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Abstract—Energy-aware computing is one of the most critical 

issues in modern computing systems. Linux has introduced the 

schedutil governor since its 4.7 kernel release, which dynamically 

scales the processor frequency level to reduce energy consumption. 

Although it has been widely used in most Linux-based systems, the 

governor often makes inaccurate decisions in frequency selection, 

thus leading to unnecessary energy consumption. In this paper, we 

propose an enhanced governor as an alternative. We first 

rigorously analyze the schedutil’s policy and then find out that it 

does not take into account memory stalls when characterizing 

CPU performance via CPI (cycles per instruction). This yields 

inherent inaccuracy, particularly in modern SoCs where multiple 

CPU cores and accelerators incur a huge amount of memory 

traffic over the system bus. To rectify this problem, we 

reformulate the CPU performance estimation function of the 

schedutil governor via the memory stall cycle ratio so that it can 

dynamically reflect the effects of changes in the processor’s 

frequency and the system’s memory contention. We show that our 

CPU performance estimation function is easily integrated into 

schedutil. We also show that the memory stall cycle ratio, the key 

element of the function, can be efficiently calculated at runtime 

with performance monitoring units (PMU) commonly available in 

most modern SoCs. We have implemented our governor and 

conducted extensive experiments to validate its effectiveness. 

Experimental results show that our governor saves more energy 

than schedutil by up to 28.91% without noticeable performance 

degradation. 
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I. INTRODUCTION 

Energy-aware computing has been an issue of utmost 
importance in a wide variety of modern computing systems 
ranging from massively parallel distributed server clusters to 
small hand-held mobile devices. Numerous operating system-
level power reduction techniques and algorithms have been 
investigated in both industry and academia. Two representative 
techniques are power state management (PSM) and dynamic 
voltage and frequency scaling (DVFS). 

The PSM strategy puts the entire system or some of its idle 
components into a low-power or power-off state whenever 
possible. The cpuidle subsystem of the Linux kernel is a well-

known example of the PSM strategy [1]. It utilizes CPU idle 
states and CPU hotplug that dynamically disables and enables 
CPU cores. 

The DVFS strategy has been the subject of extensive 
research since it offers great potential for energy conservation. 
Optionally coupled with CPU allocation and scheduling 
algorithms, many DVFS policies have been proposed to reduce 
energy consumption by finding the optimal operating frequency 
and/or voltage of the underlying processor. Among those, the 
task-level DVFS policies work in two steps for each runnable 
task in the system: (1) They estimate a task’s execution time and 
idle time for a pre-specified future time interval, and (2) they 
reclaim the estimated idle time for the slow but energy-efficient 
execution of the task. If the estimated idle time is accurate 
enough and the idle time reclamation is faithfully carried out, the 
system can save energy without degrading the externally 
observable performance of the task [2]. 

As the DVFS mechanism has been widely incorporated into 
modern popular SoCs, the DVFS policies have been 
implemented into various operating systems. Linux is 
representative of such operating systems [3]. Specifically, the 
Linux kernel provides several CPUFreq governors, each of 

which realizes a specific policy for controlling how the 
processor frequency level is scaled. Since its 4.7 kernel release, 
Linux has offered the schedutil governor, which is now 

successfully and widely exploited in Android smartphones. 
Moreover, the recently emerging energy-aware scheduler (EAS) 
mandates it as a collaborating DVFS governor [4]. Similarly, in 
the server domain, the transition from the long-standing 
powersave governor to the schedutil governor has been 

taking place since Linux 5.7 kernel release [5]. As such, the 
schedutil governor is applied in many Linux-installed 

systems. 

Despite such accomplishment, much of the underlying 
theory and operation of the schedutil governor has not been 

well analyzed in the literature. In this paper, we analyze the 
governor and uncover its effectiveness and limitations. The key 
idea behind this governor is that it estimates the acceptable 
performance of each task in the system and finds a frequency for 



future execution that will ensure the desired performance while 
leaving only indispensable idle time. 

The schedutil governor measures the performance of a 

task in terms of an instruction rate. The instruction rate is 
defined as the number of instructions executed per unit time 
interval. The governor estimates the desired instruction rate of a 
task from its past behavior using the exponential moving 
average. It then translates a task’s desired instruction rate into a 
processor bandwidth demand in terms of the number of cycles 
per unit time interval. We call it the cycle rate. The governor 
adds together the bandwidth demands of all the tasks that will 
be running on the processor. It then adds another 25% of the total 
processor bandwidth demand to reserve the idle time that will 
accommodate inevitable task blocking due to task 
synchronization and IO waiting. This way the governor can 
select a processor frequency that meets both the processor’s 
bandwidth demand and idle time requirement. 

The schedutil governor effectively reduces energy 

consumption through dynamic performance estimation and 
improved integration with the kernel scheduler. Suppose the 
governor predicted a smaller desired performance value for a 
task than the actual value due to an unusual transient condition. 
Then the task would be running at a lower frequency than 
necessary and thus consume CPU cycles in the reserved idle 
time to make up for the lack of cycles. This would increase the 
estimated desired performance value of the task in the future. 
Conversely, an overestimated desired performance value of a 
task would increase idle time, which would eventually reduce 
the estimated desired performance of the task. 

Unfortunately, the schedutil governor shows an 

important drawback when it comes to modern SoCs that possess 
multiple CPU cores and accelerators such as graphics processing 
units (GPU) and neural processing units (NPU). Since their 
usual workloads include memory-intensive programs such as 
deep learning and graphics applications, they are prone to 
experiencing nontrivial memory contention and exhibit a huge 
variance in memory access time. Since a CPU core stalls and 
wastes cycles for nothing during memory access, memory stall 
cycles affect the number of cycles per instruction (CPI) of a 
processor. In our experiment that we report in Section III, such 
CPI value varies significantly with the operating frequency. This 
phenomenon will become more evident in the future as the 
performance gap between the processing units and the memory 
grows. 

When estimating CPU performance via CPI, the 
schedutil governor took a rather simplistic approach in that 

it regarded the CPI value of a processor as an intrinsic value, 
regardless of memory stall cycles inside a processor. Such 
inaccurate modeling of a processor’s CPI value becomes an 
obstacle to finding the optimal frequency quickly. Suppose the 
number of memory stall cycles per instruction decreases. The 
governor will still operate at the current frequency that is 
unnecessarily high for the decreased memory stall cycles. Even 
if the governor gradually lowers the frequency after calculating 
the desired performance of tasks, energy will be wasted 
meanwhile. Conversely, suppose the number of memory stall 
cycles per instruction increases. Then the governor will 

gradually increase the frequency, but it will degrade tasks’ 
performance until the processor reaches the desired frequency. 

