝐼(𝑝) with

𝐶𝑃𝐼(𝑝, 𝑓). As a result, we get a new frequency equation for
mSchedutil.

Fig. 3. Target architecture model.

System Coherence Fabric

Memory Controller

DRAM

GPU

Shared Cache /

On-board Memory

DMA

Engine

Stream

Processors

Private Cache

CPU

Core 0

Private

Cache

…
Core 1

Private

Cache

Core

Private

Cache

Shared Cache

Other Accelerator

Shared Cache /

On-board Memory

DMA

Engine

Computing

Unit

Private Cache

Fig. 2. Linear relationship between frequency and CPI.

Definition 1. For a given workload running on the system,
we let 𝐶𝑃𝐼(𝑝, 𝑓) be the CPI value of the processor 𝑝 running at
the frequency 𝑓.

We in turn define mCPI and cCPI for 𝐶𝑃𝐼(𝑝, 𝑓).

Definition 2. For 𝐶𝑃𝐼(𝑝, 𝑓) , we denote the number of
memory stall cycles per instruction as 𝑚𝐶𝑃𝐼(𝑓) and the number
of computation cycles per instruction as 𝑐𝐶𝑃𝐼(𝑝).

The following holds trivially from Definition 2.

𝐶𝑃𝐼(𝑝, 𝑓) = 𝑚𝐶𝑃𝐼(𝑓) + 𝑐𝐶𝑃𝐼(𝑝) (8)

We fit 𝑚𝐶𝑃𝐼(𝑓) into a linear function of 𝑓 using a
proportional constant 𝑚. As a result, we have the following
equation.

𝑚𝐶𝑃𝐼(𝑓) = 𝑚 ∙ 𝑓 (9)

Note that we model 𝑚 as constant for a given workload in
the system for the sake of simplicity; it dynamically changes
with the running workload.

We then model 𝑐𝐶𝑃𝐼(𝑝) as a linear function of 𝐶𝑃𝐼(𝑝)
using another proportional constant 𝑐. The 𝐶𝑃𝐼(𝑝) is originally
defined in schedutil and denotes the CPU performance that

is constant regardless of frequency.

𝑐𝐶𝑃𝐼(𝑝) = 𝑐 ∙ 𝐶𝑃𝐼(𝑝) (10)

By modeling 𝑐𝐶𝑃𝐼(𝑝) this way, 𝐶𝑃𝐼(𝑝, 𝑓) subsumes
𝐶𝑃𝐼(𝑝) . Depending on the proportional constants, 𝐶𝑃𝐼(𝑝, 𝑓)
obtains the same or a more accurate CPI value than 𝐶𝑃𝐼(𝑝). We
determine the proper proportional constants that obtain an
accurate CPI value at runtime.

From (8), (9), and (10), we derive 𝐶𝑃𝐼(𝑝, 𝑓) as follows.

𝐶𝑃𝐼(𝑝, 𝑓) = 𝑚 ∙ 𝑓 + 𝑐 ∙ 𝐶𝑃𝐼(𝑝) (11)

In order to derive a frequency equation for our proposed
governor, we modify the frequency equation of schedutil by

substituting 𝐶𝑃𝐼(𝑝) with 𝐶𝑃𝐼(𝑝, 𝑓) . The resultant equation
follows:

𝑓𝑖+1(𝑝𝑖+1) = 1.25 ∙ ∑ 𝑒𝑚𝑎 (
𝑒𝑖,𝑛(𝜏)

𝑇
∙ 𝑓𝑖(𝑝𝑖(𝜏)) ∙

𝜏∈𝑝𝑖+1

𝐶𝑃𝐼(𝑝𝑖+1, 𝑓𝑖+1(𝑝𝑖+1))

𝐶𝑃𝐼 (𝑝𝑖(𝜏), 𝑓𝑖(𝑝𝑖(𝜏)))
)

(12)

From (11), we rewrite (12) as follows:

𝑓𝑖+1(𝑝𝑖+1) = 1.25 ∙ ∑ 𝑒𝑚𝑎 (
𝑒𝑖,𝑛(𝜏)

