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ABSTRACT In this paper, we propose Instance Segmentation Detector (ISD) to extract the enhanced 

feature-maps under the situations where training dataset is limited in the specific industry domain such as 

semiconductor photo lithography inspection. ISD is used as a new backbone network of state-of-the-art Mask 

R-CNN framework for instance segmentation. ISD consists of four dense blocks and four transition layers. 

Each dense block in ISD has the shortcut connection and the concatenation of the feature-maps produced in 

layer with dynamic growth rate. ISD is trained from scratch without using recently approached transfer 

learning method. Additionally, ISD is trained with image dataset pre-processed by means of the specific 

designed image filter to extract the better enhanced feature map of Convolutional Neural Network (CNN). In 

ISD, one of the key principles is the compactness, plays a critical role for addressing real time problem and 

for application on resource bounded devices. To validate the model, this paper uses the real image collected 

from the computer vision system embedded in the currently operating semiconductor manufacturing 

equipment. ISD achieves consistently better results than state-of-the-art methods at the standard mean average 

precision. Specifically, our ISD outperforms baseline method DenseNet, while requiring only 1/4 parameters. 

We also observe that ISD can achieve comparable better results than ResNet, with only much smaller 1/268 

parameters, using no extra data or pre-trained models. 

INDEX TERMS Semiconductor process inspection, backbone network, instance segmentation, deep 

learning, convolutional neural networks, computer vision. 

I. INTRODUCTION 

The semiconductor photo lithography is a process of drawing 

semiconductor circuits on wafers, coating them thinly with 

photosensitive polymer materials that respond to light on 

wafers, then placing a mask on top of the desired pattern and 

pecking the light to form the desired pattern. In this process, 

the spin coating is used to spread the required thickness of the 

photoresist uniformly on the wafer. Therefore, the spin coating 

is an important process. If inspection faults occur in this 

process, a defective product is produced no matter how well 

the subsequent process is performed. It is greatly affecting the 

defect rate in wafer-based process. As illustrated in Fig. 1, the 

computer vision system is used to prevent defects in 

semiconductor products by monitoring these processes and 

predicting defects in the photo process in advance. Generally, 

the computer vision system uses the digital image processing 

[1]–[10] to try and perform emulation of vision at human scale. 

The computer vision system used in the process of spin 

coating also finds defects through digital image processing 

algorithm.  

 

 
FIGURE 1. The computer vision system embedded in the currently 
operating semiconductor manufacturing equipment for photo 
lithography inspection. 
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However, many detection errors occur due to external 

environmental factors such as various types of wafers and 

photoresist, motor rotation speed, and diffuse reflection of 

light. Fig. 2 illustrates an example of image distorted by 

external environment factors. Digital image processing 

algorithm has high performance in case of images with little 

influence on the external environment. However, performance 

is extremely degraded when image distortion occurs due to the 

external environment. Therefore, in the computer vision 

system, if the characteristics of the image is changed or 

distorted, there is a disadvantage in that a new or modified 

technique of digital image processing algorithm and the 

specialized signal processing method should be applied to 

overcome it. To overcome the influence of various image 

distortion, we adopt deep learning that is robust even in the 

external environment. 

 

 
(a) 

 
(b) 

FIGURE 2. An example of image distorted by external environment 
factors: (a) Normal image; (b) Distorted image. 

 

As illustrated in Fig. 3, there are three inspection type for 

detecting defects in the spin coating process of semiconductor 

photo lithography: first is the suck-back state of the nozzle that 

sprays the photoresist, second is the contamination state of the 

nozzle, and third is the time to spray the photoresist. In this 

paper, we propose a method for detecting defects by 

monitoring the first inspection type, the suck-back state of 

nozzle. Therefore, in order to this, it is necessary to find a 

specific area in an image and extract features within the area 

to determine whether the defect is defective. Deep learning 

techniques [11] that can detect specific areas in an image have 

object detection, semantic segmentation, and instance 

segmentation. Among them, the instance segmentation 

technique can be applied to inspect not only the suck-back 

state of nozzle but also the contamination of the nozzle. 

 

 
(a) 

 
(b) 

 
(c) 

FIGURE 3. Three inspection type for detecting defects in the spin 
coating process of semiconductor photo lithography: (a) Suck-back 
state; (b) Contamination state; (c) Dispense state. 

 

Image segmentation is a computer vision process designed 

to simplify image analysis by splitting input into segments that 

represent objects or parts of objects and form a collection of 

pixels. Instance segmentation is a subtype of image 

segmentation which identifies each instance of each object 

within the image at the pixel level. Instance segmentation can 

also be thought as object detection where the output is a mask 

instead of just a bounding box. Agarwal et al. [12] presented 

recent advances in object detection in the age of deep 

convolutional neural networks. The objective of instance 

segmentation is to detect specific objects in an image and 

create a mask around the object of interest. 

