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(57) ABSTRACT 

A device, system, and methods are described to perform 
machine-learning camera-based indoor mobile positioning. 
The indoor mobile positioning may utilize inexact comput­
ing, wherein a small decrease in accuracy is used to obtain 
significant computational efficiency. Hence, the positioning 
may be performed using a smaller memory overhead at a 
faster rate and with lower energy cost than previous imple­
mentations. The positioning may not involve any commu­
nication ( or data transfer) with any other device or the cloud, 
providing privacy and security to the device. A hashing-
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based image matching algorithm may be used which is 
cheaper, both in energy and computation cost, over existing 
state-of-the-art matching techniques. This significant reduc­
tion allows end-to-end computation to be performed locally 
on the mobile device. The ability to run the complete 
algorithm on the mobile device may eliminate the need for 
the cloud, resulting in a privacy-preserving localization 
algorithm by design since network communication with 
other devices may not be required. 
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CAMERA-BASED POSITIONING SYSTEM 
USING LEARNING 

GOVERNMENT RIGHTS IN INVENTION 

This invention was made with government support under 
Grant No. FA8750-16-2-0004 awarded by the Department 
of Defense-Air Force Research Laboratory (DoD-AFRL). 
The government has certain rights in the invention. 

FIELD OF THE INVENTION 

The present invention relates to the field of wireless 
devices, and more particularly to camera-based positioning 
systems for wireless devices. 

DESCRIPTION OF THE RELATED ART 

As mobile electronic devices become increasingly inter­
woven in a user's life, there have arisen a multitude of 
situations in which it may be desirable to locate the position 

2 
FIG. 5 is a chart illustrating experimental data of memory 

requirements for various values of K and L, according to 
various embodiments; 

FIG. 6 is a bar chart comparing experimental data of 
5 localization accuracy for each of the Bruteforce method, Bag 

of Words (Bo W) method, and CaPSuLE, according to one 
embodiment; and 

FIG. 7 is a scatter plot comparing experimental data of 
computation time vs. energy consumption for each of the 

10 Bruteforce method and CaPSuLe, according to one embodi­
ment. 

While the invention is susceptible to various modifica­
tions and alternative forms, specific embodiments thereof 
are shown by way of example in the drawings and are herein 

15 described in detail. It should be understood, however, that 
the drawings and detailed description thereto are not 
intended to limit the invention to the particular form dis­
closed, but on the contrary, the intention is to cover all 
modifications, equivalents and alternatives falling within the 

20 spirit and scope of the present invention as defined by the 
appended claims. 

of the device. Localization technology to accomplish this 
task is an active area of research. Many existing implemen­
tations rely on communication using satellite-based posi­
tioning technology (e.g., GPS or other technology). How- 25 

ever, in some indoor situations communication with a 
remote satellite may prove difficult. Camera-based localiza­
tion typically requires substantial time and computational 
resources to perform effectively, and may further require that 
the computation be performed remotely ( e.g., in the cloud). 30 

Improvements in the field of indoor camera-based localiza­
tion are therefore desirable. 

INCORPORATED BY REFERENCE 

The following patent applications and published papers 
are incorporated by reference and provide teachings regard­
ing inexact computation, probabilistic algorithms, multidi­
mensional feature extraction, locality sensitive hashing, and 
computer vision algorithms: 

(1) Palem K. V. (2003) "Computational Proof as Experi­
ment: Probabilistic Algorithms from a Thermodynamic Per­
spective". In: Dershowitz N. (eds) Verification: Theory and 
Practice. Lecture Notes in Computer Science, vol 2772. 

SUMMARY 

A device, system, and methods are described to perform 
machine-learning camera-based indoor mobile positioning. 
The indoor mobile positioning may utilize inexact comput­
ing, wherein a small decrease in accuracy is used to obtain 
significant computational efficiency. Hence, the positioning 
may be performed using a smaller memory overhead at a 
faster rate and with lower energy cost than previous imple­
mentations. The positioning may not involve any commu­
nication ( or data transfer) with any other device or the cloud, 
providing privacy and security to the device. A hashing­
based image matching algorithm may be used which is 
cheaper, both in energy and computation cost, over existing 
state-of-the-art matching techniques. This significant reduc­
tion allows end-to-end computation to be performed locally 

35 
Springer, Berlin, Heidelberg. 

(2) Palem K. V. (2005) "Energy aware computing through 
probabilistic switching: a study of limits". IEEE Transac­
tions on Computers, Volume 54, Issue 9, pages 1123-1137, 
September 2005. 

(3) Palem K. V. (2014) "Inexactness and a future of 
40 computing". Phil. Trans. R. Soc. A 372:20130281. 

(4) U.S. Pat. No. 8,589,742 B2, titled "Computing device 
using inexact computing architecture processor", published 
Nov. 19, 2013. 

(5) H. Bay, T. Tuytelaars, and L. Van Goo!, "Surf: 
45 Speeded up robust features," in European conference on 

computer vision. Springer, 2006, pp. 404-417. 
(6) P. Indyk and R. Motwani, "Approximate nearest 

neighbors: Towards removing the curse of dimensionality," 
in STOC, Dallas, Tex., 1998, pp. 604-613. 

on the mobile device. The ability to run the complete 50 

algorithm on the mobile device may eliminate the need for 
the cloud, resulting in a privacy-preserving localization 
algorithm by design since network communication with 
other devices may not be required. 

(7) D. Achlioptas, "Database-friendly random projec­
tions," in PODS, Santa Barbara, Calif., 2001, pp. 274-281. 

(8) A. Vedaldi and B. Fulkerson, "VLFeat: An open and 
portable library of computer vision algorithms," http:// 
www.vlfeat.org, 2008. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a schematic diagram of a user equipment device 
(UE), according to some embodiments; 

FIG. 2 is an illustration of an example query image and a 
corresponding training image which were both taken at a 
similar location, according to some embodiments; 

FIG. 3 is a schematic flow diagram of the Camera-Based 
Positioning System Using Learning (CaPSuLe) method, 
according to some embodiments; 

FIG. 4 is a flow-chart of a method for performing camera­
based localization, according to some embodiments; 

55 

TERMINOLOGY 

A memory medium is a non-transitory medium config­
ured for the storage and retrieval of information. Examples 

60 of memory media include: various kinds of semiconductor­
based memory such as RAM and ROM; various kinds of 
magnetic media such as magnetic disk, tape, strip and film; 
various kinds of optical media such as CD-ROM and 
DVD-ROM; various media based on the storage of electrical 

65 charge and/or any of a wide variety of other physical 
quantities; media fabricated using various lithographic tech­
niques; etc. The term "memory medium" includes within its 
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scope of meaning the possibility that a given memory 
medium might be a union of two or more memory media that 
reside at different locations, e.g., on different chips in a 
system or on different computers in a network. A memory 
medium is typically computer-readable, e.g., is capable of 5 
being read by a computer. 

A computer-readable memory medium may be configured 
so that it stores program instructions and/or data, where the 
program instructions, if executed by a computer system, 
cause the computer system to perform a method, e.g., any of 

10 
a method embodiments described herein, or, any combina-
tion of the method embodiments described herein, or, any 
subset of any of the method embodiments described herein, 
or, any combination of such subsets. 