As an alternative, we propose an enhanced governor that can 
reduce the average frequency of the system without degrading 
the performance of a given workload, compared to the original 
schedutil governor. We name our governor the memory-

aware schedutil governor or mSchedutil for short. To 

address the abovementioned limitation of schedutil, we 

propose a dynamic CPU performance estimation function using 
the memory stall cycle ratio that can be efficiently calculated 
with performance monitoring units (PMU) commonly available 
in most modern SoCs. We replace the original CPU performance 
estimation function of schedutil with our function. 

We have implemented mSchedutil on the NVIDIA 

Jetson AGX Xavier platform, which is one of the most popular 
SoCs that possess multiple CPU cores and accelerators. We have 
evaluated mSchedutil with various synthetic and real-world 

workloads. The results show that mSchedutil saves more 

energy than schedutil by up to 28.91% without noticeable 

performance degradation. We observe that mSchedutil 

becomes more effective when the system’s memory contention 
intensifies and the system’s load increases. Our experimental 
result also shows that mSchedutil incurs only negligible 

runtime overhead. We make the source code of mSchedutil, 

along with experimental workloads, publicly available so that 
anybody can evaluate or use mSchedutil freely. 

The remainder of this paper is organized as follows. Section 
II surveys existing memory-aware DVFS policies. Section III 
presents an in-depth analysis of the schedutil governor. It 

explains the governor’s operational behavior and the 
mathematical equation that determines the next frequency. 
Section IV describes the problem at hand. Section V describes 
our solution, mSchedutil. Section VI describes the 

implementation of mSchedutil along with the memory stall 

cycle ratio estimation method. Section VII reports on the 
experimental evaluation. Finally, Section VIII concludes this 
paper. 

II. RELATED WORK 

DVFS-based policies have proven to be effective in reducing 
energy consumption in a wide variety of computing systems and 
thus have been extensively investigated in both academia and 
industry. Many of them target memory-intensive workloads 
such as deep learning and graphics applications. In such 
workloads, memory stalls may have a great impact on the energy 
efficiency of a processor. As such, researchers have examined 
the effect of memory stalls on energy efficiency and proposed 
memory-aware DVFS scaling policies [6-15]. 

Such policies can be classified into system-level and task-
level depending on whether they measure the impact of memory 
stalls on the entire system or on each task in the system. The 
system-level DVFS policies develop analytical models that 
evaluate the amount of energy consumption changed due to 
memory stalls. Spiliopoulos et al. proposed stall-based and miss-
based models which estimated memory stall time using PMU. 
They, in turn, developed an energy estimation model [6] 
utilizing the estimated memory stall time, frequency, voltage, 



and IPC of a processor. Su et al. estimated the system’s energy 
consumption using a linear regression model and memory stall 
time measured with the special PMU and the other nine PMU 
events in x86 [7]. Liang et al. proposed a function of the memory 
access rate and frequency of a processor to estimate the system’s 
energy consumption [8]. Gupta et al. proposed a regression-
based energy estimation model using the cache miss rate, 
voltage, and frequency of a processor [9]. 

One of the advantages of the system-level DVFS policies is 
that they can achieve intuitive energy-related goals such as 
power capping. However, it is often quite difficult to generalize 
them to be applicable to various SoC architectures. This is 
because each SoC has different energy-related characteristics 
such as power gating, which are difficult to model, and because 
they often rely on special or dedicated PMU events. 

The task-level DVFS policies estimate a task’s idle time 
varied due to memory stalls and reclaim the estimated idle time 
for the slow but energy-efficient execution of the task. Such 
policies are subdivided into prior knowledge-guided and 
runtime-driven depending on how they estimate the idle time. 

The prior knowledge-guided DVFS policies estimate idle 
time based on the prior knowledge given by a compiler or an 
application. For example, some applications have QoS or 
deadline constraints. After estimating the execution time, one 
can easily calculate the slack time from the timing constraints. 
Hsieh et al. used an application’s memory utilization and 
memory access rate to capture its memory access behavior [10]. 
Using such values and past behavior, they estimated the 
execution time of a mobile game. They then calculated CPU and 
GPU frequencies in such a way that they could reclaim the slack 
time while maintaining the desired frame rate of the mobile 
game. Bahn et al. designed a genetic algorithm that aimed at 
minimizing the power consumption in processors and memory 
while satisfying the deadline constraints of all jobs [11]. To do 
so, they included the memory footprint and the number of 
memory read/write operations in their job model and evaluated 
the worst-case execution time.  Lu et al. attempted to locate code 
sections that had substantial slacks with the aid of a compiler 
[12]. They suggested decreasing the frequency while executing 
such code sections. 

The prior knowledge-guided DVFS policies are capable of 
significantly reducing energy consumption in real-time and QoS 
applications. Obviously, they are not suitable for general-
purpose computing systems that run applications whose timing 
characteristics are not known in advance. 

The runtime-driven DVFS policies estimate the idle time of 
a task from its past behavior. Choi et al. constructed regression 
models that calculated the idle time for the expected workload 
using the ratio of the total off-chip access time to the total on-
chip computation time [13]. Hsu and Feng presented a β 
algorithm that estimated idle time using the intensity level of off-
chip accesses [14]. They measured the intensity level by the 
number of executed instructions per second. Cho et al. 
introduced a notion of operational intensity, which was defined 
as the number of memory operations per byte access [15]. They 
found the optimal frequency that matched the operational 
intensity using the roofline model. 

The schedutil and mSchedutil governor are runtime-

driven DVFS policies like those found in [13], [14], and [15]. 
The schedutil governor can quickly respond to changes in 

running tasks since it traces the amount of performed work on 
an individual task basis. 

Despite its advantage, schedutil lacks support for 

memory-aware frequency scaling since it does not consider 
memory stalls when modeling the performance of a core. Thus, 
we develop and propose mSchedutil as an alternative. 

III. ANALYSIS OF SCHEDUTIL GOVERNOR 

In this section, we present our analysis of schedutil. We 

first explain how the governor works in five steps and then 
rigorously derive the governor’s equation to calculate the next 
frequency. Finally, we show the limitation of the governor with 
experiments. 