In computer vision, transfer learning is usually expressed 

through the use of pre-trained models. To achieve desired 

performance, the common practice in advanced instance 

segmentation systems is to fine-tune models pre-trained on 

ImageNet [13]. This fine-tuning process can be viewed as 

transfer learning [14]–[19]. Researchers usually train CNN 

models on large scale classification datasets like ImageNet [13] 

first, then fine-tune the models on target tasks, such as object 

detection [20]–[35], image segmentation [36]–[39], etc. 

However, we directly train model without involving any other 

additional data or extra fine-tuning process. There are 

numerous state-of-the-art pre-trained CNN models available. 

Fine-tuning on pre-trained models can quickly convergence to 

a final state and requires less instance-level annotated training 

data than basic classification task. As is well-known, fine-

tuning can mitigate the gap between different target category 

distributions. However, it is still a severe problem when the 

source domain (e.g., ImageNet) has a huge mismatch to the 

target domain such as industrial images, medical images, etc. 

As illustrated in Fig. 3, the image used for inspection is 

completely different from the image on source domain (e.g., 

ImageNet). Without having enough number of dataset, deep 

artificial neural networks cannot be trained well and it is 

difficult to collect enough data size in the specific industry 

domain. 

In this work, we investigate three questions. First, is it 

possible to train instance segmentation networks from scratch 

directly with only smaller dataset without the pre-trained 

models? Second, are there any principles to design a resource 

efficient network structure for instance segmentation, 

meanwhile keeping high detection accuracy? Third, is there 

any methodology to improve inspection performance other 

than network design? To meet this goal, we propose instance 

segmentation detector (ISD) and pre-processing that is 

performed by using image filter before training. 

 
II.  RELATED WORK 

A. INSPECTION METHOD 

Computer vision systems [40]–[46] are widely used for on-

line inspection and quality control to improve the finished 

product quality and lower the costs in various industries. The 

computer vision system used in current semiconductor 
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industries performs the specialized digital image processing 

and signal processing to extract features necessary for defect 

detection, and determines the defect by means of a neural 

network as a classifier. The specialized digital image 

processing removes noise from the input image of specific 

domain, improves brightness or contrast, emphasizes edges, 

and makes the image more clearly to extract features. Feature 

extraction is obtained by the signal processing method that 

calculates the sum of the vertical component pixels and the 

horizontal components of the pre-processed image by means 

of digital image processing, and applies an adaptive threshold. 

Recognizing the extracted features and determining whether 

there are defects is composed of a neural network. Fig. 4 (c) 

illustrates an example of automatically detecting the 

contamination state of nozzle by means of digital image 

processing. Fig. 5 also illustrates an example of automatically 

detecting the suck-back state of nozzle by means of signal 

processing during the spin coating process of semiconductor 

photo lithography. 

 

 
(a) 

 
(b) 

 
(c) 

FIGURE 4. An example of detecting the contamination state of nozzle by 
means of the specialized digital image processing: (a) Original image; 
(b) Pre-processed Image; (c) Image where contamination is detected. 

 

 
(a) 

 
(b) 

FIGURE 5. An example of detecting the suck-back state of nozzle by 
means of the specialized signal processing: (a) The suck-back line is 
detected by means of filtering image within processing area; (b) The 
suck-back line is detected by means of signal processing which is 
adopting adaptive threshold and sum of pixels in x direction. 

 

In the spin coating process of semiconductor photo 

lithography, various types of nozzle for spraying photoresist 

are used depending on the kind of photoresist and the 

characteristic of wafer. Fig. 6 illustrates an example of various 

types of nozzle. Therefore, digital image processing and signal 

processing method used in the computer vision system should 

be applied to the specialized technique depending on external 

environment such as various types of nozzle, wafer 

characteristics and diffuse reflection of light etc. If a new 

nozzle or a new wafer is used, the defect detection accuracy of 

the computer vision system is inevitably reduced.  

Considering these problems, we propose instance 

segmentation method based on generalized deep learning in 

order to be more robust to the external environment and further 

improve performance instead of the specialized digital image 

processing and signal processing method used for 

semiconductor photo lithography inspection. 

 

 
FIGURE 6. An example of various types of nozzle for spraying 
photoresist. 