A computer system is any device ( or combination of 
devices) having at least one processor that is configured to 15 

execute program instructions stored on a memory medium. 
Examples of computer systems include personal computers 
(PCs), workstations, laptop computers, tablet computers, 
mainframe computers, server computers, client computers, 
network or Internet appliances, hand-held devices, mobile 20 

devices, personal digital assistants (PDAs), computer-based 
television systems, grid computing systems, wearable com­
puters, wearable devices, computers implanted in living 
organisms, computers embedded in head-mounted displays, 
computers embedded in sensors forming a distributed net- 25 

work, etc. 

4 
based Positioning System using Leaming (CaPSuLe ), which 
may not involve any communication (or data transfer) with 
any other device or the cloud. According to some embodi-
ments, to determine position of a device in an indoor 
environment accurately, instead of using GPS, Wi-Fi or any 
cloud based service, a user of a UE may take a picture and 
algorithmically determine the location of the UE, using 
computationally cheap on-device hash lookups of the taken 
image. The indoor mobile positioning may utilize inexact 
computing, wherein a small decrease in accuracy is used to 
obtain significant computational efficiency. 

Embodiments herein may provide sustainable and private 
navigation, e.g., in mall, campuses, indoor building etc., 
without involving any network or cloud service. The navi­
gation may be privacy preserving (the position of the user is 
never calculated outside the device) and may be free from 
any remote data transfer. In some embodiments, the posi­
tioning system can be easily changed into a navigating 
system by storing a map. 

Embodiments of the present invention may be used, e.g., 
in connection with: any mall, campus, complex of buildings, 
etc. interested providing navigation or direction services; 
and/or any map-service-providing company interested in 
energy efficient computing such as Google™ Apple™, 
Bing™, etc.; and/or venue based marketing. 
FIG. I-Example Block Diagram of a User Equipment 
Device 

FIG. 1 illustrates an example block diagram of a user 
equipment device (UE) 300 which may be configured for 
use in conjunction with various aspects of the present 
disclosure, according to some embodiments. The UE 300 
may be any of a variety of types of devices and may be 
configured to perform any of a variety of types of function­
ality. For example, the UE 300 may be any of user equip-

A programmable hardware element (PHE) is a hardware 
device that includes multiple progranimable function blocks 
connected via a system of programmable interconnects. 
Examples of PHEs include FPGAs (Field Programmable 30 

Gate Arrays), PLDs (Programmable Logic Devices), FPO As 
(Field Progranimable Object Arrays), and CPLDs (Complex 
PLDs). The programmable function blocks may range from 
fine grained ( combinatorial logic or look up tables) to coarse 
grained (arithmetic logic units or processor cores). 

As used herein, the term "light" is meant to encompass 
within its scope of meaning any electromagnetic radiation 
whose spectrum lies within the wavelength range [Av "-uL 
where the wavelength range includes the visible spectrum, 
the ultra-violet (UV) spectrum, infrared (IR) spectrum and 40 

the terahertz (THz) spectrum. Thus, for example, visible 
radiation, or UV radiation, or IR radiation, or THz radiation, 

35 ment devices (UEs ), mobile telephones or smart phones 
(e.g., iPhone™, Android™-based phones), portable gaming 
devices (e.g., Nintendo DS™, PlayStation Portable™, 
Gameboy Advance™), laptops, tablets, wearable devices 

or any combination thereof is "light" as used herein. 
As used herein, a processing element refers to various 

elements or combinations of elements. Processing elements 45 

include, for example, circuits such as an ASIC (Application 
Specific Integrated Circuit), portions or circuits of individual 
processor cores, entire processor cores, individual proces­
sors, programmable hardware devices such as a field pro­
grammable gate array (FPGA), and/or larger portions of 50 

systems that include multiple processors. 
In some embodiments, a computer system may be con­

figured to include a processor ( or a set of processors) and a 
memory medium, where the memory medium stores pro­
gram instructions, where the processor is configured to read 55 

and execute the program instructions stored in the memory 
medium, where the program instructions are executable by 
the processor to implement a method, e.g., any of the various 
method embodiments described herein, or, any combination 
of the method embodiments described herein, or, any subset 60 

of any of the method embodiments described herein, or, any 
combination of such subsets. 

DETAILED DESCRIPTION 

(e.g., smart watch, smart glasses), PDAs, portable Internet 
devices, music, video, or other media players, data storage 
devices, or other handheld devices, etc. In general, the term 
"UE" or "UE device" can be broadly defined to encompass 
any electronic, computing, and/or telecommunications 
device (or combination of devices) which is easily trans­
ported by a user and capable of wireless communication. 

As shown, the device 300 may include digital circuitry 
304. The digital circuitry 304 may be any a processor or 
processors, one or more processing elements, application­
specific integrated circuits (ASICs), or programmable hard­
ware element(s) such as field-programmable gate arrays. 
The digital circuitry 304 may include or be coupled to one 
or more local and/or system memory elements, such as 
memory 302. Memory 302 may include any of a variety of 
types of memory media and may serve any of a variety of 
functions. For example, memory 302 could be RAM serving 
as a system memory for processing element 304. Other types 
of memory and functions are also possible. 

The device 300 may also include wireless communication 
circuitry 306. The wireless communication circuitry 306 
may include analog and/or digital circuitry components, and 
may alternatively be referred to as a 'radio'. In general, a 
radio may include any combination of a baseband processor, 
analog RF signal processing circuitry ( e.g., including filters, 
mixers, oscillators, amplifiers, etc.), or digital processing 

Embodiments herein describe a camera based (privacy­
preserving) indoor mobile positioning system, Camera-

65 circuitry (e.g., for digital modulation as well as other digital 
processing). Similarly, the radio may implement one or more 
receive and transmit chains using the aforementioned hard-
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ware. For example, the wireless device 300 may share one 
or more parts of a receive and/or transmit chain between 
multiple wireless communication technologies, such as 
those discussed above. The wireless communication cir-
cuitry may include or be coupled to one or more antennas 5 

308. 

6 
ization market may be due to venue-based marketing, poor 
performance of GPS in indoor environments, and govern­
ment initiatives in developing positioning systems for public 
safety and urban security segments. 

GPS signals may be blocked indoors and therefore have 
poor accuracy. Therefore, existing implementations may use 
a variety of algorithms utilizing other sensors (for example, 
WiFi or other technologies), for estimating the location of a 
device while indoors. Such algorithms may rely on aggre-

10 gating information from multiple sensors to get good accu­
racy, which may make the location estimate computationally 
expensive and complicated. 

Note that if desired, the wireless communication circuitry 
306 may include a discrete processing element in addition to 
processing element 304; for example, processing element 
304 may be an 'application processor' while wireless com­
munication circuitry 306 may include its own 'baseband 
processor'; alternatively ( or in addition), processing element 
304 may providing processing capability for the wireless 
communication circuitry 306. The device 300 may be 
capable of communicating using any of various wireless 15 

communication technologies by way of wireless communi­
cation circuitry 306 and antenna(s) 308. 