A. Operational Behavior 

The schedutil governor is designed to recompute the 

frequency whenever one or more processors in the system 
experience workload changes. When a task is migrated to a 
processor with higher performance or the aggregated desired 
instruction rate of a processor gets smaller, schedutil 

ensures that the processor runs at a lower frequency; otherwise, 
the processor runs at a higher frequency. For each processor, the 
schedutil iterates the following steps in series. 

[Step 1: Triggering] The governor is invoked by not only 
the periodic scheduling tick but also the task scheduler of the 
kernel. 

[Step 2: Monitoring] The governor keeps track of the 
instruction rate for each task running on a processor. 

[Step 3: Prediction] Upon its invocation, the governor 
estimates the desired instruction rate of each task for the future. 
It then adds together the estimated instruction rates of all the 
tasks to be running on the processor. 

[Step 4: Cycle Conversion] The governor calculates the 
processor bandwidth demand needed for executing the total 
estimated instruction rate in terms of cycle rate. 

[Step 5: Frequency Calculation] The governor computes 
the frequency for the future such that the processor can offer 80% 
of its total cycle rate for its tasks and leave the rest 20% as idle 
time. 

The triggering step enables the governor to respond to the 
sporadic changes in the processor bandwidth demand as well as 
allows it to perform periodic decision-making. When a task is 
migrated into or out of a processor or when a task is forked or 
terminated on a processor, the kernel’s task scheduler is called, 
which in turn invokes the governor. The tick scheduler also 
periodically triggers the governor. 

The monitoring step allows the governor to have full 
knowledge of the past progress of each task in terms of the 
instruction rate. To delve into this step, we first introduce a 
governor epoch which is a time interval delimited by two 

successive governor invocations. Fig. 1 depicts the 𝑖𝑡ℎ governor 

epoch. The 𝑖𝑡ℎ  governor epoch begins with the 𝑖𝑡ℎ  governor 



invocation and ends with the (𝑖 + 1)𝑠𝑡. Each governor epoch is 
subdivided into one or more unit time intervals. Fig. 1 shows 

that the 𝑖𝑡ℎ governor epoch consists of 𝑛 unit time intervals.  

Using several values measured at runtime, the governor 

calculates the instruction rate 𝑖𝑟𝑖,𝑗(𝜏) of a task 𝜏 in the 𝑗𝑡ℎ unit 

time interval of the 𝑖𝑡ℎ  governor epoch for 1 ≤ 𝑗 ≤ 𝑛 , as 
follows: 

𝑖𝑟𝑖,𝑗(𝜏) =
𝑒𝑖,𝑗(𝜏)

𝑇
∙ 𝑓𝑖(𝑝𝑖(𝜏)) ∙ 𝐼𝑃𝐶(𝑝𝑖(𝜏)) (1) 

where 𝑒𝑖,𝑗(𝜏) is the time spent to execute 𝜏 in the 𝑗𝑡ℎ unit time 

interval of the 𝑖𝑡ℎ governor epoch and 𝑝𝑖(𝜏) , 𝑓𝑖(𝑝𝑖(𝜏))  and 

𝐼𝑃𝐶(𝑝𝑖(𝜏))  are respectively the processor hosting 𝜏 , its 

frequency, and its IPC value in the 𝑖𝑡ℎgovernor epoch. 𝐼𝑃𝐶(𝑝) 
is treated as an intrinsic value of the processor 𝑝. 𝑇 is simply the 
unit time interval size, which is 1ms in the current Linux 
implementation. 

Let 𝑖𝑟𝑖(𝜏) be the estimate of the desired instruction rate of 𝜏 

for the 𝑖𝑡ℎ governor epoch. On the (𝑖 + 1)𝑠𝑡governor invocation, 

the prediction step computes 𝑖𝑟𝑖+1(𝜏) by repetitively calculating 
the exponential moving average of 𝑖𝑟𝑖,𝑗(𝜏) as follows: 

𝑒𝑚𝑎 (𝑖𝑟𝑖,𝑗(𝜏)) = 𝛼 ∙ 𝑖𝑟𝑖,𝑗(𝜏) + 

(1 − 𝛼) ∙ 𝑒𝑚𝑎 (𝑖𝑟𝑖,𝑗−1(𝜏)) 

(2) 

where 𝑒𝑚𝑎 (𝑖𝑟𝑖,0(𝜏)) = 𝑖𝑟𝑖(𝜏)  and (1 − 𝛼)32 = 0.5 . In the 

current Linux implementation, the smoothing factor  𝛼  is 
determined such that the instruction rate measured 32ms ago is 
weighted half as much as the instruction rate measured 1ms ago. 
The 32ms is selected by the rule of thumb. 

𝑖𝑟𝑖+1(𝜏) equals to 𝑒𝑚𝑎 (𝑖𝑟𝑖,𝑛(𝜏)) as shown in Fig. 1. We 

thus simply have: 

𝑖𝑟𝑖+1(𝜏) = 𝑒𝑚𝑎 (𝑖𝑟𝑖,𝑛(𝜏)) (3) 

In turn, the governor adds up 𝑖𝑟𝑖+1(𝜏) of all tasks 𝜏 in the 

processor 𝑝𝑖+1 ’s runqueue and computes 𝑖𝑟𝑖+1(𝑝𝑖+1) . 

𝑖𝑟𝑖+1(𝑝𝑖+1) is the total estimated desired instruction rate of 𝑝𝑖+1 
for the (𝑖 + 1)𝑠𝑡 governor epoch. 

𝑖𝑟𝑖+1(𝑝𝑖+1) = ∑ 𝑖𝑟𝑖+1(𝜏)

𝜏∈𝑝𝑖+1

 (4) 

The cycle conversion step translates 𝑖𝑟𝑖+1(𝑝𝑖+1)  into the 
cycle rate 𝑐𝑟𝑖+1(𝑝𝑖+1) by dividing it by the intrinsic IPC value 

of 𝑝𝑖+1. As a result, we get the following equation containing 
the CPI value, the reciprocal of the IPC value. 

𝑐𝑟𝑖+1(𝑝𝑖+1) = 𝑖𝑟𝑖+1(𝑝𝑖+1) ∙
1

𝐼𝑃𝐶(𝑝𝑖+1)
 

= 𝑖𝑟𝑖+1(𝑝𝑖+1) ∙ 𝐶𝑃𝐼(𝑝𝑖+1) 

 

(5) 

From 𝑐𝑟𝑖+1(𝑝𝑖+1), the frequency calculation step determines 
the frequency 𝑓𝑖+1(𝑝𝑖+1) for the (𝑖 + 1)𝑠𝑡 governor epoch that 
allows the processor 𝑝𝑖+1  to spend 80% of its CPU cycles 
running the tasks in the runqueue and reserves the remaining 20% 
as idle time. 