B. ENHANCED FEATURE MAP 

The discriminative feature is very important factor in image 

classification problem, and the smaller the variance within the 

same class and the larger the variance between different 

classes, the easier it is to solve the classification problem in 

general. The feature-map of CNN to detect nozzle type is 

clearly distinguished between the nozzle types. However, 

since the inspection in semiconductor photo lithography is 

performed in the same nozzle type, it is difficult to extract the 

discriminative CNN feature-map. It is hard to extract the 

discriminative feature from the proposed regions of the 

Region Proposal Network (RPN) using CNN feature-map of 

the same nozzle type. As illustrates in Fig. 7, the mask area 

cannot be achieved without the discriminative CNN feature-

map in the proposed regions. 

 

 
FIGURE 7. An example of instance segmentation process. 

 

The reason for not being able to extract the discriminative 

feature in the proposed regions is that it is not enough to 

extract the discriminative feature by means of only original 

pixel information in the corresponding area as a gray scale 

image. In order to enhance a feature-map of CNN with only 

the original pixel information of the image, it may be possible 

to extract the discriminative feature by performing a lot of 

deep learning by increasing the network layer of CNN with a 
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large number of various training images. Deep convolutional 

neural networks require a large corpus of training data in order 

to avoid over-fitting. Over-fitting refers to the phenomenon 

when a network learns a function with very high variance such 

as to perfectly model the training data. Unfortunately, many 

application domains do not have access to big data, such as 

industrial image analysis and medical image analysis, and 

collection of such training data is often expensive and 

laborious. 

Data augmentation overcomes this issue by artificially 

inflating the training set with label preserving transformations. 

Recently there has been extensive use of generic data 

augmentation to improve CNN task performance. Data 

augmentation encompasses a suite of techniques that enhance 

the size and quality of training datasets such that better deep 

learning models can be built using them. Data augmentations 

based on basic image manipulations are geometric 

transformation, flipping, color space, cropping, rotation, 

translation, noise injection, color space transformations, 

geometric versus photometric transformations, kernel filters, 

mixing images, random erasing, feature space augmentation, 

adversarial training, generative adversarial networks, neural 

style transfer, and meta-learning [47]–[52].  

However, we propose the pre-processing method that 

reduces the amount of training images and decreases the 

number of network layer in CNN rather than data 

augmentation. The specialized image filter for the 

semiconductor photo lithography inspection is applied to the 

pre-processing method in order to enhance the feature-map of 

CNN. 

C. BACKBONE NETWORK FOR INSTANCE 
SEGMENTATION 

A lot of deep convolutional neural networks (CNN) [53] 

originally designed for classification tasks have been adopted 

for the detection task as well. And a lot of modifications have 

been done on them to adapt for the additional difficulties 

encountered. Object detection is a natural extension of the 

classification problem. The constant challenge is to correctly 

detect the presence and accurately locate the object instance in 

the image. It is a supervised learning problem in which, given 

a set of training images, one has to design an algorithm which 

can accurately locate and correctly classify as many object 

instances as possible in a rectangle box while avoiding false 

detections of background or multiple detections of the same 

instance. The process of detecting instance segmentation can 

be spilt into three parts: extracting feature-maps, proposing 

regions, classifying and regressing binary mask. Among them, 

the backbone network that extracts feature-maps play a major 

role in instance segmentation detection models. Huang et al. 

[54] partially confirmed the common observation that, as the 

classification performance of the backbone increases on 

ImageNet [13] classification task, so does the performance of 

object detectors based on those backbones. It is the case at 

least for popular object detectors like Fast R-CNN [21], Faster 

R-CNN [22], Mask R-CNN [55] and R-FCN [23] although for 

SSD [24] the object detection performance remains around the 

same. Since there are significant efforts that have been devoted 

to design network architectures for image classification, many 

diverse and powerful networks are emerged, such as VGGNet 

[56], GoogLeNet [57] , ResNet [58], DenseNet [59], DPN [60] 

etc. In practice, most of the detection methods [20], [21], [22], 

[24], [55] directly utilize these structures pre-trained on 

ImageNet [13] as the backbone network for detection task. 

Some other works try to design specific backbone network 

structures for object detection, but still require to pre-train on 

ImageNet [13] classification dataset in advance. Kim et al. [61] 

proposes PVANet for fast object detection, which consists of 

the simplified “Inception” block from GoogLeNet [57]. 

Huang et al. [54] investigated various combination of network 

structures and detection frameworks, and found that Faster R-

CNN [22] with Inception-ResNet-v2 [62] achieved very 

promising accurate performance. Nakazawa et al. [63] 

proposed the CNN architecture for wafer map pattern 

generation in the semiconductor manufacturing. 

Therefore, we propose a suitable backbone structure for 

extracting the enhanced feature-map to detect instance 

segmentation in industrial domain, which is the proposed ISD 

instead of ResNet [58] that is the backbone network of state-

of-the-art Mask R-CNN framework. 