The device 300 may additionally include a camera 310. 
The camera may be any of a variety of types of image­
recording devices that is configured to record an image. The 20 

camera 310 may be configured to operate in the visible part 
of the electromagnetic spectrum, or in some embodiments 
the camera may record images in other portions of the 
electromagnetic spectrum (for example, an infrared (IR) 
camera and/or an ultraviolet (UV) camera). The camera 310 25 

may be configured to output recorded images to the memory 
302 and/or the digital circuitry 304. 

The device 300 may additionally include any of a variety 
of other components (not shown) for implementing device 
functionality, depending on the intended functionality of the 30 

device 300, which may include further processing and/or 
memory elements, one or more power supply elements 
(which may rely on battery power and/or an external power 
source), user interface elements ( e.g., display, speaker, 
microphone, keyboard, mouse, touchscreen, etc.), additional 35 

communication elements ( e.g., antenna(s) for wireless com­
munication, I/O ports for wired communication, communi­
cation circuitry/controllers, etc.) and/or any of various other 
components. 

The components of the device 300, such as digital cir- 40 

cuitry 304, memory 302, wireless communication circuitry 
306, camera 310 (e.g., when implemented in hardware), and 
antenna(s) 308, may be operatively coupled via one or more 
intra-chip or inter-chip interconnection interfaces, which 
may include any of a variety of types of interface, possibly 45 

including a combination of multiple types of interface. As 
one example, a USB high-speed inter-chip (HSIC) interface 
may be provided for inter-chip communications between 
digital circuitry 304 and wireless communication circuitry 
306. Alternatively ( or in addition), a universal asynchronous 50 

receiver transmitter (UART) interface, a serial peripheral 
interface (SPI), inter-integrated circuit (I2C), system man­
agement bus (SMBus ), and/or any of a variety of other 
communication interfaces may be used for communications 
between digital circuitry 304, memory 302, wireless com- 55 

munication circuitry 306, and/or any of various other device 
components. Other types of interfaces ( e.g., peripheral inter­
faces for communication with peripheral components within 

Embodiments herein describe methods and associated 
systems for locating a mobile device more accurately by 
utilizing the device's camera. In some embodiments, a 
current image taken by the camera may be compared with a 
database of geo-tagged images. Recent advances in image 
processing have made image matching technology quite 
accurate, which makes camera based image positioning a 
promising direction for performing indoor localization. 
However, many current image matching algorithms are quite 
expensive from both a latency and an energy perspective, 
and therefore they may be unable run locally on a mobile 
device. For instance, as shown in detail below, current 
state-of-the-art image matching algorithms when run on a 
database of719 images may require more than 1000 seconds 
and may use around 2100 Joules of energy to acquire the 
current location of a device. These results are very imprac­
tical for use in a mobile context. 

Other existing implementations consider a cloud-based 
service to perform image matching. However, there are three 
major concerns with cloud-based image matching: commu­
nication, energy consumption, and privacy. 

Communication-In cloud-based image matching, the 
current image must be transmitted from the mobile device to 
the cloud, followed by the location, inferred in the cloud, 
and transferred back to the mobile device. Communication 
often has unpredictable latency, as it may require utilization 
of a wireless communication network (e.g., WiFi, cellular 
networks, etc.). 

Energy consumption-Image matching is a computation­
ally expensive operation. A cloud-based image-matching 
service, even if very fast, is likely to consume a significant 
amount of energy, which may be undesirable. 

Privacy-Transfer of data back and forth to the cloud 
compromises the privacy of user's information. For 
example, data transfer may open the possibility of potential 
privacy breaches. 

In contrast to the implementations described above, 
embodiments described herein attempt to trade a small 
amount of quality for improved energy efficiency. In some 
embodiments, variables of the described methods may be 
adjusted (e.g., Land/or K, as described below) to obtain a 
desirable balance between accuracy and energy efficiency. 
As described in further detail below, trading a small amount 
of accuracy may effectively remove all the three of the 
shortcomings (described above) associated with the cloud­
based image matching techniques. 

Embodiments are described herein for Camera-Based or external to device 300, etc.) may also be provided as part 
of device 300. 

As described herein, the device 300 may include hardware 
and software components for implementing features for 
performing machine learning camera-based indoor localiza­
tion as described herein. 

60 Positioning System Using Learning (CaPSuLe), which is a 
method (and associated devices and systems) for image­
based device positioning, using an approximate image 
matching algorithm based on fast locality sensitive hashing. 
In trial implementations, CaPSuLe is shown below to be 

Motivation 
Indoor localization technology is a large and growing area 

of technology. Increased demand for accurate indoor local-

65 more than 500x times cheaper than state-of-the-art image 
matching algorithms. In some embodiments, the significant 
gain in computation and energy cost is a result of careful 
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choices of hash tables, hash functions, and related opera­
tions. This massive reduction enables the performance of 
end-to-end image matching on the mobile device itself. An 
exemplary algorithm takes 1.92 seconds requiring 3.78 
Joules energy on Samsung Galaxy S4™ archiving 92.11 % 5 

accuracy in estimating the location. Since all computations 
are local and are performed on the device, the CaPSuLe 
algorithm is free from privacy infringements as no informa­
tion is transmitted remotely. Embodiments herein may 
advantageously lead to many new energy efficient machine 10 

learning algorithms where the need for cloud computing can 
be removed. 
Devise Positioning Via Image Matching 

8 
Device and Platform 

Hardware 

Software 

TABLE 1 

Target System Description 

System on Chip 
CPU 
Main Memory 
Storage 
OS Kernel 
Android Framework 
OpenCV 

Exynos 5410 Octa 
Quad-core 1.6 GHz Cortex-A15 
2 GB 
16 GB NANO Flash 
Linux kernel version 3.4.5 
Android 5.0.1 
OpenCV 3.1 for Android 

A Samsung Galaxy S4™ smartphone with Android 5.0.1 
Lollipop™ running with a Linux kernel 3.4.5 was used. The Embodiments described herein for an image-based posi­

tioning system may take the current picture of the location 
and match it with images in a pre-collected database of 
geo-tagged images of areas within a building such as a 
shopping mall. The location of the matched image may be 
deemed to be the current position of the device. An impor­
tant observation is that building a densely sampled dataset 
comprising images, tagged with their geo-location at differ­
ent places in the indoor environment is a relatively easy task 
with the surge in the number of images. The accuracy of the 
system may then be directly dependent on the ability to 
identify the right matching image in the database, which is 

15 smartphone has an ARM processor that consists of four 
Cortex-A15 cores and 2 GB DRAM. We additionally used 
a Monsoon Power Meter to measure the power consumption 
of the smartphone. The detailed hardware and software 
configuration of the target system is shown in Table I. 