𝑓𝑖+1(𝑝𝑖+1)  = 1.25 ∙ 𝑐𝑟𝑖+1(𝑝𝑖+1) (6) 

We have explained how the schedutil calculates 

𝑓𝑖+1(𝑝𝑖+1) with six equations. We merge all these equations, as 
follows. 

𝑓𝑖+1(𝑝𝑖+1)  = 1.25 ∙ 𝑐𝑟𝑖+1(𝑝𝑖+1) 

= 1.25 ∙ 𝑖𝑟𝑖+1(𝑝𝑖+1) ∙ 𝐶𝑃𝐼(𝑝𝑖+1) 

= 1.25 ∙ ∑ 𝑒𝑚𝑎 (𝑖𝑟𝑖,𝑛(𝜏))

𝜏∈𝑝𝑖+1

∙ 𝐶𝑃𝐼(𝑝𝑖+1) 

= 1.25 ∙ 

∑ 𝑒𝑚𝑎 (
𝑒𝑖,𝑛(𝜏)

𝑇
∙ 𝑓𝑖(𝑝𝑖(𝜏)) ∙

𝐶𝑃𝐼(𝑝𝑖+1)

𝐶𝑃𝐼(𝑝𝑖(𝜏))
)

𝜏∈𝑝𝑖+1

 

 

(7) 

We refer to (7) as the frequency equation of schedutil. 

B. Inherent Inaccuracy 

The schedutil governor is indeed effective in practice. 

Also, it can be easily implemented and executed only with a 
small computational cost and memory space. Note that its major 

computational burden lies in computing 𝑒𝑚𝑎 (𝑖𝑟𝑖,𝑗(𝜏)) for each 

task. Even this can be done cheaply by using the previously 

computed 𝑒𝑚𝑎 (𝑖𝑟𝑖,𝑗−1(𝜏)) and calculating 𝑖𝑟𝑖,𝑗(𝜏). 

Unfortunately, the schedutil governor has a noticeable 

downside that arises due to a simplified assumption on a 
processor’s performance characteristics. Note that it models a 
processor’s CPI value as a 𝐶𝑃𝐼(𝑝)  function, which always 
returns a constant CPI value for a given processor 𝑝. However, 
we argue that a processor’s CPI changes more drastically in the 
modern SoCs than the schedutil originally expected, due to 

increased memory contention. To show that our argument holds, 
we have performed an experiment. 

In this experiment, we ran SPECrate 2017 on the NVIDIA 
Jetson AGX Xavier platform with a constant amount of memory 
contention being applied to the running benchmark [16]. We 
then measured CPI values while changing the frequency of the 
CPU. We repeated the measurement with each of the 23 
benchmarks in SPECrate 2017. We found out that the CPI 
linearly increases with the frequency in all the measurements. 
To pictorially demonstrate the relationship between the 
frequency and the CPI, we selected the first three measurements 
and plot them in Fig. 2.  

 

Fig. 1. A governor epoch divided into multiple unit time intervals. 
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The linear relationship between the frequency and the CPI of 
a processor comes from memory stalls occurring inside the 
processor during memory access. Note that for given memory 
access time, the memory stall cycle count of a processor is 
proportional to the operating frequency. We refer to such 
varying memory stall cycle count per instruction as memory stall 
CPI or mCPI for short. 

In addition to such memory stall cycles, a processor’s CPI 
includes the cycles for the processor to spend executing the 
instruction. For a given CPU instruction, such execution cycles 
are intrinsic to the CPU design and the cycle count remains 
constant regardless of the operating frequency. We call it 
computation CPI or cCPI for short. 

Obviously, CPI is the summation of cCPI and mCPI. The 
cCPI is simply the y-intercept of the linear CPI function of the 
frequency since the CPI of a processor converges to its intrinsic 
cCPI value as the operating frequency converges to zero. 
Similarly, the mCPI is a multiplier of the frequency and the slope 
of the CPI function. In Fig. 2, we color cCPI in light gray, and 
mCPI in dark gray.  

In order to eliminate the inherent inaccuracy of the 
schedutil, one needs to be able to compute the CPI value at 

the beginning of every governor epoch when the schedutil 

governor is invoked. Unfortunately, it is quite difficult to 
compute it since the slope of the CPI function dynamically 
changes with the workload running on the system. 

IV. PROBLEM DESCRIPTION 

In this paper, we aim at enhancing the schedutil 

governor of the Linux kernel by addressing its inherent 
inaccuracy which was analyzed in the previous section. 
Specifically, we attempt to reduce the energy consumption of 
the CPU in the system while maintaining the rate of instructions 
that are executed by the running tasks, compared to the original 
governor. 

To achieve this, we model the CPI as a linear function of the 
frequency for a given workload so that we can calculate a more 
accurate CPI value than the original governor when the 
frequency equation (7) is called. This surely lowers the average 
operating frequency of the CPU. Thus, the problem at hand is to 
formulate a new frequency equation for mSchedutil with the 

new CPI function and evaluate the equation dynamically when 
needed. 

In this section, we first briefly describe the target system 
model and then formally present our problem. 

A. Target System Architecture 

Our target system is an SoC possessing multiple CPU cores 
and one or more accelerators. The system has a multi-level cache 
and onboard memory. The main memory is shared by all the 
processing units in the SoC. Since the memory controller 
operates with its own frequency and voltage level, memory 
access latency is not affected by the CPU frequency. Fig. 3 
pictorially shows the target architecture that is typical of modern 
SoCs including the NVIDIA Jetson AGX Xavier platform. 

B. Problem Definition 

To formally present our problem, we start with some 
necessary definitions. We define a more accurate CPI value 
function 𝐶𝑃𝐼(𝑝, 𝑓) than 𝐶𝑃𝐼(𝑝). We elaborate on this function 
using mCPI and cCPI. We then reformulate the frequency 
equation of schedutil by substituting 𝐶𝑃𝐼(𝑝)  with 

𝐶𝑃𝐼(𝑝, 𝑓). As a result, we get a new frequency equation for 
mSchedutil.  