D. LEARNING NETWORK MODEL FROM SCRATCH 

There are no previous works that train deep CNN-based 

instance segmentation in industrial domain from scratch. In 

generic object detection, Shen et al. [64] proposed Deeply 

Supervised Object Detectors (DSOD), an object detection 

framework that can be trained from scratch. In semantic 

segmentation, J égou et al. [65] demonstrated that a well-

designed network structure can outperform state-of-the-art 

solutions without using the pre-trained models. It extends 

DenseNet [59] to fully convolutional networks by adding an 

up sampling path to recover the full input resolution.  

Thus, our proposed approach has very appealing advantage 

in that it is learning network model from scratch without using 

the pre-trained model on ImageNet [13] for instance 

segmentation. 

 
III.  OUR APPROACH 

We first introduce the whole framework of our ISD 

architecture, following by pre-processing for extracting the 

enhanced feature-map. Then we describe the training process 

and objective in detail. 

A. ISD ARCHITECTURE 

The whole framework for semiconductor photo lithography 

inspection is based on Mask R-CNN framework. There are 

two stages of Mask R-CNN framework. First, it generates 

proposals about the regions where there might be an object 

based on the input image. Second, it predicts the class of the 

object, refines the bonding box and generates a mask in pixel 
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level of the object based on the first stage proposal. Both 

stages are connected to the backbone network structure. 

Many approaches to instance segmentation are based on 

segment proposals. However, our approach is focus on the 

backbone network which extracts the enhanced feature-maps 

for the object mask. The state-of-the-art Mask R-CNN 

framework uses ResNet [58] and ResNetXt [66] as backbone 

network. However, as illustrates in Fig. 8, our approach uses 

the compact ISD instead of ResNet [58] for addressing real 

time problem and learning from scratch. 

 

 
 

FIGURE 8. The network structure by using ISD for instance 
segmentation on Mask R-CNN framework. 

 

ISD based on the state-of-the-art DenseNet [59] is 

motivated by combining the advantage of shortcut connection 

and concatenation of the feature-maps produced in layers with 

dynamic growth rate. In order to improve the performance of 

instance segmentation with better parameter efficiency, we 

investigated all the state-of-the-art CNN based instance 

segmentation. The design principle of ISD is compact model, 

which is suitable for real time embedded system such as 

computer vision system and make them easy to train under 

reducing over fitting on tasks with smaller training set sizes. 

ISD comprises layers, each of which implements a 

composite function of operations such as Batch Normalization 

(BN) [67], rectified linear units (ReLU) [68], Pooling [69], or 

Convolution (Conv). ISD has the concatenation of the feature-

maps produced in layers in order to encourage strengthen 

feature propagation and feature reuse. Further, ISD has the 

shortcut connection for addressing vanishing and exploding 

gradients. ISD is composed of four dense blocks and four 

transition layers similar to DenseNet [59]; see Table 1. 

TABLE 1. ISD architecture. 

Layers 
Output Size 

(input 3×120×120) 
ISD-38 

Convolution 12×60×60 3×3 conv, stride 2 

Dense Block 

(1) 

24 ×30×30 1×1 conv, stride 2 

24×30×30 [
1×1 conv

3×3 conv
] × 2 

Transition Layer 

(1) 
24×30×30 1×1 conv, stride 1 

Dense Block 

(2) 

48×15×15 1×1 conv, stride 2 

48×15×15 [
1×1 conv

3×3 conv
] × 4 

Transition Layer 

(2) 
48×15×15 1×1 conv, stride 1 

Dense Block 

(3) 

72×8×8 1×1 conv, stride 2 

72×8×8 [
1×1 conv

3×3 conv
] × 4 

Transition Layer 

(3) 
72×8×8 1×1 conv, stride 1 

Dense Block 

(4) 

96×4×4 1×1 conv, stride 2 

96×4×4 [
1×1 conv

3×3 conv
] × 4 

Transition Layer 

(4) 
96×4×4 1×1 conv, stride 1 

Prediction - Pooling/Dense 

 

However, crucially in contrast to DenseNet [59], ISD 

combine features through summation before they are passed 

into a dense block combined features by concatenating them 

with post-activation. Fig. 9 illustrates this layout schematically. 

Santhanam et al. [70] presented the result that pre-activation 

ResNets consistently outperforms the original post-activation 

only at very high-network depths (≥ 152 depths). ISD has 38 

depths at low-network depths and post-activation ISD 

outperformed pre-activation on the results of experiment. 