20 The Image Matching Problem and its Computational (En­
ergy) Barrier 

With advancements in vision technology, image matching 
has become quite accurate. However, image matching tech­
niques are far from being computationally cheap. Modem 

a classical computer vision problem. 
In some embodiments, a collection of geo-tagged images 

C consisting of images from the given indoor environment 
may be obtained, e.g., shopping mall, campus, etc., where 
the device needs to be positioned. By using its camera, the 
device may create a query image q. The goal of the image 
matching algorithm may be to find an image I E C which 
maximizes the "similarity" with the query q. Formally, 

25 matching algorithms may require a costly similarity measure 
Sim (.,.), for good accuracy. Such expensive computations 
cannot be performed on the device because of their signifi­
cant computational requirements. To compare with CaP­
SuLe, we use a state-of-the-art algorithm as a baseline, as 

30 
implemented in the widely used OpenCV™ package, for 
computing Equation 1. The similarity measure, Sim (.,.), 
used in the OpenCV package leads to 93% accuracy on our 
dataset. Other similarity measures based on Euclidian dis­
tance over Bag-of-Words (BoW) only yields 75% or less 
accuracy because our dataset contains many variations seen 

J~arg min Sim(q,I),IEC (1) 

35 in the real environment which is not adequately captured by 
BoW methods. 

An important vision component in Equation 1 is the 
design of the similarity function or Sim(.,.), which captures 
the notion of semantic similarity between different images. 40 

Sim(.,.) must tolerate variations in pose, resolutions, shifts, 
etc. For better demonstration of the challenges associated 
with the state of the art, we first describe an exemplary 

OpenCV implementation for determining the similarity 
between the query q and any given image I E C employs the 
following three steps: 

1. Extract Features from Images: The first step is to extract 
a set of Speeded Up Robust Features (SURF features) (for 
more detail on SURF, see reference (5) above, which is 
incorporated by reference) from both the query image and I. 
In this example, each of these features is a 64-dimensional setting and dataset. 

Dataset and Settings 
The CaPSuLe method was tested using a main branch of 

45 vector, and 512 SURF features are used. We thus get 512 
different 64-dimensional SURF features from each image. 
SURF features are the best-known features invariant to scale 
and other spurious transformations such as rotations. Scale-

a major shopping mall in Seoul, Korea for the positioning 
system. In total, 871 were collected images of different 
shops in the mall. Images were collected by using Naver 
Indoor Maps™. Additionally, to get a good coverage of the 50 

mall, pictures of stores were taken manually by a cellphone 
camera. Overall, 45 different locations in the shopping mall 
were covered. The images were taken with varying poses 
and lighting to ensure that the datasets reflect the real 
settings. Also, two separate sources of images make the 55 

setting more real and free of common bias. 
Each image was annotated with its corresponding loca­

tions. Each image was further downscaled to 640x360 pixels 
to reduce the computational cost associated with matching 
without significant loss of accuracy. For evaluation, the data 60 

was partitioned into two sets: 719 training images and 152 
query images. FIG. 2 illustrates some query images and the 
matched training images for these query images using the 
CaPSuLe system. The complexity of the problem is apparent 
as the matching images can have varying poses, orientations, 65 

different coloration and/or lighting, and different perspec­
tival distortions. 

invariant Feature Transform (SIFT) features may also be 
used, although SURF features typically have superior per­
formance. Note, for every image I in the given training 
collection C, feature extraction is done off-line. For the 
query, however, feature extraction may need to be done on 
the fly (i.e., during localization). 

2. Threshold all painvise features: The Euclidian distance 
between all possible feature combinations between q and I 
may be computed. This requires 512x512 Euclidian distance 
computations between 64 dimensional vectors from q and I, 
totaling 512x512x64 multiplications. 

3. Compute the Similarity Values: The final score is the 
number of distances out of the 512x512 comparisons which 
are smaller than a threshold. Roughly, this similarity mea­
sure scores based on the number of cross matches from the 
512 different SURF features between the query and the 
image I. 

The computational bottleneck in this process is step 
number 2 which requires 512x512x64> 16 million multipli-
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be made efficient using hashing. However, only performing 
fast near neighbor search with hashing does not yield the 
desired benefit. As described below, many careful choices 
may improve performance. 

cations for computing the similarity between the query and 
one image I EC. Thus, for 719 images in our datasets, a 
single query requires (512x512x64x719), more than 12 
billion multiplications. If we plan to run this amount of 
computation on the mobile device, then to reiterate a single 
query would take more than 1030 seconds consuming more 
than 2100 Joules of energy. Step 2 is the primary reason why 
current image-based positioning algorithm needs the cloud 

5 FIG. 3: The CaPSuLe System: Near-Cloud Performance 
with On-Device Computation. 

to perform matching in reasonable time. However, as argued 
before, the cloud-based solution has many shortcomings. 
This method described above using Open CV will be referred 
to herein as the Bruteforce Method. 
Clustering (Bag-of-Words (BoW), Sparse Coding, Etc.) 

Another popular feature representation which does not 
require 512x512 distance calculation is the BoW (or sparse 
coding) feature representation. Bo W tries to eliminate the 
need for multiple comparisons by pre-clustering all the 
extracted 512 SURF features. However, employing cluster­
ing techniques does not alleviate the deficiencies of the 
Bruteforce Method. After clustering, Bo W calculates the 20 

distances between all feature vectors of the current image 
and the cluster centers. BoW then produces a histogram 
expressing the closeness between cluster centers and the 
training image's SURF feature vectors. Image matching is 
finally performed by comparing the query image's histo­
gram and the stored training image's histograms. This 
process is computationally relatively cheap. However, it 
comes with a significant loss in accuracy. With the example 
dataset described above, this approach barely reached 75% 
accuracy even with as many as 1000 clusters. Changing the 
cluster size to 5000 had no additional effect on accuracy. 

FIG. 3 is a flowchart diagram that summarizes the CaP­
SuLe system. The system contains a set of lightweight hash 
tables which, for a given SURF feature of a query image, 

10 finds all the potential matching SURF features from the 
training set. This search is done in near-constant time, by 
querying hash tables indexed by LSH, which saves a sig­
nificant amount of computational (and hence energy) over-

15 head without compromising the accuracy. 
In some embodiments, CaPSuLe uses two parameters K 

and L which trade accuracy for gains, notably in energy and 
in computational time. The algorithm works in two main 
phases for device positioning, as described below 

Preprocessing Phase (Offline ): In the offline phase, analo-
gously to Step 1 "Extract Features from Images" described 
above, 512 SURF features (64 dimensional) are extracted 
from each geo-tagged image I in the training collection C. 
Then, L different hash tables may be created of size 2K, i.e., 

25 K-bit keys ( or indices). Each of the 512 SURF features of I 
may be mapped to a K-bit signature H/I), using some LSH 
scheme H1, for jE {1, 2, ... , L}. The image I may then be 
placed into hash table number j indexed by the K-bit 
signature H/I) (as the key). Thus, every image may be 

Image matching is often a harder task than object detec­
tion. For instance, two images may have the same categori­
cal object (such as a chair), but they may not match with 
each other. This is probably the main reason why BoW is 
more common for object detection rather than image match­
ing, as the popular state-of-the-art package OpenCV imple­
ments the more costly matching algorithms described above. 
Probabilistic Hashing Algorithms 

30 mapped to 512 keys (the mappings may be duplicate) in each 
of the L hash tables. The preprocessing step thus generates 
L independent hash tables. 