𝑇
∙ 𝑓𝑖(𝑝𝑖(𝜏)) ∙

𝜏∈𝑝𝑖+1

𝑚𝑖+1 ∙ 𝑓𝑖+1(𝑝𝑖+1) + 𝑐𝑖+1 ∙ 𝐶𝑃𝐼(𝑝𝑖+1)

𝑚𝑖 ∙ 𝑓𝑖(𝑝𝑖(𝜏)) + 𝑐𝑖 ∙ 𝐶𝑃𝐼(𝑝𝑖(𝜏))
)

(13)

Consequently, our problem at hand is to efficiently evaluate
(13) at runtime to obtain the frequency 𝑓𝑖+1(𝑝𝑖+1) of the
processor 𝑝𝑖+1 at the beginning of the (𝑖 + 1)𝑠𝑡 governor epoch.

V. SOLUTION APPROACH: APPROXIMATION OF THE FREQUENCY

EQUATION

The mSchedutil governor must evaluate the frequency

equation (13) at the beginning of each governor epoch in order
to determine the frequency of a processor. Unfortunately, it is
not practically feasible to compute (13) in its current form since
the coefficients 𝑚𝑖+1 , 𝑐𝑖+1 , 𝑚𝑖 , and 𝑐𝑖 vary dynamically with
the workload running on the system in each governor epoch. We
thus take an approximation approach to get rid of these
coefficients.

In this section, we derive an approximate frequency equation
from (13) using the memory stall cycle ratio and linear
regression. In designing our approximation, we intend to derive
a frequency equation that consists of such values that can be
easily measured on the fly via PMUs already built-in most
COTS SoCs.

A. Reformulating Frequency Equation with Memory Stall

Cycle Ratio

To derive a new frequency equation from (13) for our
mSchedutil governor, we first eliminate the two coefficients

𝑚𝑖+1 and 𝑐𝑖+1, then introduce the memory stall cycle ratio, and
finally eliminate the remaining two coefficients 𝑚𝑖 and 𝑐𝑖.

Firstly, we substitute 𝑚𝑖+1 and 𝑐𝑖+1 with 𝑚𝑖 and 𝑐𝑖 in (13).
We have observed that the characteristics of the system's
workload change little during the short 4ms governor epoch. We
thus consider that the coefficient measured in a governor epoch
remains unchanged in the subsequent governor epoch. As a
result, we have the following equation:

𝑓𝑖+1(𝑝𝑖+1) = 1.25 ∙ ∑ 𝑒𝑚𝑎 (
𝑒𝑖,𝑛(𝜏)

𝑇
∙ 𝑓𝑖(𝑝𝑖(𝜏)) ∙

𝜏∈𝑝𝑖+1

𝑚𝑖 ∙ 𝑓𝑖+1(𝑝𝑖+1) + 𝑐𝑖 ∙ 𝐶𝑃𝐼(𝑝𝑖+1)

𝑚𝑖 ∙ 𝑓𝑖(𝑝𝑖(𝜏)) + 𝑐𝑖 ∙ 𝐶𝑃𝐼(𝑝𝑖(𝜏))
)

(14)

Secondly, we proceed to eliminate 𝑚𝑖 and 𝑐𝑖 from (14). As
𝑓𝑖+1(𝑝𝑖+1) appears on both sides of the equal sign in (14), we
need to solve (14) for 𝑓𝑖+1(𝑝𝑖+1). The hard part in doing so is to

compute (𝑚𝑖 ∙ 𝑓𝑖+1(𝑝𝑖+1) + 𝑐𝑖 ∙ 𝐶𝑃𝐼(𝑝𝑖+1))/ (𝑚𝑖 ∙ 𝑓𝑖(𝑝𝑖(𝜏)) +

𝑐𝑖 ∙ 𝐶𝑃𝐼(𝑝𝑖(𝜏))). To ease this step, we reformulate this formula

as below:

𝑚𝑖 ∙ 𝑓𝑖+1(𝑝𝑖+1) + 𝑐𝑖 ∙ 𝐶𝑃𝐼(𝑝𝑖+1)