Thus, in our approach, ISD has a structure with post-activation 

as shown in Fig. 9. Moreover, as illustrated in Fig. 10, there is 

dynamic growth rate unlike DenseNet [59], which applies 

different growth rate in each layer in order to optimize the 

model. The growth rate that regulates the amount of 

information on each layer determine the number of feature-
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map. The dynamic growth rate substantially reduces the 

number of parameters, optimizing the model more compact 

and improving the performace. 

ISD has mainly three hyper-parameters: First, we refer to n 

as number of layers in each dense bock. Second, we refer to k 

as growth rate of the network. Third, we refer to bw as 

bottleneck width. We optimized the hyper-parameters through 

experimental results. 

 
FIGURE 9. Dense block network model with post-activation in ISD. 

 
FIGURE 10. A dense block with dynamic growth rate of k = 2, 5, 3 in 
each layer on ISD. 

B. PRE-PROCESSING FOR ENHANCED FEATURE MAP 

Edge detection is one of the significant section of the image 

processing algorithms which have many applications like 

image morphing, pattern recognition, image segmentation and 

image extraction etc. As the edge is one of the major 

information contributors to any image, hence the edge 

detection is a very important step in many of the image 

processing algorithms. It represents the contour of the image 

which could be helpful to recognize the image as an object 

with its detected edges. Kabade et al. [71] proposed block level 

canny edge detection algorithm which is the special algorithm 

to carry out the edge detection of an image in order to reduce 

the time and memory consumption. In case of the suck-back 

state among the inspection types shown in Fig. 3, it is hard to 

extract the feature from an image overlapped by nozzle image 

and photoresist image. In addition, the image of photoresist is 

varied by depending on the type of nozzle, and the image of 

nozzle is varied by depending on the kind of photoresist. The 

specific image filter modified by the sobel edge detector [72], 

which is composed of a pair of 3×3 convolution masks, one 

estimating gradient in the horizontal x-direction and the other 

estimating gradient in vertical y-direction, is adopt to identify 

points in an image at which the image brightness changes 

sharply or, more formally, has discontinuities. Pre-processing 

is performed by using convolution on the image by means of 

the specific image filter.  

The edge occurs where there is a discontinuity in the 

intensity function or a very steep intensity gradient in the 

image. Thus, the edge could be located at which the derivative 

is maximum. The gradient is a vector, whose components 

measure how rapid pixel value are changing with distance in 

the x and y direction. Thus, the components of the gradient 

may be found using the following approximation: 

 
∂f(x,y)

∂x
= ∆x =

f(x+dx,y) - f(x,y)

dx
                  (1) 

∂f(x,y)

∂y
= ∆y =

f(x,y+dy) - f(x,y)

dy
                  (2) 

Where dx and dy measure distance along the x and y 
directions respectively. In discrete images, one can consider 
𝑑𝑥 and 𝑑𝑦 in terms of numbers of pixel between two points, 
dx = dy = 1 

∆x = f(x+1,y) - f(x,y)                           (3) 

∆y = f(x,y+1) - f(x,y)                            (4) 

The different operation in “(3)” and “(4)” correspond to 
convolving the image with the following image filter mask. 

∆x = [
-1 0 1

g 0 g
-1 0 1

]                                   (5) 

∆y = [

-1 g 1

0 0 0

-1 g 1

]                                   (6) 



 J. Han et al.: A New Backbone Network for Instance Segmentation 

 

VOLUME XX, 2020 7 

In “(5)” and “(6)”, g is adaptively applied according to the 

image intensity. The image pre-processed by means of the 

specific image filter is shown in Fig. 11. The pre-processed 

image that is used as the input of ISD has significance in 

extracting the enhanced feature-map for inspection 

 
(a) 

 
(b) 

FIGURE 11. The image pre-processed by means of the specific digital 
image filter: (a) Original image; (b) The image processed by means of 
the filter of equation “(6)” (g = 4). 

C. MODEL TRAINING 

In our approach, we focus on the instance segmentation task 

without using the pre-trained models. We train models on 

target dataset directly without using IamgeNet dataset as 

shown in Fig. 12. ISD is trained with various nozzle image as 

shown in Fig. 12, to classify the nozzle type. 

 

 
FIGURE 12. Illustration of training model on target dataset directly. 

 

The image dataset used to train Mask R-CNN is prepared 

by using image annotation tool (i.e. VGG image annotator) 

which manipulates the labeled segmentation of image. In 

addition, filtering the input dataset is performed for pre-

processing of training model. Fig. 13 illustrates the training 

process. 

 
FIGURE 13. Training process of instance segmentation using ISD as the 
backbone network of Mask R-CNN framework. 