Query Phase (Online): Given a query image q, 512 SURF 
features may again be extracted (64 dimensional each). For 

35 each of these 512 SURF features, the bucket may be 
retrieved that is associated with the H/ q) in hash table j. 
Overall, 512xL keys may be obtained and the corresponding 
buckets (values) in the associated hash tables may be 
inspected. Every image may then be ranked based on the 

In some embodiments, the need for accuracy is relaxed by 40 number of times it is observed in the 512xL buckets. The 
a small amount to alleviate the shortcomings of existing 
implementations. In particular, Locality Sensitive Hashing 
(LSH) algorithms may be used, combined with a careful 
choice of hash functions and estimation procedure to get a 
more than 500x reduction in the computational and the 45 

energy cost. 
Locality Sensitive Hashing ( described in greater detail in 

reference (6) above, which is incorporated by reference) is 
popular for efficient sub-linear time matching. In some 
embodiments, LSH generates a random hash map h which 50 

takes the input (usually the data vector) and outputs a 
discrete (random) number. For two data vectors x and y, the 
event h(x)=h(y) is called the collision ( or agreement) of hash 
values between x and y. The hash map has the property that 
similar data vectors, in some desired notion, have a higher 55 

probability of collisions than non-similar data vectors. Infor­
mally, ifx and y are similar, then h(x)=h(y) is a more likely 
event, while if they are not similar, then h(x)>'h(y) is more 
likely. In some embodiments, the output of the hash func­
tions is a noisy random fingerprint of the data vector, which 60 

being discrete is used for indexing training data vectors into 
hash tables. These hash tables represent an efficient data 
structure for matching and learning. 

In some embodiments, in Step 2 of image matching 
("Threshold all pairwise features", described above), for 65 

every SURF feature of the query image q, a matching SURF 
feature is searched for from the image I. This matching can 

location of the top ranked image may be returned as the 
current location, as the final output. 

In this some embodiments, various design choices may be 
made to improve the functionality of the CaPSuLe. For 
example: 
Reduce Hashing Cost: The cost of computing L different 

K-bit hashes may be expensive with popular LSH 
schemes (for example, signed random projections). In 
particular, traditional LSH may require KxLx512x64 
multiplications for computations of all the hashes (also 
the keys), which is very expensive computationally. In 
some embodiments, a cheap and sparse variant may be 
used (for example, as described in detail in reference 7 
above, which is incorporated by reference), which reduces 
the total hashing cost per query to 1/3 (KxLx512x64) 
additions/subtractions. This is a significant reduction also 
since multiplications are costlier than additions. 
Buckets of Bit Arrays: The hash tables store multiple 

images for every key. Even if only integer image IDs are 
stored, the memory cost is significant. In the example case 
of719 training images, in some embodiments a 719-bit array 
may be stored that is indexed by the K-bit key (2K values). 
If the image numbered n, gets a particular key, the bit 
numbered n, in the bit-array associated with the key may be 
set to a particular value ( e.g., '1 ', as shown in FIG. 3). This 
may lead to around a 32x reduction in the hash table size 
compared to the traditional scheme. Furthermore, any 
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memory associated with empty buckets may be removed 
during preprocessing to avoid unnecessary memory usage. 

Cheap and Crude Ranking Estimation based on Bucket 
Matches: Hashing may report many images (sometimes 
multiples of a 100) as potential matches. For computing the 5 

best match, the recommended option in the literature is to 
rank candidates using the similarity function Sim. However, 
as argued above, computing Sim is computationally expen­
sive. In some embodiments, properties of LSH are utilized 
to cheaply estimate the ranking by counting the number of 10 

times an image is hit by the query. Estimation using LSH 
signatures are significantly cheaper than similarity compu­
tation. 

Ignoring Noisy Buckets: As the hash functions are com­
putationally cheap, there is a significant possibility that 15 

individual key values may be due to bias in the LSH 
functions. Such bias may make some of the buckets unnec­
essarily crowded. Crowded buckets increase the computa­
tional time and energy since the algorithm retrieves unnec­
essary candidates. In some embodiments, to eliminate this 20 

issue, buckets are ignored (treated it as empty) if they are 
overcrowded. In other words, if a bucket has a number of 
features that exceeds a predetermined threshold, the bucket 
may be determined to be overcrowded and may be treated as 
empty. In some embodiments, the predetermined threshold 25 

may be a fraction of the total number of features in the 
training images. 

12 
characterization. As described in greater detail above, the 
hashing-based mapping may map each of the multidimen­
sional features of each of the training images to an entry in 
a key index. As described in greater detail above, the entries 
in the key index may be a K-bit signature using a Locality 
Sensitive Hashing (LSH) algorithm. In some embodiments, 
K may be adjusted in order to balance between accuracy and 
computational cost (e.g., computational load, energy cost, 
time requirements, memory requirements, or other compu­
tational costs). For example, a larger value of K will allow 
for a larger number of distinct key index entries, but will also 
require additional computing time and memory. In some 
embodiments, the LSH employs sparsity to reduce the 
computational hashing cost per training image and per query 
image. 

In some embodiments, the UE may receive the completed 
first hashing-based mappings from a remote device (e.g., it 
may receive the mappings using its wireless circuitry and 
antenna). In other embodiments, the UE itself may extract a 
respective first plurality of multidimensional features from 
each respective training image, and perform the first hash-
ing-based mapping from the first plurality of multidimen­
sional features of each respective training image to entries in 
the key index. 

In some embodiments, the plurality of training images 
may contain n training images. In some embodiments, 
storing the hashing-based mappings in the memory medium 
may be accomplished by storing an n-bit array indexed by 
the entries of the key index. For example, for each entry of 

Reducing Main Memory: Although hash tables are sig­
nificantly small (few hundred MBs), for mobile devices, 
loading all of them in main memory still requires time and 
computational resources. In some embodiments, the hash 
tables are organized into contiguous buckets, i.e., 2K indices 
each of719 bits (see FIG. 3). The hash tables may be stored 

30 the key index, each of the n bits may be set to 0 or 1 
depending on whether a feature of the nth training image was 
hashed to the entry. 

in device memory and the L buckets (719 bits for each 
bucket) may be loaded on demand during runtime (for 
example, using the fseek function) without noticeable power 
overhead. These embodiments may advantageously allow 
CaPSuLe to operate with low main memory requirements. 
Dynamic Updates 

In some embodiments, an advantageous characteristic of 
CaPSuLe is that it can be incrementally updated. In particu­
lar, adding/deleting images to/from the database may only 
amounts to flipping a few bits, to add the new image (with 
labels) in the corresponding buckets, into the appropriate 
hash table. Thus, increasing the number of images or loca­
tions can be handled with no modification to the algorithm 
and minimal change to the data structure. In these embodi­
ments, the training data may be updated as desired without 
having to reinstall the entire training data set. 
FIG. 4-Mobile Positioning Flowchart 

FIG. 4 is a flow chart diagram illustrating a method for 
performing machine-learning camera-based indoor mobile 
positioning, according to some embodiments. The method 
may be performed by any of a variety of devices such as UE 
300. 