𝑚𝑖 ∙ 𝑓𝑖(𝑝𝑖(𝜏)) + 𝑐𝑖 ∙ 𝐶𝑃𝐼(𝑝𝑖(𝜏))
=

𝑚𝑖 ∙ 𝑓𝑖(𝑝𝑖(𝜏))

𝑚𝑖 ∙ 𝑓𝑖(𝑝𝑖(𝜏)) + 𝑐𝑖 ∙ 𝐶𝑃𝐼(𝑝𝑖(𝜏))
∙
𝑓𝑖+1(𝑝𝑖+1)

𝑓𝑖(𝑝𝑖(𝜏))
+

(1 −
𝑚𝑖 ∙ 𝑓𝑖(𝑝𝑖(𝜏))

𝑚𝑖 ∙ 𝑓𝑖(𝑝𝑖(𝜏)) + 𝑐𝑖 ∙ 𝐶𝑃𝐼(𝑝𝑖(𝜏))
) ∙

𝐶𝑃𝐼(𝑝𝑖+1)

𝐶𝑃𝐼(𝑝𝑖(𝜏))

(15)

We note that the term 𝑚 ∙ 𝑓/(𝑚 ∙ 𝑓 + 𝑐 ∙ 𝐶𝑃𝐼(𝑝)) in (15) is
the ratio of the memory stall cycle count to the instruction cycle
count. We formally define the ratio in what follows.

Definition 3. The memory stall cycle ratio 𝑚𝑟(𝑝, 𝑓) is
defined as below:

𝑚𝑟(𝑝, 𝑓) =
𝑚 ∙ 𝑓

𝑚 ∙ 𝑓 + 𝑐 ∙ 𝐶𝑃𝐼(𝑝)
=
𝑚𝐶𝑃𝐼(𝑓)

𝐶𝑃𝐼(𝑝, 𝑓)

We now rewrite (15) using Definition 3 and have the
following equation:

𝑚𝑖 ∙ 𝑓𝑖+1(𝑝𝑖+1) + 𝑐𝑖 ∙ 𝐶𝑃𝐼(𝑝𝑖+1)

𝑚𝑖 ∙ 𝑓𝑖(𝑝𝑖(𝜏)) + 𝑐𝑖 ∙ 𝐶𝑃𝐼(𝑝𝑖(𝜏))
=

𝑚𝑟 (𝑝𝑖(𝜏), 𝑓𝑖(𝑝𝑖(𝜏))) ∙
𝑓𝑖+1(𝑝𝑖+1)

𝑓𝑖(𝑝𝑖(𝜏))
+

(1 − 𝑚𝑟 (𝑝𝑖(𝜏), 𝑓𝑖(𝑝𝑖(𝜏)))) ∙
𝐶𝑃𝐼(𝑝𝑖+1)

𝐶𝑃𝐼(𝑝𝑖(𝜏))

(16)

We plug (16) into (14) and obtain the following equation:

𝑓𝑖+1(𝑝𝑖+1) = 1.25 ∙

∑ 𝑒𝑚𝑎 (
𝑒𝑖,𝑛(𝜏)

𝑇
∙ 𝑓𝑖(𝑝𝑖(𝜏))

𝜏∈𝑝𝑖+1

∙ (𝑚𝑟 (𝑝𝑖(𝜏), 𝑓𝑖(𝑝𝑖(𝜏)))

∙
𝑓𝑖+1(𝑝𝑖+1)

𝑓𝑖(𝑝𝑖(𝜏))

+ (1 −𝑚𝑟 (𝑝𝑖(𝜏), 𝑓𝑖(𝑝𝑖(𝜏))))

∙
𝐶𝑃𝐼(𝑝𝑖+1)

𝐶𝑃𝐼(𝑝𝑖(𝜏))
))

(17)

Solving (17) for 𝑓𝑖+1(𝑝𝑖+1), we end up with the following
equation:

𝑓𝑖+1(𝑝𝑖+1) = 1.25 ∙

∑ 𝑒𝑚𝑎 (
𝑒𝑖,𝑛(𝜏)

𝑇
∙ 𝑓𝑖(𝑝𝑖(𝜏)) ∙ 𝐼𝑃𝐶(𝑝𝑖(𝜏))