 

Fig. 3. Target architecture model. 
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Fig. 2. Linear relationship between frequency and CPI. 



Definition 1. For a given workload running on the system, 
we let 𝐶𝑃𝐼(𝑝, 𝑓) be the CPI value of the processor 𝑝 running at 
the frequency 𝑓. 

We in turn define mCPI and cCPI for 𝐶𝑃𝐼(𝑝, 𝑓). 

Definition 2. For 𝐶𝑃𝐼(𝑝, 𝑓) , we denote the number of 
memory stall cycles per instruction as 𝑚𝐶𝑃𝐼(𝑓) and the number 
of computation cycles per instruction as 𝑐𝐶𝑃𝐼(𝑝). 

The following holds trivially from Definition 2. 

𝐶𝑃𝐼(𝑝, 𝑓) = 𝑚𝐶𝑃𝐼(𝑓) + 𝑐𝐶𝑃𝐼(𝑝) (8) 

We fit 𝑚𝐶𝑃𝐼(𝑓)  into a linear function of 𝑓  using a 
proportional constant 𝑚.  As a result, we have the following 
equation. 

𝑚𝐶𝑃𝐼(𝑓) = 𝑚 ∙ 𝑓 (9) 

Note that we model 𝑚 as constant for a given workload in 
the system for the sake of simplicity; it dynamically changes 
with the running workload. 

We then model 𝑐𝐶𝑃𝐼(𝑝)  as a linear function of 𝐶𝑃𝐼(𝑝) 
using another proportional constant 𝑐. The 𝐶𝑃𝐼(𝑝) is originally 
defined in schedutil and denotes the CPU performance that 

is constant regardless of frequency. 

𝑐𝐶𝑃𝐼(𝑝) = 𝑐 ∙ 𝐶𝑃𝐼(𝑝) (10) 

By modeling 𝑐𝐶𝑃𝐼(𝑝)  this way, 𝐶𝑃𝐼(𝑝, 𝑓)  subsumes 
𝐶𝑃𝐼(𝑝) . Depending on the proportional constants, 𝐶𝑃𝐼(𝑝, 𝑓) 
obtains the same or a more accurate CPI value than 𝐶𝑃𝐼(𝑝). We 
determine the proper proportional constants that obtain an 
accurate CPI value at runtime. 

From (8), (9), and (10), we derive 𝐶𝑃𝐼(𝑝, 𝑓) as follows. 

𝐶𝑃𝐼(𝑝, 𝑓) = 𝑚 ∙ 𝑓 + 𝑐 ∙ 𝐶𝑃𝐼(𝑝) (11) 

In order to derive a frequency equation for our proposed 
governor, we modify the frequency equation of schedutil by 

substituting 𝐶𝑃𝐼(𝑝)  with 𝐶𝑃𝐼(𝑝, 𝑓) . The resultant equation 
follows: 

𝑓𝑖+1(𝑝𝑖+1) = 1.25 ∙ ∑ 𝑒𝑚𝑎 (
𝑒𝑖,𝑛(𝜏)

𝑇
∙ 𝑓𝑖(𝑝𝑖(𝜏)) ∙

𝜏∈𝑝𝑖+1

 

𝐶𝑃𝐼(𝑝𝑖+1, 𝑓𝑖+1(𝑝𝑖+1))

𝐶𝑃𝐼 (𝑝𝑖(𝜏), 𝑓𝑖(𝑝𝑖(𝜏)))
) 

(12) 

From (11), we rewrite (12) as follows: 

𝑓𝑖+1(𝑝𝑖+1) = 1.25 ∙ ∑ 𝑒𝑚𝑎 (
𝑒𝑖,𝑛(𝜏)

𝑇
∙ 𝑓𝑖(𝑝𝑖(𝜏)) ∙

𝜏∈𝑝𝑖+1

 

𝑚𝑖+1 ∙ 𝑓𝑖+1(𝑝𝑖+1) + 𝑐𝑖+1 ∙ 𝐶𝑃𝐼(𝑝𝑖+1)

𝑚𝑖 ∙ 𝑓𝑖(𝑝𝑖(𝜏)) + 𝑐𝑖 ∙ 𝐶𝑃𝐼(𝑝𝑖(𝜏))
) 

(13) 

Consequently, our problem at hand is to efficiently evaluate 
(13) at runtime to obtain the frequency 𝑓𝑖+1(𝑝𝑖+1)  of the 
processor 𝑝𝑖+1 at the beginning of the (𝑖 + 1)𝑠𝑡 governor epoch. 

V. SOLUTION APPROACH: APPROXIMATION OF THE FREQUENCY 

EQUATION 

The mSchedutil governor must evaluate the frequency 

equation (13) at the beginning of each governor epoch in order 
to determine the frequency of a processor. Unfortunately, it is 
not practically feasible to compute (13) in its current form since 
the coefficients 𝑚𝑖+1 , 𝑐𝑖+1 , 𝑚𝑖 , and 𝑐𝑖  vary dynamically with 
the workload running on the system in each governor epoch. We 
thus take an approximation approach to get rid of these 
coefficients. 

In this section, we derive an approximate frequency equation 
from (13) using the memory stall cycle ratio and linear 
regression. In designing our approximation, we intend to derive 
a frequency equation that consists of such values that can be 
easily measured on the fly via PMUs already built-in most 
COTS SoCs. 

A. Reformulating Frequency Equation with Memory Stall 

Cycle Ratio 

To derive a new frequency equation from (13) for our 
mSchedutil governor, we first eliminate the two coefficients 

𝑚𝑖+1 and 𝑐𝑖+1, then introduce the memory stall cycle ratio, and 
finally eliminate the remaining two coefficients 𝑚𝑖 and 𝑐𝑖. 