At 402, a plurality of first hashing-based mappings may 

In some embodiments, the UE may perform the first 
hashing-based mapping from the first plurality of multidi-

35 mensional features of each respective training image to 
entries in the key index a plurality of times for a plurality of 
independent key indices. The LSH algorithm may utilize 
random (or pseudorandom) numbers to map each feature to 
an entry in the key index. To improve the accuracy of the 

40 localization method, it may be advantageous to perform the 
LSH algorithm a plurality of times for a plurality of inde­
pendent key indices (e.g., to average out statistical fluctua­
tions and poorly mapped features). In some embodiments, 
the number of independent key indices (referred to above as 

45 L) may be adjusted in order to provide a desired balance 
between accuracy and computational cost (e.g., computa­
tional load, energy cost, time requirements, memory require­
ments, or other computational costs) of the localization 
process. 

50 In some embodiments, the UE may further determine 
whether each entry of the key index contains a number of 
mapped multidimensional features of the first plurality of 
multidimensional features that is larger than a predetermined 
threshold. For example, it may be the case that an entry of 

55 the key index has a large number of features mapped to it, 
which may be caused by bias in the LSH algorithm. The UE 
may then ignore these entries of the key index for which it 
is determined that the number of mapped multidimensional 

be received from a first plurality of multidimensional fea­
tures of respective training images to entries in a key index. 
The UE may store the first hashing-based mappings into 
memory. The UE may keep the first hashing-based mappings 60 

stored in memory, and may load them into the digital 
circuitry of the UE during runtime ( e.g., it may load them 
when a localization procedure is initiated). Each of a plu­
rality of training images may have associated with it a 
plurality of multidimensional features. The multidimen- 65 

sional features may be SURF features, or they may be 
another type of multidimensional features used for image 

features is larger than the predetermined threshold. 
At 404, a query image may be received. In some embodi­

ments, the query image may be a picture taken by the camera 
310 of the UE, and the query image may illustrate the current 
surroundings of the UE. In some embodiments, the camera 
may transmit the query image to the digital circuitry 304. 

At 406, a second plurality of multidimensional features 
may be extracted from the query image. The UE may extract 
the second plurality of multidimensional features using the 
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same algorithm as was used for the training images. For 
example, the UE may extract SURF features from the query 
image. 

14 
usage is the amount of DRAM used. System performance is 
improved when all four metrics are properly balanced. 

Cost-Quality Tradeoff through K and L: There are two 
main parameters in the CaPSuLe system, K, and L. To At 408, a second hashing-based mapping may be per­

formed from each of the second plurality of multidimen­
sional features to entries in the key index. Similar to step 
402, the second hashing-based mapping may be performed 
according to an LSH algorithm, and it may be performed a 
plurality of times for a plurality of independent key indices. 

5 reiterate, K determines the range of the hash table (K-bits ), 
which is also its size. L specifies the number of hash tables. 
K and L are the knobs which enable finer control over the 
cost-quality tradeoff. If we increase K and L, the recall is 

At 410, a first training image of the plurality of training 10 

images may be identified. In some embodiments, the first 
training image may identified based on a correspondence 
between the respective first hashing-based mapping of the 
first training image and the second hashing-based mapping. 
For example, for each entry of the key index that is mapped 15 

to one of the query images multidimensional features, the 
UE may determine which training images contain a multi­
dimensional feature that is also mapped to the same entry. 
The UE may rank each of the training images based on how 
many of their respective multidimensional features are 20 

mapped to the same entry in the key index as one of the 
query images multidimensional features. In other words, the 
UE may count matches, by counting how many multidi­
mensional features from each training image are mapped to 
the same entry in the key index as one of the multidimen- 25 

sional features of the query image. The UE may then identify 
the training image with the largest number of matches as the 
first training image. 

better, but the space required grows significantly. 
FIG. 5-Required Memory for Varying K 

FIG. 5 is a plot of the required memory utilization with 
varying K. In the illustrated embodiment, the buckets are 
loaded into main memory on demand. If K is set to equal 24, 
the amount of main memory needed by a single hash table 
easily grows to around 1 GB which for L> 1 hash tables is 
infeasible. If a lower value of K is used, then the accuracy 
drops by around 10%. We found that other than memory, the 
computational, energy, and response time costs are not 
sensitive to variations in Kand L. In other words, memory­
accuracy is the main tradeoff. It was found that in one 
embodiment, K=22 and L=24 is an advantageous combina-
tion that balances both accuracy and memory. The example 
illustrated here uses these values for Kand L. Note, each of 
the two parameters may be tuned oflline. 

Competing Solutions: In this section, we approximate the 
accuracy of the brute force algorithm described above. 
However, we want our solution to run with limited energy, 
memory, and latency range, which are important for a device 
positioning system. The primary baseline used for compari-For embodiments wherein either or both of the first and 

second hashing-based mappings are performed for a plural­ 30 son is the bruteforce algorithm in the state-of-the-art pack­
age OpenCV. In addition to bruteforce and CaPSuLe, two 
classical and cheaper baseline approaches are also per­
formed: 

ity of independent key indices, determining the number of 
multidimensional features of the first plurality of multidi­
mensional features of each respective training image that are 
mapped to the same entries in the key index as any of the 
second plurality of multidimensional features, may be 35 

cumulatively performed for each of the plurality of inde­
pendent key indices. 

At 412, a location of the UE may be determined based on 
a location tag associated with the first training image. For 
example, each training image may be geo-tagged with an 40 

associated location. The UE may determine that the UE is 
located in the location associated with the first training 
image through its location tag. Importantly, the UE may be 
able to determine its location without communicating with 
any remote device (e.g., a satellite, base station, Wi-Fi 45 

access point, or other remote entity), hence preserving the 
privacy of the UE. 

In some embodiments, the preceding method steps may 
be performed by digital circuitry of a UE. The digital 
circuitry may include one or more programmable hardware 50 

elements. In other embodiments, the digital circuitry may 
include one or more processors that execute program 
instructions stored in the memory medium. In other embodi­
ments, the digital circuitry may include one or more dedi­
cated digital devices such as application specific integrated 55 

circuits (AS I Cs). 
Evaluations of CaPSuLe 

Bo W based image matching: As described above, popular 
Bo W based features are used which exploit clustering over 
SURF features to make matching efficient. However, there is 
a significant drop in the accuracy in this case. With 1000 
Bag-of-words (or cluster centers), an accuracy of75% was 
achieved even after fine tuning. Increasing Bo W to 5000 led 
to no significant gains. 

Supervised Leaming: Another method treats location 
identification as a multi-class classification problem. Each 
location is treated as a class label and training images are 
used that are labeled with the location as the standard 
supervised multi-class classification. However, supervised 
learning fails to achieve more than 80% of accuracy. We 
used VLFeat, an open source package for image classifica­
tion in this experiment. VLFeat is described in further detail 
in reference (8) above, which is incorporated by reference. 
Performance Summary 

In one embodiment, K=22 and L=24 was selected for the 
CaPSuLe settings. The response time and energy consump­
tion for bruteforce and CaPSuLe are evaluated below. 