𝜏∈𝑝𝑖+1

∙ (1 − 𝑚𝑟 (𝑝𝑖(𝜏), 𝑓𝑖(𝑝𝑖(𝜏)))))

∙ 𝐶𝑃𝐼(𝑝𝑖+1) ÷ (1 − 1.25

∙ ∑ 𝑒𝑚𝑎 (
𝑒𝑖,𝑛(𝜏)

𝑇
𝜏∈𝑝𝑖+1

∙ 𝑚𝑟 (𝑝𝑖(𝜏), 𝑓𝑖(𝑝𝑖(𝜏)))))

(18)

(18) is the frequency equation of mSchedutil.

B. Estimating Memory Stall Cycle Ratio

To evaluate (18), the mSchedutil governor needs to

additionally acquire the memory stall cycle ratio since the other
values are already known through the schedutil governor.

Such acquisition must be carried out at a low runtime cost since
it is repeated every governor epoch.

In the literature, there exist several estimation methods for
the memory stall cycle ratio, some of which suggest
implementing a dedicated hardware performance counter [17],

[18], [19] and others estimate it using special PMUs [7], [20].
Unlike these approaches, we intend to come up with a method
that is as hardware-agnostic as possible. Our method is based on
linear regression and relies only on commonly available PMU
events that can be found in most COTS SoCs.

To design our estimation method, we comprehensively
analyze the stall cycles of instruction and classify them into three
categories: bad speculation, frontend, and backend. The modern
superscalar, out-of-order microarchitecture such as the Arm v8.2
Carmel CPU core has a pipeline that consists of the frontend part
and the backend part as shown in Fig. 4. The branch predictor in
the frontend part may incur bad speculation stalls and the rest of
the frontend part may experience frontend stalls. The backend
part may incur backend stalls [21].

Let 𝑠𝑟(𝑝, 𝑓) be the ratio of the bad speculation stall cycle
count to the total cycle count. Similarly, let 𝑓𝑟(𝑝, 𝑓) and
𝑏𝑟(𝑝, 𝑓) be the ratios of the frontend and backend stall cycle
count to the total cycle count, respectively. We model the
memory stall cycle ratio 𝑚𝑟(𝑝, 𝑓) as a linear combination of
𝑠𝑟(𝑝, 𝑓), 𝑓𝑟(𝑝, 𝑓), and 𝑏𝑟(𝑝, 𝑓), as follows.

𝑚𝑟(𝑝, 𝑓) = 𝛼1(𝑝) ∙ 𝑠𝑟(𝑝, 𝑓) + 𝛼2(𝑝) ∙ 𝑓𝑟(𝑝, 𝑓) +

𝛼3(𝑝) ∙ 𝑏𝑟(𝑝, 𝑓) − 𝛼4(𝑝)
(19)

Our model (19) is based on our previous work [22]. It shows
that the backend stall cycle ratio is a sum of the memory-related
term that is proportional to the frequency and a constant term
related to instruction execution. So do the other two memory
stall cycle ratios. The regression coefficient 𝛼4(𝑝) denotes the
constant stall cycle ratio.

We simply obtain the regression coefficients 𝛼1(𝑝) through
𝛼4(𝑝) with a multiple-linear regression tool [23]. At runtime,
our governor can easily evaluate 𝑚𝑟(𝑝, 𝑓) by computing
dependent variables 𝑠𝑟(𝑝, 𝑓) , 𝑓𝑟(𝑝, 𝑓) , and 𝑏𝑟(𝑝, 𝑓) using
values from related PMU events.

VI. PUTTING IT ALL TOGETHER

In this section, we present the implementation details of
mSchedutil. Particularly, we describe the internal structure

and operation of mSchedutil and explain the PMU-based

Fig. 4. Frontend and backend of the pipeline in the Carmel core.

Carmel Core

Processor Arbitration

Instruction

Cache

Instruction

TLB
L2 TLB

Data

TLB

Data

Cache

Branch

Prediction

Instruction

Fetch
Decode Scheduler

Integer

Register

File

FP

Register

File

Integer

Execute

FP

Execute

Load/Store

Writeback

Frontend Part Backend Part

implementation of the regression model for estimating the
memory stall cycle ratio.