Firstly, we substitute 𝑚𝑖+1 and 𝑐𝑖+1 with 𝑚𝑖 and 𝑐𝑖 in (13). 
We have observed that the characteristics of the system's 
workload change little during the short 4ms governor epoch. We 
thus consider that the coefficient measured in a governor epoch 
remains unchanged in the subsequent governor epoch. As a 
result, we have the following equation: 

𝑓𝑖+1(𝑝𝑖+1) = 1.25 ∙ ∑ 𝑒𝑚𝑎 (
𝑒𝑖,𝑛(𝜏)

𝑇
∙ 𝑓𝑖(𝑝𝑖(𝜏)) ∙

𝜏∈𝑝𝑖+1

 

𝑚𝑖 ∙ 𝑓𝑖+1(𝑝𝑖+1) + 𝑐𝑖 ∙ 𝐶𝑃𝐼(𝑝𝑖+1)

𝑚𝑖 ∙ 𝑓𝑖(𝑝𝑖(𝜏)) + 𝑐𝑖 ∙ 𝐶𝑃𝐼(𝑝𝑖(𝜏))
) 

(14) 

Secondly, we proceed to eliminate 𝑚𝑖 and 𝑐𝑖 from (14). As 
𝑓𝑖+1(𝑝𝑖+1) appears on both sides of the equal sign in (14), we 
need to solve (14) for 𝑓𝑖+1(𝑝𝑖+1). The hard part in doing so is to 

compute (𝑚𝑖 ∙ 𝑓𝑖+1(𝑝𝑖+1) + 𝑐𝑖 ∙ 𝐶𝑃𝐼(𝑝𝑖+1))/ (𝑚𝑖 ∙ 𝑓𝑖(𝑝𝑖(𝜏)) +

𝑐𝑖 ∙ 𝐶𝑃𝐼(𝑝𝑖(𝜏))). To ease this step, we reformulate this formula 

as below: 

𝑚𝑖 ∙ 𝑓𝑖+1(𝑝𝑖+1) + 𝑐𝑖 ∙ 𝐶𝑃𝐼(𝑝𝑖+1)

𝑚𝑖 ∙ 𝑓𝑖(𝑝𝑖(𝜏)) + 𝑐𝑖 ∙ 𝐶𝑃𝐼(𝑝𝑖(𝜏))
= 

𝑚𝑖 ∙ 𝑓𝑖(𝑝𝑖(𝜏))

𝑚𝑖 ∙ 𝑓𝑖(𝑝𝑖(𝜏)) + 𝑐𝑖 ∙ 𝐶𝑃𝐼(𝑝𝑖(𝜏))
∙
𝑓𝑖+1(𝑝𝑖+1)

𝑓𝑖(𝑝𝑖(𝜏))
+ 

(1 −
𝑚𝑖 ∙ 𝑓𝑖(𝑝𝑖(𝜏))

𝑚𝑖 ∙ 𝑓𝑖(𝑝𝑖(𝜏)) + 𝑐𝑖 ∙ 𝐶𝑃𝐼(𝑝𝑖(𝜏))
) ∙

𝐶𝑃𝐼(𝑝𝑖+1)

𝐶𝑃𝐼(𝑝𝑖(𝜏))
 

(15) 

We note that the term 𝑚 ∙ 𝑓/(𝑚 ∙ 𝑓 + 𝑐 ∙ 𝐶𝑃𝐼(𝑝)) in (15) is 
the ratio of the memory stall cycle count to the instruction cycle 
count. We formally define the ratio in what follows. 

Definition 3. The memory stall cycle ratio 𝑚𝑟(𝑝, 𝑓)  is 
defined as below: 



𝑚𝑟(𝑝, 𝑓) =
𝑚 ∙ 𝑓

𝑚 ∙ 𝑓 + 𝑐 ∙ 𝐶𝑃𝐼(𝑝)
=
𝑚𝐶𝑃𝐼(𝑓)

𝐶𝑃𝐼(𝑝, 𝑓)
 

We now rewrite (15) using Definition 3 and have the 
following equation: 

𝑚𝑖 ∙ 𝑓𝑖+1(𝑝𝑖+1) + 𝑐𝑖 ∙ 𝐶𝑃𝐼(𝑝𝑖+1)

𝑚𝑖 ∙ 𝑓𝑖(𝑝𝑖(𝜏)) + 𝑐𝑖 ∙ 𝐶𝑃𝐼(𝑝𝑖(𝜏))
= 

𝑚𝑟 (𝑝𝑖(𝜏), 𝑓𝑖(𝑝𝑖(𝜏))) ∙
𝑓𝑖+1(𝑝𝑖+1)

𝑓𝑖(𝑝𝑖(𝜏))
+ 

(1 − 𝑚𝑟 (𝑝𝑖(𝜏), 𝑓𝑖(𝑝𝑖(𝜏)))) ∙
𝐶𝑃𝐼(𝑝𝑖+1)

𝐶𝑃𝐼(𝑝𝑖(𝜏))
 

(16) 

We plug (16) into (14) and obtain the following equation: 

𝑓𝑖+1(𝑝𝑖+1) = 1.25 ∙ 

∑ 𝑒𝑚𝑎 (
𝑒𝑖,𝑛(𝜏)

𝑇
∙ 𝑓𝑖(𝑝𝑖(𝜏))

𝜏∈𝑝𝑖+1

∙ (𝑚𝑟 (𝑝𝑖(𝜏), 𝑓𝑖(𝑝𝑖(𝜏)))

∙
𝑓𝑖+1(𝑝𝑖+1)

𝑓𝑖(𝑝𝑖(𝜏))

+ (1 −𝑚𝑟 (𝑝𝑖(𝜏), 𝑓𝑖(𝑝𝑖(𝜏))))

∙
𝐶𝑃𝐼(𝑝𝑖+1)

𝐶𝑃𝐼(𝑝𝑖(𝜏))
)) 

(17) 

Solving (17) for 𝑓𝑖+1(𝑝𝑖+1), we end up with the following 
equation: 

𝑓𝑖+1(𝑝𝑖+1) = 1.25 ∙ 

∑ 𝑒𝑚𝑎 (
𝑒𝑖,𝑛(𝜏)

𝑇
∙ 𝑓𝑖(𝑝𝑖(𝜏)) ∙ 𝐼𝑃𝐶(𝑝𝑖(𝜏))

𝜏∈𝑝𝑖+1

∙ (1 − 𝑚𝑟 (𝑝𝑖(𝜏), 𝑓𝑖(𝑝𝑖(𝜏)))))

∙ 𝐶𝑃𝐼(𝑝𝑖+1) ÷ (1 − 1.25

∙ ∑ 𝑒𝑚𝑎 (
𝑒𝑖,𝑛(𝜏)

𝑇
𝜏∈𝑝𝑖+1

∙ 𝑚𝑟 (𝑝𝑖(𝜏), 𝑓𝑖(𝑝𝑖(𝜏))))) 

(18) 

(18) is the frequency equation of mSchedutil. 

B. Estimating Memory Stall Cycle Ratio 

To evaluate (18), the mSchedutil governor needs to 

additionally acquire the memory stall cycle ratio since the other 
values are already known through the schedutil governor. 