Accuracy: For the dataset used, the accuracy ofbruteforce 
is 93%, BoW 75%, supervised learning 77% and CaPSuLe 
92.11 %, as shown in FIG. 6. Bruteforce method yielded the 
highest accuracy among three methods, while CaPSuLe is 
very close (different by only 0.89%). This phenomenon is 
not surprising as our approach is an approximation of the 

In this section, experimental results are described from 
using CaPSuLe on the set of 719 training images and 152 
query images described above, according to one embodi­
ment. CaPSuLe performance is evaluated on four metrics: 1) 
Response Time, 2) Energy Consumption, 3) Accuracy and 4) 
Main Memory. Response time and energy consumption are 
measured for the complete end-to-end process, i.e., includ­
ing the feature extraction, retrieval, and final ranking. Accu­
racy is measured over the test set as the percentage of time 
the algorithm identifies the correct location. Main memory 

60 Bruteforce method. Bo W and supervised learning methods 
have poor performance, and therefore, their time and energy 
consumption was not evaluated. 

Response Time: The response time of Bruteforce and 
CaPSuLe was estimated. The response time using the Brute-

65 force method is 537 times more than CaPSuLe on the target 
mobile device. CaPSuLe took only 1.92 seconds in the 
positioning phase on the device. However, the response time 
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using the Bruteforce method was 1030.43 seconds in the 
online phase, which is unacceptably long for most practical 
applications. 

Energy Consumption: The Bruteforce method used 
2103.22 J on our mobile system in the online phase. This 5 

amount of energy consumption further makes current algo­
rithms not practical for mobile applications. However, CaP­
SuLe consumed mere 3.78 J for localization, which is 557x 

16 
and execute the program instructions from the memory 
medium, where the program instructions are executable to 
implement any of the various method embodiments 
described herein ( or, any combination of the method 
embodiments described herein, or, any subset of any of the 
method embodiments described herein, or, any combination 
of such subsets). The device may be realized in any of 
various forms. 

Although specific embodiments have been described smaller than Bruteforce method. 
FIG. 7-Energy Consumption vs. Response Time 
FIG. 7 illustrates the energy-time comparisons for the 

Bruteforce and CaPSuLe algorithms. The overall compari­
son between CaPSuLe and the state-of-the-art Bruteforce 

10 above, these embodiments are not intended to limit the scope 
of the present disclosure, even where only a single embodi­
ment is described with respect to a particular feature. 
Examples of features provided in the disclosure are intended 

matching algorithm on our platform and dataset are sum- 15 
marized in Table II. By sacrificing only 0.89% of the 
accuracy, CaPSuLe is 537 times faster in the response time 
and 557 times cheaper in energy consumption. 

to be illustrative rather than restrictive unless stated other­
wise. The above description is intended to cover such 
alternatives, modifications, and equivalents as would be 
apparent to a person skilled in the art having the benefit of 
this disclosure. 

The scope of the present disclosure includes any feature 

Accuracy 

TABLE II 

Evaluations for CaPSuLe and Bruteforce 

K22L24 

92.11 % 
3.78 J 
1.92 sec 

Bruteforce 

93.42% 
2103.22 J 
1030.43 sec 

363 MB 
171.41 MB 

20 or combination of features disclosed herein ( either explicitly 
or implicitly), or any generalization thereof, whether or not 
it mitigates any or all of the problems addressed herein. 
Accordingly, new claims may be formulated during pros­
ecution of this application (or an application claiming pri-

Energy Consumption 
Response Time 
Required Storage Space 
Required Memory Space 

294.39 MB 
78.90 MB 

25 ority thereto) to any such combination of features. In par­
ticular, with reference to the appended claims, features from 
dependent claims may be combined with those of the 
independent claims and features from respective indepen­
dent claims may be combined in any appropriate manner and 

CONCLUSION 
30 not merely in the specific combinations enumerated in the 

appended claims. 

It is widely assumed that cloud-based Machine Learning 
Solutions are the future. However, cloud-based applications 
are not ideal for the societal problem of sustainability and 35 

privacy. Embodiments described herein have shown that by 
trading a small (insignificant) amount of quality, modern 
machine learning solutions can be made private and sus­
tainable, thus eliminating the need for the cloud. The cost­
quality control provided by randomized hashing algorithms 40 

is used to demonstrate an end-to-end indoor camera-based 
positioning system CaPSuLe which can localize a mobile 
device, with 92.11 % accuracy, in 1.92 seconds of local 
(on-device) computations consuming 3.78 Joules of energy, 
using a Samsung Galaxy S4 platform. 45 

Embodiments of the present disclosure may be realized in 
any of various forms. For example, in some embodiments, 
the present invention may be realized as a computer-imple­
mented method, a computer-readable memory medium, or a 
computer system. In other embodiments, the present inven- 50 

tion may be realized using one or more custom-designed 
hardware devices such as ASICs. In other embodiments, the 
present invention may be realized using one or more pro­
grammable hardware elements such as FPGAs. 

In some embodiments, a non-transitory computer-read- 55 

able memory medium may be configured so that it stores 
program instructions and/or data, where the program 
instructions, if executed by a computer system or UE, cause 
the computer system or UE to perform a method, e.g., any 
of the method embodiments described herein, or, any com- 60 

bination of the method embodiments described herein, or, 
any subset of any of the method embodiments described 
herein, or, any combination of such subsets. 

In some embodiments, a computing device may be con­
figured to include a processor ( or a set of processors) and a 65 

memory medium, where the memory medium stores pro­
gram instructions, where the processor is configured to read 

What is claimed is: 
1. A method for machine-learning camera-based indoor 

mobile positioning, the method comprising: 
by a user equipment device (UE): 

for each of a plurality of respective training images, 
receiving a first hashing-based mapping from a first 
plurality of multidimensional features of each 
respective training image to entries in a key index; 

determining whether each entry of the key index con­
tains a number of mapped multidimensional features 
of the first plurality of multidimensional features that 
is larger than a predetermined threshold; 

ignoring any entries of the key index for which it is 
determined that the number of mapped multidimen­
sional features of the first plurality of multidimen­
sional features is larger than the predetermined 
threshold; 

receiving a query image; 
extracting a second plurality of multidimensional fea­

tures from the query image; 
performing a second hashing-based mapping from each 

of the second plurality of multidimensional features 
to entries in the key index; 

identifying a first training image of the plurality of 
training images, wherein the first training image is 
identified based on a correspondence between the 
respective first hashing-based mapping of the first 
training image and the second hashing-based map­
ping ignoring the ignored entries of the key index; 
and 

determining a location of the UE based on a location 
tag associated with the first training image. 

2. The method of claim 1, the method further comprising: 
for each of the plurality of respective training images: 

extracting the first plurality of multidimensional fea­
tures from the respective training image; and 
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performing the first hashing-based mapping from the 
first plurality of multidimensional features of each 
respective training image to entries in the key index. 