A. Structure and Operation of the Proposed Governor

Fig. 5 pictorially depicts the overall structure of
mSchedutil. It consists of five components: (1) instruction

rate monitor, (2) instruction rate predictor, (3) cycle rate
convertor, (4) frequency designator, and (5) memory stall cycle
ratio estimator. We integrate these components into the
CPUFreq subsystem of the Linux kernel.

The instruction rate monitor computes the past instruction
rate of each task running on a given processor. It reads in a task’s
execution time from the kernel scheduler and the frequency and
𝐼𝑃𝐶(𝑝) values of the processor from the CPUFreq core module.

In order to reflect memory stall in computing an instruction rate,
it also reads in a memory stall cycle ratio from the memory stall
cycle ratio estimator.

The instruction rate predictor computes the exponential
moving average among instruction rate values provided by the
previous component. It then produces a desired instruction rate
for the next governor epoch. To do so, it adds together the
desired instruction rates of all the individual tasks to be running
on the processor.

The cycle rate convertor calculates the desired cycle rate for
the next governor epoch. Finally, the frequency designator
determines the next frequency according to (18).

The memory stall cycle ratio estimator calculates the
𝑚𝑟(𝑝, 𝑓) value. In our implementation, we intentionally

decouple it from the rest since it is highly dependent on the target
SoC. We elaborate on this issue in what follows.

B. Memory Stall Cycle Ratio Estimator

To construct the memory stall cycle ratio estimator, we need
to determine the regression coefficients 𝛼1(𝑝) through 𝛼4(𝑝)
offline. To do so, we have collected 1,458 tuples of [𝑚𝑟(𝑝, 𝑓),
𝑠𝑟(𝑝, 𝑓) , 𝑓𝑟(𝑝, 𝑓) , 𝑏𝑟(𝑝, 𝑓)] by varying benchmarks, CPU
frequencies, and memory frequencies. Specifically, we ran 27
benchmarks from SPEC 2017 on the NVIDIA Jetson AGX
Xavier platform at the CPU frequency changed in nine steps and
at the memory frequency changed in six steps.

To obtain a tuple at each measurement run, we used the PMU
events listed in Table I. These are basic Arm PMU events and
similar ones are found in many other microarchitectures like x86.
Specifically, we obtain 𝑠𝑟(𝑝, 𝑓) by dividing the
BR_MIS_PRED_RETIRED value by the INST_RETIRED

value since 𝑠𝑟(𝑝, 𝑓) is approximately equal to the ratio of the
number of mispredicted branch instructions to the number of
retired instructions. Similarly, 𝑓𝑟(𝑝, 𝑓) and 𝑏𝑟(𝑝, 𝑓) are
STALL_FRONTEND and STALL_BACKEND divided by

CPU_CYCLES, respectively.

Calculating 𝑚𝑟(𝑝, 𝑓) is a bit complicated. According to
Definition 3, we need 𝐶𝑃𝐼(𝑝, 𝑓) and 𝑚𝐶𝑃𝐼(𝑓) . We can get
𝐶𝑃𝐼(𝑝, 𝑓) easily by dividing CPU_CYCLES by

INST_RETIRED. To get 𝑚𝐶𝑃𝐼(𝑓) , we need to determine

𝑐𝐶𝑃𝐼(𝑝) according to (8). To do so, we rely on simple linear
regression among tuples [𝑓, 𝐶𝑃𝐼(𝑝, 𝑓)] since 𝑐𝐶𝑃𝐼(𝑝) is the y-
intercept of the linear CPI function of 𝑓 as stated in (11). It is
trivial to obtain such tuples.

VII. EXPERIMENTAL EVALUATION

To assess the effectiveness of mSchedutil over

schedutil, we have performed four experiments. In the first

and second experiments, we analyze how much energy
mSchedutil saves compared to schedutil under various

intensities of the system’s memory contention and various
amount of the system’s load, respectively. In the third
experiment, we evaluate the energy efficiency of the governors
on real-world applications. Finally, in the fourth experiment, we
assess the runtime overhead of mSchedutil.