D. TRAINING OBJECTIVE 

The training objective is the losses being used to converge the 

huge number of weights and the hyper-parameters that must 

be conducive to this convergence.  

In training model for classifying nozzle type, categorical 

cross entropy loss generally used to classify image is adopt to 

the loss of ISD (i.e. LISD). It is a softmax activation plus a cross 

entropy loss. 

LISD= -log (
esp

∑ esjC
j

) 

Where:  

sp= the CNN score for the positive class 

C = the number of classes 

sj = the score inferred by the network for each class in C 

In training model for detecting suck-back state of nozzle, 

the training loss is adopt from Faster R-CNN and Mask R-

CNN, which is a weighted sum of the classification loss(cls), 

the localization loss(box) and segmentation mask loss(mask). 

Where Ltotal_cls and Ltotal_box are same as in Faster R-CNN [22] 

and Ltotal_mask is same as in Mask R-CNN [55] 

Ltotal = Ltotal_cls + Ltotal_box + Ltotal_mask 

Ltotal_cls  = 
1

Ncls

∑ Lcls(p
i
,p

i
*)

i

 

Lcls(p
i
,p

i
*)=-p

i
* log p

i
-(1-p

i
*) log (1-p

i
) 

Where: 

p
i
 = Predicted probability of anchor i being an object 
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p
i
* = Ground truth label of whether anchor i is an object 

Ncls = Normalization term, set to be batch size 

Ltotal_box=
α

Nbox

∑ p
i
*

i

∙L1
smooth(ti-ti

*) 

Where: 

ti = Predicted four parameterized coordinates 

ti
* = Ground truth coordinates 

Nbox = Normalization term, set to the number of anchor locations 

α = Balancing parameter 

Ltotal_mask= -
1

m2
∑ [y

ij
log ŷ

ij

k
+(1-y

ij
) log (1-ŷ

ij

k
)]

1≤i,j≤m

 

Where: 

y
ij
= Label of cell(i,j) in the true mask for the region of size m×m 

ŷ
ij 

k
= Predicted value of the same cell for the ground truth class k 

 
IV.  EXPERIMENT 

We implement ISD based on the tensorflow platform [73]. The 

hardware platform is notebook with two GPUs as illustrated 

in Table 2. Since image related to semiconductor process is 

not available in open datasets for deep learning such as 

ImageNet, MS COCO, pascal VOC etc., the experimental 

dataset is acquired from computer vision system embedded in 

the currently operating semiconductor manufacturing 

equipment for photo lithography inspection. The size of image 

is 640×495 pixels and gray color. Intuitively, larger input 

images will bring better performance for instance 

segmentation. However, an additional difficulty is that real 

world applications like computer vision system demand 

inspection to be solved in real time. Fastest detectors are 

usually better than the best performing ones. Thus, we reduced 

the size of image used as the input of ISD to 120×120 pixels. 

We evaluate ISD with different depth and growth rates for 

compactness. We verify the effectiveness of the method 

through the comparison experiment. A consistent setting is 

imposed on all the experiments, unless when some 

components or structures are examined. We adopt the standard 

mean Average Precision (mAP) to measure the instance 

segmentation performance. 

 

TABLE 2. Hardware specification. 

Item Specification 

CPU Intel Core i7-8750H 2.2GHz 

Memory 16GB, 3200MHz DDR4 

GPU0 Intel UHD Graphics 630 

GPU1 NVIDIA GeForce GTX 1050 Ti 

A. CLASSIFICATION RESULTS ON ISD 

In order to classify nozzle type, 18,304 images that have 

already been correctly classified into 8 types of nozzle, were 

collected from real operating semiconductor manufacturing 

equipment. Then, we split these images randomly into 13,728 

training datasets and 4,576 validation datasets. The 

classification training accuracy after only 10 epoch is 99.8% 

and the validation accuracy is 99.9% for classifying nozzle 

type. The classification training and validation accuracy in 

each epoch is illustrated in Fig. 14. The average processing 

time for each epoch is 37 seconds. In addition to classification 

of nozzle type, we also test to detect instance segmentation of 

nozzle type. We used 385 training dataset and 138 validation 

dataset for instance segmentation. Fig. 15 illustrates the result 

on detecting instance segmentation in each nozzle type. 

 
FIGURE 14. The classification training and validation accuracy in each 
epoch. ISD has 38 depths with shortcut connection. The uniform growth 
rate (k) is 6. 

 

 
FIGURE 15. The experimental result of detecting instance segmentation 
of nozzle type. 

B. COMPARISON WITH PRE-PROCESSING 

In order to detect suck-back state of nozzle, we used 266 

training datasets and 144 validation datasets for instance 

segmentation in each nozzle type. The average processing 

time for each epoch is 208 seconds. We evaluate the 

performance of pre-processing on instance segmentation task 

in the standard mean average precision.  