3. The method of claim 1, the method further comprising: 
for each of the plurality of respective training images, 5 

receiving additional first hashing-based mappings from 
the first plurality of multidimensional features of each 
respective training image to entries in additional inde­
pendent key indices, wherein a quantity of additional 
first hashing-based mappings is based at least in part on 10 

obtaining a balance between accuracy and computa­
tional cost of the positioning; 

wherein said performing the second hashing-based map­
ping from each of the second plurality of multidimen-

15 
sional features to entries in the key index is performed 
a plurality of times for each of the additional indepen­
dent key indices; and 

wherein said identifying a first training image is further 
based on a correspondence between the additional first 20 

hashing-based mappings of the first training image and 
the second hashing-based mappings. 

4. The method of claim 1, wherein the hashing-based 
mapping comprises Locality Sensitive Hashing (LSH). 

5. The method of claim 4, wherein the LSH employs 25 

sparsity to reduce the computational hashing cost per train­
ing image and per query image. 

6. The method of claim 1, wherein the location of the UE 

18 
entries of the key index as any of the second plurality 
of multidimensional features ignoring the ignored 
entries of the key index; 

identify a first training image of the plurality of training 
images that has a largest number of multidimen­
sional features that are mapped to the same entries of 
the key index as any of the second plurality of 
multidimensional features; 

determine a location of the UE based on a location tap 
associated with the first training image. 

9. The UE of claim 8, wherein the digital circuitry is 
further configured to: 

for each of the plurality of training images: 
extract the first plurality of multidimensional features 

from the respective training image; and 
perform the first hashing-based mapping from the first 

plurality of multidimensional features to entries of 
the key index. 

10. The UE of claim 8, 
wherein said performing the first hashing-based mapping 

from the first plurality of multidimensional features to 
entries in the key index is performed a plurality of times 
for a plurality of independent key indices; 

wherein said performing the second hashing-based map-
ping from each of the second plurality of multidimen­
sional features to entries in the key index is performed 
a plurality of times for the plurality of independent key 
indices; and is determined without communicating with any other device 

external to the UE. 
7. The method of claim 1, 
wherein the predetermined threshold is determined based 

at least in part on a total number of multidimensional 
features of the plurality of training images. 

30 wherein said determining the number of multidimensional 
features of the first plurality of multidimensional features of 
the respective training image that are mapped to the same 
entries in the key index as any of the second plurality of 
multidimensional features is cumulatively performed for 

8. A user equipment device (UE), comprising: 
a camera; 

35 each of the plurality of independent key indices. 
11. The UE of claim 8, 

a memory medium; and 
digital circuitry coupled to the camera and the memory 

medium; 
wherein the camera is configured to acquire a query 40 

image; 
wherein the digital circuitry is configured to: 

for each of a plurality of respective training images, 
receive a first hashing-based mapping from a first 
plurality of multidimensional features of each 45 

respective training image to entries of a key index; 
determine whether each entry of the key index contains 

a number of mapped multidimensional features of 
the first plurality of multidimensional features that is 
larger than a predetermined threshold; 50 

wherein the plurality of training images comprises n 
training images; and 

wherein storing the hashing-based mappings in the 
memory medium comprises storing an n-bit array 
indexed by the entries of the key index, wherein for 
each entry of the key index, each of the n bits is set to 
0 or 1 depending on whether a feature of the nth 
training image was hashed to the entry. 

12. The UE of claim 8, wherein the digital circuitry 
includes one or more progranimable hardware elements. 

13. The UE of claim 8, wherein the digital circuitry 
includes one or more processors that execute program 
instructions stored in the memory medium. 

14. The UE of claim 8, wherein the digital circuitry 
includes one or more dedicated digital devices such as 
application specific integrated circuits (ASICs). 

15. The UE of claim 8, wherein the first hashing-based 
mappings are loaded into the digital circuitry during run-

ignore any entries of the key index for which it is 
determined that the number of mapped multidimen­
sional features of the first plurality of multidimen­
sional features is larger than the predetermined 
threshold; 55 time. 

store the first hashing-based mappings in the memory 
medium; 

receive the query image from the camera; 
extract a second plurality of multidimensional features 

from the query image; 
perform a hashing-based mapping from each of the 

second plurality of multidimensional features to 
entries of the key index; 

60 

for each of the respective training images, determine a 
number of multidimensional features of the first 65 

plurality of multidimensional features of the respec­
tive training image that are mapped to the same 

16. A non-transitory computer-readable memory medium 
configured to store program instructions which, when 
executed, are configured to cause a user equipment device 
(UE) to: 

for each of a plurality of respective training images, 
receive a first hashing-based mapping from a first 
plurality of multidimensional features of each respec­
tive training image to entries in a key index; 

determine whether each entry of the key index contains a 
number of mapped multidimensional features of the 
first plurality of multidimensional features that is larger 
than a predetermined threshold; 
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ignore any entries of the key index for which it is 
determined that the number of mapped multidimen­
sional features of the first plurality of multidimensional 
features is larger than the predetermined threshold; 

store the first hashing-based mapping in the memory 5 

medium; 
receive a query image; 
extract a second plurality of multidimensional features 

from the query image; 
perform a second hashing-based mapping from each of 10 

the second plurality of multidimensional features to 
entries in the key index; 

id~ntify a first tr~ining image of the plurality of training 
images, wherem the first training image is identified 
based on a correspondence between the respective first 15 
hashing-based mapping of the first training image and 
the second hashing-based mapping ignoring the 
ignored entries of the key index; and 

determine a location of the LITE based on a location tag 
associated with the first training image. 

17. The non-transitory computer-readable memory 
medium of claim 16, wherein the program instructions are 
further executable to cause the UE to: 

20 

for each of the plurality of respective training images: 
extract the first plurality of multidimensional features 25 

from the respective training image; and 
perform the first hashing-based mapping from the first 

plurality of multidimensional features of each 
respective training image to entries in the key index. 

18. The non-transitory computer-readable memory 30 

medium of claim 16, wherein the program instructions are 
further executable to cause the UE to: 

20 
for each of the plurality of respective training images, 

receive additional first hashing-based mappings from 
the first plurality of multidimensional features of each 
respective training image to entries in additional inde­
pendent key indices; 

wherein said performing the second hashing-based map­
ping from each of the second plurality of multidimen­
sional features to entries in the key index is performed 
a plurality of times for each of the additional indepen­
dent key indices; and 

wherein said identifying a first training image is further 
based on a correspondence between the additional first 
hashing-based mappings of the first training image and 
the second hashing-based mappings. 

19. The non-transitory computer-readable memory 
medium of claim 16, 

wherein the plurality of training images comprises n 
training images; and 

wherein storing the hashing-based mappings in the 
~emory medium comprises storing an n-bit array 
mdexed by the entries of the key index, wherein for 
each entry of the key index, each of then bits is set to 
0 or 1 depending on whether a feature of the nth 
training image was hashed to the entry. 

20. The non-transitory computer-readable memory 
medium of claim 16, 

wherein the key index comprises 2K entries, wherein each 
entry is K bits in length, and wherein K is selected 
based at least in part on obtaining a balance between 
accuracy and computational cost of the positioning. 

* * * * * 