Fig. 5. Overall structure of the mSchedutil governor.

TABLE I. PMU EVENTS USED FOR ESTIMATING MEMORY STALL CYCLE

RATIO.

Event

Number
Event Mnemonic Description

0x08 INST_RETIRED Instruction architecturally executed

0x11 CPU_CYCLES Cycles elapsed since PMU enabling

0x22
BR_MIS_PRED_RE

TIRED

Instruction architecturally executed,

mispredicted branch

0x23 STALL_FRONTEND
No operation issued due to the
frontend

0x24 STALL_BACKEND No operation issued due to backend

In this section, we give a detailed account of the
experimental setup and present the experimental results.

A. Experimental Setup

Our target platform was the NVIDIA Jetson AGX Xavier
platform hosting Ubuntu for Arm 18.04.1 based on Linux kernel
4.9.108 and JetPack 4.1.1. This platform supported seven power
modes and we chose mode 5 for our experiments. We did so to
make the effect of a governor more visible. A CPU core in mode
5 can consume up to 2.2 times as much energy as in the default
mode. We measured consumed CPU energy using the integrated
INA3221 power monitor in the Xavier platform.

For the first and second experiments, we created synthetic
workloads for CPU and GPU, respectively. The CPU workload
is a simple thread that periodically executed a fixed mix of
arithmetic and memory instructions. The GPU workload
consists of multiple threads executing only memory instructions.

For the third experiment, we collected applications for Arm
Linux and designed five test scenarios. These scenarios include
deep learning, game, office, video, and web browsing. The deep
learning scenario runs a deep learning object detection
application we took from the NVIDIA GitHub [24]. The game
scenario runs an OpenArena game demo [25]. The office
scenario renders LibreOffice files periodically [26]. The video
scenario plays HEVC video files with the totem player [27]. The
web browsing scenario renders offline chromium web pages
periodically [28].

B. Experimental Result

In the first experiment, we ran the synthetic workloads for
two minutes under the two governors and measured the total
amounts of CPU energy consumption in Joule. We repeated this
measurement, changing the number of GPU threads to see the
effect of memory contention. We kept the throughputs of the
CPU workload identical under both governors by precisely
executing 2,752,512 instructions every 10ms in the CPU
workload. We repeated each measurement 100 times and
calculated the mean value and standard error.

Fig. 6 shows the result. The x-axis is the number of GPU
threads and the y-axis is the CPU energy consumption under the
two governors. The result shows that mSchedutil saves more

energy than schedutil by up to 0.01% to 19.25%. It also

shows that mSchedutil works more effectively as the

memory contention gets increased.

In the second experiment, to see the effect of the system’s
load, we performed the above measurements with the CPU
workload varied and the memory contention fixed to 1024 GPU
threads. Fig. 7 shows that mSchedutil saves energy by 2.16%

to 28.91% compared to schedutil. As the system’s load gets

increased, mSchedutil tends to achieve more energy savings

because the larger the system's load, the larger the margin for
improvement.

In the third experiment, we measured the CPU energy
consumption under real-world workloads. We also measured the
instruction rates of the workloads under schedutil and

mSchedutil. Since we could not keep the throughput of the

real-world applications identical under the two governors, we
needed to compare the throughput of applications using the
measured instruction rates.

Fig. 8 shows the result. When comparing the throughputs of
the applications, the two governors do not make a significant

Fig. 6. Energy consumption under schedutil and mSchedutil with the

system’s memory contention varied.

0

20

40

60

80

100

128 256 512 768 1024

E
n

e
rg

y
 (

J
)

Number of GPU Threads

Energy Consumption

schedutil mSchedutil

Fig. 7. Energy consumption under schedutil and mSchedutil with the

system’s load varied.

0

20

40

60

80

100

120

140

1966080 2359296 2752512 3145728 3342336

E
n

e
rg

y
 (

J
)

Number of CPU Instructions

Energy Consumption

schedutil mSchedutil

Fig. 8. CPU energy consumption under schedutil and mSchedutil

(real-world applications case).