Such acquisition must be carried out at a low runtime cost since 
it is repeated every governor epoch.  

In the literature, there exist several estimation methods for 
the memory stall cycle ratio, some of which suggest 
implementing a dedicated hardware performance counter  [17], 

[18], [19] and others estimate it using special PMUs [7], [20]. 
Unlike these approaches, we intend to come up with a method 
that is as hardware-agnostic as possible. Our method is based on 
linear regression and relies only on commonly available PMU 
events that can be found in most COTS SoCs. 

To design our estimation method, we comprehensively 
analyze the stall cycles of instruction and classify them into three 
categories: bad speculation, frontend, and backend. The modern 
superscalar, out-of-order microarchitecture such as the Arm v8.2 
Carmel CPU core has a pipeline that consists of the frontend part 
and the backend part as shown in Fig. 4. The branch predictor in 
the frontend part may incur bad speculation stalls and the rest of 
the frontend part may experience frontend stalls. The backend 
part may incur backend stalls [21]. 

Let 𝑠𝑟(𝑝, 𝑓) be the ratio of the bad speculation stall cycle 
count to the total cycle count. Similarly, let 𝑓𝑟(𝑝, 𝑓)  and 
𝑏𝑟(𝑝, 𝑓) be the ratios of the frontend and backend stall cycle 
count to the total cycle count, respectively. We model the 
memory stall cycle ratio 𝑚𝑟(𝑝, 𝑓) as a linear combination of 
𝑠𝑟(𝑝, 𝑓), 𝑓𝑟(𝑝, 𝑓), and 𝑏𝑟(𝑝, 𝑓), as follows. 

𝑚𝑟(𝑝, 𝑓) = 𝛼1(𝑝) ∙ 𝑠𝑟(𝑝, 𝑓) + 𝛼2(𝑝) ∙ 𝑓𝑟(𝑝, 𝑓) + 

𝛼3(𝑝) ∙ 𝑏𝑟(𝑝, 𝑓) − 𝛼4(𝑝) 
(19) 

Our model (19) is based on our previous work [22]. It shows 
that the backend stall cycle ratio is a sum of the memory-related 
term that is proportional to the frequency and a constant term 
related to instruction execution. So do the other two memory 
stall cycle ratios. The regression coefficient 𝛼4(𝑝) denotes the 
constant stall cycle ratio.  

We simply obtain the regression coefficients 𝛼1(𝑝) through 
𝛼4(𝑝) with a multiple-linear regression tool [23]. At runtime, 
our governor can easily evaluate 𝑚𝑟(𝑝, 𝑓)  by computing 
dependent variables 𝑠𝑟(𝑝, 𝑓) , 𝑓𝑟(𝑝, 𝑓) , and 𝑏𝑟(𝑝, 𝑓)  using 
values from related PMU events. 

VI. PUTTING IT ALL TOGETHER 

In this section, we present the implementation details of 
mSchedutil. Particularly, we describe the internal structure 

and operation of mSchedutil and explain the PMU-based 

 

Fig. 4. Frontend and backend of the pipeline in the Carmel core. 
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implementation of the regression model for estimating the 
memory stall cycle ratio. 

A. Structure and Operation of the Proposed Governor 

Fig. 5 pictorially depicts the overall structure of 
mSchedutil. It consists of five components: (1) instruction 

rate monitor, (2) instruction rate predictor, (3) cycle rate 
convertor, (4) frequency designator, and (5) memory stall cycle 
ratio estimator. We integrate these components into the 
CPUFreq subsystem of the Linux kernel.  

The instruction rate monitor computes the past instruction 
rate of each task running on a given processor. It reads in a task’s 
execution time from the kernel scheduler and the frequency and 
𝐼𝑃𝐶(𝑝) values of the processor from the CPUFreq core module. 

In order to reflect memory stall in computing an instruction rate, 
it also reads in a memory stall cycle ratio from the memory stall 
cycle ratio estimator. 

The instruction rate predictor computes the exponential 
moving average among instruction rate values provided by the 
previous component. It then produces a desired instruction rate 
for the next governor epoch. To do so, it adds together the 
desired instruction rates of all the individual tasks to be running 
on the processor.  

The cycle rate convertor calculates the desired cycle rate for 
the next governor epoch. Finally, the frequency designator 
determines the next frequency according to (18). 

The memory stall cycle ratio estimator calculates the 
𝑚𝑟(𝑝, 𝑓)  value. In our implementation, we intentionally 

decouple it from the rest since it is highly dependent on the target 
SoC. We elaborate on this issue in what follows.  

B. Memory Stall Cycle Ratio Estimator 

To construct the memory stall cycle ratio estimator, we need 
to determine the regression coefficients 𝛼1(𝑝)  through 𝛼4(𝑝) 
offline. To do so, we have collected 1,458 tuples of [𝑚𝑟(𝑝, 𝑓), 
𝑠𝑟(𝑝, 𝑓) , 𝑓𝑟(𝑝, 𝑓) , 𝑏𝑟(𝑝, 𝑓) ] by varying benchmarks, CPU 
frequencies, and memory frequencies. Specifically, we ran 27 
benchmarks from SPEC 2017 on the NVIDIA Jetson AGX 
Xavier platform at the CPU frequency changed in nine steps and 
at the memory frequency changed in six steps. 

To obtain a tuple at each measurement run, we used the PMU 
events listed in Table I. These are basic Arm PMU events and 
similar ones are found in many other microarchitectures like x86. 
Specifically, we obtain 𝑠𝑟(𝑝, 𝑓)  by dividing the 
BR_MIS_PRED_RETIRED value by the INST_RETIRED 

value since 𝑠𝑟(𝑝, 𝑓) is approximately equal to the ratio of the 
number of mispredicted branch instructions to the number of 
retired instructions. Similarly, 𝑓𝑟(𝑝, 𝑓)  and 𝑏𝑟(𝑝, 𝑓)  are 
STALL_FRONTEND and STALL_BACKEND divided by 

CPU_CYCLES, respectively.  