In aspect of the mask, the mask of nozzle type was detected 

well even without pre-processing using image filter. However, 
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the mask of suck-back state for inspection was not detected or 

incorrectly recognized when the pre-processing is not 

performed. Fig. 16 illustrates comparison with pre-processing 

in aspect of mask. We can observe that the pre-processing 

using image filter can achieve higher accuracy, which is 

consistent to our conjecture that the enhanced feature-map is 

extracted by pre-processing. 

 
FIGURE 16. Instance segmentation of suck-back state for inspection. In 
case of training ISD with pre-processing, the mask performance is 
better than without pre-processing. 

 

In aspect of the standard mean average precision, 

comparison of pre-processing is illustrated in Table 3. 

mAP@0.50 in validation is improved by 4.27% when the pre-

processing is performed. Interestingly, mAP@0.75 in 

validation is improved with a large margin (18.19%) when the 

pre-processing is performed. We can observe that the greatest 

task performance improvement was yielded by pre-processing. 

TABLE 3. Comparison of performing pre-processing. ISD has 38 depths 
with shortcut connection and the uniform growth rate (k) is 6. 

ISD 
Test (mAP, %) Train (mAP, %) 

IoU1:0.50 IoU1:0.75 IoU1:0.50 IoU1:0.75 

w/o pre-processing 90.97 38.95 87.97 43.87 

w/ pre-processing 95.24 57.14 95.42 68.67 

1 Intersection over Union. 

C. INSTANCE SEGMENTATION RESULTS ON ISD 

Model optimization and performance are an important trade-

off for the applications of deep neural networks in actual 

instance segmentation tasks for real time application. In order 

to optimize ISD, we conduct experiments with three cases 

which are the number of depth, shortcut connection and 

dynamic growth rate. 

The number of depth. We have experimented with various 

depths on ISD. As illustrated in Table 4, we empirically 

demonstrate that the deeper layer is the better performance, as 

is well known. However, using 42 depths is sufficient to 

deliver good performance and it is better in aspect of resource 

effectiveness. We can observe that our compactness model 

with only 85K parameters achieves performance to 95.49% at 

mAP@0.50 in validation, which shows great potential for 

applications on computer vision system in real time. 

Shortcut connection. We have experimented with and 

without shortcut connection. We observe that ISD with 62 

depths using shortcut connection significantly improves the 

performance from 42.55% to 57.87% at mAP@0.75 in 

validation. We experimentally found that shortcut connection 

improves the performance by means of alleviating vanishing 

and exploding gradients, encouraging feature reuse. 

TABLE 4. Comparison with different depths and shortcut connection. 
We experiment with model weights having the lowest validation loss 
obtained during the training up to 100 epochs. The uniform growth rate 
(k) is 6. 

ISD Test (mAP, %) Train (mAP, %) 

D1 SC2 Param3 IoU4:0.50 IoU4:0.75 IoU4:0.50 IoU4:0.75 

24 
 15,038 84.03 44.10 86.84 49.72 

√ 26,666 83.31 48.97 87.48 57.60 

38 
 38,288 94.79 55.00 96.30 59.90 

√ 69,776 95.24 57.14 95.42 68.67 

42 
 46,700 88.19 50.64 91.35 59.25 

√ 85,580 95.49 59.42 97.74 65.21 

54 
 80,000 89.58 52.78 85.90 53.73 

√ 148,832 93.40 50.12 94.17 58.55 

62 
 106,472 83.99 42.55 84.80 47.82 

√ 199,376 94.33 57.87 97.37 61.01 

1 Depth, 2 Shortcut, 3 Parameters (bytes), 4 Intersection over Union. 

Growth rate. As aforementioned, ISD use dynamic growth 

rate that applies different growth rates in each layer. In Table 

5, we compare three options: (A) uniform growth rates 

(k,k,∙∙∙,k) are used; (B) increasing growth rates (1,2,3,∙∙∙,k) are 

used; (C) decreasing growth rates (k,k-1,k-2,∙∙∙,2,1) are used;  

As illustrated in Table 5, we observe that ISD with 54 depths 

using increasing growth rates improves the performance from 

91.32% to 95.83% at mAP@0.50 in validation, while 

requiring only 1/2 parameters. We experimentally found that 

dynamic growth rate improves the performance better than 

uniform growth rate. It substantially reduces the number of 

parameters. 

TABLE 5. Comparison of dynamic growth rate with shortcut connection. 
We experiment with model weights having the lowest validation loss 
obtained during the training up to 100 epochs. 