0.E+00

5.E+07

1.E+08

2.E+08

2.E+08

3.E+08

3.E+08

4.E+08

4.E+08

DL Game Office Video Web

In
s
tr

u
c
ti

o
n

 R
a
te

Instruction Rate

schedutil mSchedutil

0

50

100

150

200

250

300

350

400

DL Game Office Video Web

E
n

e
rg

y
 (

J
)

Energy Consumption

schedutil mSchedutil

difference. In the experiment, mSchedutil saves more energy

than schedutil by 7.97%, 5.23%, and 7.03% in the deep

learning, game, and video scenarios, respectively.

In the fourth experiment, we separately measured the
execution times of schedutil and mSchedutil code and

compared them. Our governor took only 7.73% longer time than
schedutil. Considering the short execution time of

schedutil, such overhead is negligible.

VIII. CONCLUSION

We presented a memory-aware DVFS governor,
mSchedutil that improves the energy-saving efficiency of

schedutil in Linux. The schedutil governor estimates

CPU performance without considering memory stall cycles
although CPU performance expressed by CPI is dynamically
affected by the memory stall. After rigorously analyzing the
frequency equation of schedutil, we reformulated its

inaccurate CPU performance estimation function using the
memory stall cycle ratio so that the resultant mSchedutil

governor could adaptively reflect the effect of the system’s
memory contention. We also showed that the new CPU
performance estimation function is easily integrated into the
original governor.

We implemented mSchedutil as an extension to the

schedutil governor inside the CPUFreq subsystem of the

Linux kernel. As part of the implementation, we designed a
regression model that enabled our governor to efficiently
calculate the memory stall cycle ratio at runtime based on our
analysis of the pipeline structure of the modern superscalar
multicore CPU. We demonstrated that our implementation
worked at low runtime cost using only PMU events commonly
available in most modern SoCs.

We extensively evaluated mSchedutil via diverse

experiments. The results showed that mSchedutil saved

energy by up to 28.91% compared to the schedutil governor.

ACKNOWLEDGMENT

This work is supported by Samsung Electronics’ university
R&D program.

REFERENCES

[1] Rafael J. Wysocki, “CPU Idle Time Management,” [online]. Available:
https://www.kernel.org/doc/html/latest/driver-api/pm/cpuidle.html

[2] Stefanos Kaxiras and Margaret Martonosi, "Computer architecture
techniques for power-efficiency," Synthesis Lectures on Computer
Architecture 3.1 (2008): 23-29.

[3] Rafael J. Wysocki, “CPU Performance Scaling,” [online]. Available:
https://www.kernel.org/doc/html/latest/admin-guide/pm/cpufreq.html

[4] Arm, “EAS Overview and Integration Guide,” [online]. Available:
https://developer.arm.com/tools-and-software/open-source-
software/linux-kernel/energy-aware-scheduling

[5] Rafael J. Wysocki, “[GIT PULL] More power management updates for
v5.7-rc1,” [online]. Available:
https://lore.kernel.org/lkml/CAJZ5v0ji9p4_whgcJbh6mm8cdYpruHEzO
sTqje7JedD45wH5Dg@mail.gmail.com

[6] Vasileios Spiliopoulos, Stefanos Kaxiras, and Georgios Keramidas,
"Green governors: A framework for continuously adaptive dvfs," IEEE
International Green Computing Conference and Workshops, 2011.

[7] Bo Su et al., "PPEP: Online performance, power, and energy prediction
framework and DVFS space exploration," 47th Annual IEEE/ACM
International Symposium on Microarchitecture, 2014.

[8] Wen-Yew Liang, Ming-Feng Chang, and Yen-Lin Chen, "Optimal
Energy Saving DVFS Approach of Embedded Processors," Journal of
Information Science and Engineering 33.5, 2017, 1121-1140.

[9] Manjari Gupta, Lava Bhargava, and S. Indu, "Dynamic workload-aware
DVFS for multicore systems using machine learning," Computing 103,
2021, 1747-1769.

[10] Chen-Ying Hsieh et al., "MEMCOP: memory-aware co-operative power
management governor for mobile games," Design Automation for
Embedded Systems 22, 2018, 95-116.