Calculating 𝑚𝑟(𝑝, 𝑓)  is a bit complicated. According to 
Definition 3, we need 𝐶𝑃𝐼(𝑝, 𝑓)  and 𝑚𝐶𝑃𝐼(𝑓) . We can get 
𝐶𝑃𝐼(𝑝, 𝑓)  easily by dividing CPU_CYCLES by 

INST_RETIRED. To get 𝑚𝐶𝑃𝐼(𝑓) , we need to determine 

𝑐𝐶𝑃𝐼(𝑝) according to (8). To do so, we rely on simple linear 
regression among tuples [𝑓, 𝐶𝑃𝐼(𝑝, 𝑓)] since 𝑐𝐶𝑃𝐼(𝑝) is the y-
intercept of the linear CPI function of 𝑓 as stated in (11). It is 
trivial to obtain such tuples. 

VII. EXPERIMENTAL EVALUATION 

To assess the effectiveness of mSchedutil over 

schedutil, we have performed four experiments. In the first 

and second experiments, we analyze how much energy 
mSchedutil saves compared to schedutil under various 

intensities of the system’s memory contention and various 
amount of the system’s load, respectively. In the third 
experiment, we evaluate the energy efficiency of the governors 
on real-world applications.  Finally, in the fourth experiment, we 
assess the runtime overhead of mSchedutil. 

 

Fig. 5. Overall structure of the mSchedutil governor. 

TABLE I.  PMU EVENTS USED FOR ESTIMATING MEMORY STALL CYCLE 

RATIO. 

Event 

Number 
Event Mnemonic Description 

0x08 INST_RETIRED Instruction architecturally executed 

0x11 CPU_CYCLES Cycles elapsed since PMU enabling 

0x22 
BR_MIS_PRED_RE

TIRED 

Instruction architecturally executed, 

mispredicted branch 

0x23 STALL_FRONTEND 
No operation issued due to the 
frontend 

0x24 STALL_BACKEND No operation issued due to backend 

 



In this section, we give a detailed account of the 
experimental setup and present the experimental results.  

A. Experimental Setup 

Our target platform was the NVIDIA Jetson AGX Xavier 
platform hosting Ubuntu for Arm 18.04.1 based on Linux kernel 
4.9.108 and JetPack 4.1.1. This platform supported seven power 
modes and we chose mode 5 for our experiments. We did so to 
make the effect of a governor more visible. A CPU core in mode 
5 can consume up to 2.2 times as much energy as in the default 
mode. We measured consumed CPU energy using the integrated 
INA3221 power monitor in the Xavier platform.  

For the first and second experiments, we created synthetic 
workloads for CPU and GPU, respectively. The CPU workload 
is a simple thread that periodically executed a fixed mix of 
arithmetic and memory instructions. The GPU workload 
consists of multiple threads executing only memory instructions. 

For the third experiment, we collected applications for Arm 
Linux and designed five test scenarios. These scenarios include 
deep learning, game, office, video, and web browsing. The deep 
learning scenario runs a deep learning object detection 
application we took from the NVIDIA GitHub [24]. The game 
scenario runs an OpenArena game demo [25]. The office 
scenario renders LibreOffice files periodically [26]. The video 
scenario plays HEVC video files with the totem player [27]. The 
web browsing scenario renders offline chromium web pages 
periodically [28].  

B. Experimental Result 

In the first experiment, we ran the synthetic workloads for 
two minutes under the two governors and measured the total 
amounts of CPU energy consumption in Joule. We repeated this 
measurement, changing the number of GPU threads to see the 
effect of memory contention. We kept the throughputs of the 
CPU workload identical under both governors by precisely 
executing 2,752,512 instructions every 10ms in the CPU 
workload. We repeated each measurement 100 times and 
calculated the mean value and standard error.   

Fig. 6 shows the result. The x-axis is the number of GPU 
threads and the y-axis is the CPU energy consumption under the 
two governors. The result shows that mSchedutil saves more 

energy than schedutil by up to 0.01% to 19.25%. It also 

shows that mSchedutil works more effectively as the 

memory contention gets increased.  

In the second experiment, to see the effect of the system’s 
load, we performed the above measurements with the CPU 
workload varied and the memory contention fixed to 1024 GPU 
threads. Fig. 7 shows that mSchedutil saves energy by 2.16% 

to 28.91% compared to schedutil. As the system’s load gets 

increased, mSchedutil tends to achieve more energy savings 

because the larger the system's load, the larger the margin for 
improvement. 

In the third experiment, we measured the CPU energy 
consumption under real-world workloads. We also measured the 
instruction rates of the workloads under schedutil and 

mSchedutil. Since we could not keep the throughput of the 

real-world applications identical under the two governors, we 
needed to compare the throughput of applications using the 
measured instruction rates.  

Fig. 8 shows the result. When comparing the throughputs of 
the applications, the two governors do not make a significant 

 

Fig. 6. Energy consumption under schedutil and mSchedutil with the 

system’s memory contention varied. 
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Fig. 7. Energy consumption under schedutil and mSchedutil with the 

system’s load varied. 
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Fig. 8. CPU energy consumption under schedutil and mSchedutil 

(real-world applications case). 
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difference. In the experiment, mSchedutil saves more energy 

than schedutil by 7.97%, 5.23%, and 7.03% in the deep 

learning, game, and video scenarios, respectively.  

In the fourth experiment, we separately measured the 
execution times of schedutil and mSchedutil code and 

compared them. Our governor took only 7.73% longer time than 
schedutil. Considering the short execution time of 

schedutil, such overhead is negligible.  

VIII. CONCLUSION 

We presented a memory-aware DVFS governor, 
mSchedutil that improves the energy-saving efficiency of 

schedutil in Linux. The schedutil governor estimates 

CPU performance without considering memory stall cycles 
although CPU performance expressed by CPI is dynamically 
affected by the memory stall. After rigorously analyzing the 
frequency equation of schedutil, we reformulated its 

inaccurate CPU performance estimation function using the 
memory stall cycle ratio so that the resultant mSchedutil 

governor could adaptively reflect the effect of the system’s 
memory contention. We also showed that the new CPU 
performance estimation function is easily integrated into the 
original governor. 

We implemented mSchedutil as an extension to the 

schedutil governor inside the CPUFreq subsystem of the 

Linux kernel. As part of the implementation, we designed a 
regression model that enabled our governor to efficiently 
calculate the memory stall cycle ratio at runtime based on our 
analysis of the pipeline structure of the modern superscalar 
multicore CPU. We demonstrated that our implementation 
worked at low runtime cost using only PMU events commonly 
available in most modern SoCs. 

We extensively evaluated mSchedutil via diverse 

experiments. The results showed that mSchedutil saved 

energy by up to 28.91% compared to the schedutil governor. 
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