ISD Test (mAP, %) Train (mAP, %) 

D1 G2 Param3 IoU4:0.50 IoU4:0.75 IoU4:0.50 IoU4:0.75 

38 

12A 266,336 92.71 63.16 95.30 70.90 

12B 98,142 92.79 63.71 94.59 64.74 

12C 159,953 93.40 57.18 96.05 66.28 

42 

12A 281,672 95.14 53.10 95.52 61.52 

12B 104,553 91.20 44.12 87.97 45.03 

12C 179,968 95.66 55.85 96.81 65.30 

54 

12A 514,592 91.32 50.89 90.35 51.45 

12B 251,904 95.83 52.54 96..43 61.63 

12C 386,482 93.06 52.43 94.93 58.87 

1 Depth, 2 Growth rate (k), 3 Parameters (bytes), 4 Intersection over Union. 
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D. COMPARISON WITH STATE-OF-THE-ART METHODS 

We compare our results with state-of-the-art backbone 

networks of Mask R-CNN framework. Results are 

summarized in Table 6. ISD achieves consistently better 

results than stat-of-the-art methods with much more 

compactness structure. Specifically, our ISD-38 achieves 

95.24% at mAP@0.50 in validation, which outperforms the 

baseline DenseNet-38 with a large margin (16.97%, 

mAP@50), while requiring only 1/4 parameters. We also 

observe that ISD-38 can achieve comparable better results at 

mAP@0.75 than ResNet-38 requiring a huge memory space 

to store the massive parameters, with only much smaller 1/268 

parameters, which shows great potential for application on 

resource bounded devices.  

As the size of the network increases, the inference and the 

training become slower and require more data. There is 

generally a trade-off between performance and speed. When 

one needs real time detectors, like for computer vision, one 

loses some precision. In Table 6, the highest result of 96.59% 

at mAP@50 in validation are obtained with ResNet-38. Our 

ISD-42 achieves 95.49% at mAP@50 in validation, 1.1% 

lower. However, the speed has improved significantly by 217 

times. Interestingly, our ISD-42 is 3.45% higher than ResNet-

38 at mAP@75 in validation. 

TABLE 6. Comparison with state-of-the-art backbone networks. We 
experiment with model weights having the lowest validation loss 
obtained during the training up to 100 epochs. The growth rate of 
DenseNet is 12. The uniform growth rate of ISD is 6. 

BN1 Param2 
Test (mAP, %) Train (mAP, %) 

IoU3:0.50 IoU3:0.75 IoU3:0.50 IoU3:0.75 

ResNet-26 14,008K 94.82 61.37 98.76 75.47 

ResNet-38 18,496K 96.59 55.97 96.93 78.57 

ResNet-50 23,604K 93.36 50.58 95.49 67.45 

ResNet-101 42,674K 94.85 51.58 97.60 65.14 

DenseNet-24 98K 78.77 36.04 84.33 48.81 

DenseNet-38 253K 78.27 35.20 82.01 42.98 

DenseNet-42 308K 85.76 40.74 86.28 42.70 

DenseNet-54 516K 84.72 35.71 82.90 40.53 

DenseNet-62 681K 85.59 37.57 85.43 46.35 

ISD-24 26K 83.31 48.97 87.48 57.60 

ISD-38 69K 95.24 57.14 95.42 68.67 

ISD-42 85K 95.49 59.42 97.74 65.21 

ISD-54 148K 93.40 50.12 94.17 58.55 

ISD-62 199K 94.33 57.87 97.37 61.01 

1 Backbone Network, 2 Parameters (kilobyte), 3 Intersection over Union. 

 
V.  CONCULUSION 

This paper presents a novel backbone network, the ISD, to 

solve the problem that training dataset limited in specific 

industry domain might cause overfitting at training and quality 

mismatch at inference, for addressing real time problem and 

for application on resource bounded devices. Our model is 

simple to construct and can be trained directly on full images. 

According to our method including pre-processing, enhanced 

feature-maps can be obtained for instance segmentation. We 

demonstrate that our ISD-42 significantly outperforms state-

of-the-art DenseNet-42 in terms of both accuracy (9.73% 

more accurate) and speed (3 times faster) at mAP@50 in 

validation. Also, our ISD-42 improves 217 times faster in 

speed and 3.45% higher accurate than state-of-the-art ResNet-

38 at mAP@0.75 in validation. 

In addition to backbone network of Mask R-CNN 

framework, the ISD can be applicable to many instance 

segmentation architecture. We believe that it can be useful to 

many future instance segmentation research efforts in diverse 

industry domain which is requiring real time and good 

performance with only smaller training dataset. 
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