[11] Hyokyung Bahn, and Kyungwoon Cho, "Evolution-based real-time job
scheduling for co-optimizing processor and memory power savings,"
IEEE Access 8, 2020.

[12] Teng Lu, Partha Pratim Pande, and Behrooz Shirazi, "A dynamic,
compiler guided DVFS mechanism to achieve energy-efficiency in multi-
core processors," Sustainable Computing: Informatics and Systems 12,
2016, 1-9.

[13] Kihwan Choi, Ramakrishna Soma, and Massoud Pedram, "Fine-grained
dynamic voltage and frequency scaling for precise energy and
performance tradeoff based on the ratio of off-chip access to on-chip
computation times," IEEE transactions on computer-aided design of
integrated circuits and systems 24.1 (2004): 18-28.

[14] Chung-hsing Hsu and Wu-chun Feng, "A power-aware run-time system
for high-performance computing," SC'05: Proceedings of the 2005
ACM/IEEE Conference on Supercomputing, 2005.

[15] Seong Jin Cho, Seung Hyun Yun, and Jae Wook Jeon, "A powersaving
DVFS algorithm based on operational intensity for embedded systems,"
IEICE Electronics Express 12.3 (2015): 20141128-20141128.

[16] Standard Performance Evaluation Corporation, “SPEC CPU®2017
Utilities,” [online]. Available: https://www.spec.org/cpu2017

[17] Stijn Eyerman and Lieven Eeckhout, "A counter architecture for online
DVFS profitability estimation," IEEE Transactions on Computers 59.11
(2010): 1576-1583.

[18] Georgios Keramidas, Vasileios Spiliopoulos, and Stefanos Kaxiras,
"Interval-based models for run-time DVFS orchestration in superscalar
processors," Proceedings of the 7th ACM international conference on
Computing frontiers, 2010.

[19] Jawad Haj-Yahya et al., "SysScale: Exploiting multi-domain dynamic
voltage and frequency scaling for energy efficient mobile processors,"
ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), 2020.

[20] Bo Su et al., "Implementing a leading loads performance predictor on
commodity processors," USENIX Annual Technical Conference
(USENIX ATC 14), 2014.

[21] Ahmad Yasin, "A top-down method for performance analysis and
counters architecture," IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2014.

[22] Jungho Kim, et al., "Memory-aware fair-share scheduling for improved
performance isolation in the Linux kernel," IEEE Access 8 (2020): 98874-
98886.

[23] Leona S. Aiken, Stephen G. West, and Steven C. Pitts, "Multiple linear
regression," Handbook of psychology (2003): 481-507.

[24] dusty-nv, “jetson-inference,” [online]. Available:
https://github.com/dusty-nv/jetson-inference

[25] OA Team, “OpenArena,” [online]. Available: https://openarena.ws

[26] LibreOffice developers, “LibreOffice,” [online]. Available:
https://www.libreoffice.org

[27] The GNOME Project, “Totem player,” [online]. Available:
https://wiki.gnome.org/Apps/Videos

[28] Chromium developers, “Chromium,” [online]. Available:
https://www.chromium.org

https://www.kernel.org/doc/html/latest/driver-api/pm/cpuidle.html
https://www.kernel.org/doc/html/latest/admin-guide/pm/cpufreq.html
https://developer.arm.com/tools-and-software/open-source-software/linux-kernel/energy-aware-scheduling
https://developer.arm.com/tools-and-software/open-source-software/linux-kernel/energy-aware-scheduling
https://lore.kernel.org/lkml/CAJZ5v0ji9p4_whgcJbh6mm8cdYpruHEzOsTqje7JedD45wH5Dg@mail.gmail.com
https://lore.kernel.org/lkml/CAJZ5v0ji9p4_whgcJbh6mm8cdYpruHEzOsTqje7JedD45wH5Dg@mail.gmail.com
https://www.spec.org/cpu2017
https://github.com/dusty-nv/jetson-inference
https://openarena.ws/
https://www.libreoffice.org/
https://wiki.gnome.org/Apps/Videos
https://www.chromium.org/

