
  

 

Abstract— ROS has been completely refactored and evolved 

into ROS 2 to address the ever-increasing software complexity of 

autonomous machines. While it has become a de facto standard 

software platform for autonomous machines, ROS 2 still has 

room for improvement. It lacks support for essential features 

such as real-time stream processing, mode change, sensor fusion 

and rate control for output shaping. Moreover, its programming 

model is at a lower level than what most programmers would 

expect. 

In this paper, we carefully analyze the shortcomings of ROS 2 

and propose to augment it with the Splash programming 

framework. In doing so, we host Splash on top of the ROS 2 

software stack by conducting model conversion between Splash 

and ROS 2. We refer to the end result as Splash on ROS 2. To 

show its viability, we conducted a case study with a robot arm 

controller performing DNN-based object detection and motion 

planning. The case study qualitatively confirms that Splash on 

ROS 2 relieves the programming burden on developers, 

increases the software development productivity and improves 

the quality of the software. 

I. INTRODUCTION 

Developing software for autonomous machines such as 
mobile robots, drones and self-driving cars is becoming more 
and more difficult, largely because autonomous machines are 
increasingly adopting deep neural network-based machine 
learning algorithms [1]. It is well-known that DNN-based 
applications tend to introduce serious complexities and 
operational complications into an autonomous machine for 
various reasons. First, they must coexist and seamlessly 
interact with conventional time-driven and/or event-driven 
real-time control software even though they are data-driven by 
nature [2]. Second, they need a complicated hardware platform 
consisting of heterogeneous multicore processors, graphical 
processing units (GPU) and neural network accelerators (NNA) 
to meet the ever-increasing computing power demand [3]. 
Third, DNN-based applications need a distributed computing 
platform that can deal with a wide variety of dispersed 
intelligent sensors and actuators. Lastly, they must correctly 
react to diverse sensor fusion scenarios [4]. 

This gives rise to a versatile runtime software framework 
supporting various programming abstractions, particularly 
suitable for DNN-based applications [5]. Such runtime 
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software framework must be able to effectively separate 
application software developers from the already complex 
distributed hardware platform in order to hide implementation 
details from the developers and eventually improve software 
development productivity, robustness and reliability. 

The robot operating system 2 (ROS 2) is one of the most 
successful runtime software frameworks for autonomous 
machines [6]. ROS 2 including its predecessor ROS has been 
widely used for thousands of robot designs in both industry and 
academia. It is still becoming more and more popular [7]. 

Despite such a great success, ROS 2 is still an on-going 
community project; in fact, it is the result of the complete 
refactoring of ROS. Now, ROS 2 can support real-time 
publish-subscribe communications and swarm operations 
among multiple collaborating robots via distributed join and 
leave. It also significantly improves the robot system reliability 
thru the decentralized node structure [8][9]. 

Although ROS 2 has many other enhancements over its 
predecessor, it still has room for improvement, especially from 
the DNN perspective. To address the four desired features that 
ROS 2 lacks, we propose to augment ROS 2 with the Splash 
programming framework we have developed at Seoul National 
University [2][4]. 

Splash is a graphical programming language that supports 
programmers in developing diverse applications for 
autonomous machines. The benefits of Splash are mainly four-
fold. First, it provides an effective programming abstraction 
that supports the real-time stream processing and sensor fusion 
frequently appearing in DNN-based applications. Second, it 
enables programmers to specify genuine, end-to-end timing 
constraints and monitor the violation of such constraints at 
runtime. Third, it provides basic and yet crucial utilities such 
as exception handling and mode change to name a few. Finally, 
it can aid programmers with performance optimization and 
tuning during system implementation. 

While Splash was originally up and running on a DDS-
based middleware hosted on Linux [2][4], we retarget Splash 
to ROS 2 to take advantage of a plethora of features and 
packages that have already existed in ROS 2. In doing so, we 
enumerate programming model differences between Splash 
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and ROS 2 and then conduct model conversions to reconcile 
the differences. We also identify the shortcomings of ROS 2 in 
supporting DNN-based applications and augment ROS 2 with 
Splash to rectify them. We call the end result Splash on ROS 2. 

In this paper, we present the design of Splash on ROS 2 and 
show a case study that we perform with a robot arm controller 
performing DNN-based object detection and motion planning. 
We intend to qualitatively assess the utility and viability of the 
proposed approach. Our case study clearly shows that Splash 
on ROS 2 is more effective than ROS 2 alone, in terms of 
software development productivity and reliability. In fact, 
Splash drastically helps reduce development time and effort 
due to the following reasons. First, it offers for developers an 
intuitive and easy-to-understand programming model based on 
a data flow graph known as the Kahn process network [10]. 
Second, it supports model-based software development where 
the code generator automatically produces skeleton code and 
meta-data files from a given graphical Splash program with 
textual annotations [2][4]. Third, it provides developers with 
many built-in modules dealing with essential mechanisms such 
as mode change, sensor fusion and control output shaping 
[2][4]. Such modules, given in the form of the Splash client and 
runtime libraries, fundamentally block the possibility of errors 
that might occur if programmers repeatedly wrote code for 
such mechanisms. Finally, it provides a feature called the build 
unit that can help developers automate the software build and 
deployment process while focusing on optimizing the 
concurrency and parallelism of the resultant system. 

II. BACKGROUND 

We propose to augment the programming capability of 
ROS 2 with the Splash programming language. This requires 
the model conversion from the Splash language constructs into 
the ROS 2 programming and execution features. To help 

readers understand the model conversion, we give a brief but 
essential account of both Splash and ROS 2. 

A. Splash Programming Language 

This subsection gives a quick overview of the Splash 
programming language that is a summary from [2][4]. We refer 
the interested readers to [2][4] for more details of the Splash’s 
diverse language constructs. 

A Splash program is in essence a directed graph that 
consists of nodes and edges. Figure 1 shows a sample Splash 
program drawn via the Splash schematic capture tool. This 
program consists of the perception and planning subsystems 
used in our case study of this paper. 

In the Splash terminology, a node and an edge of a directed 
graph are called a component and a channel, respectively. A 
component is either an atomic component or a composite 
component. A composite component is also called a factory. A 
factory encapsulates a subgraph has external ports. Figure 1 
demonstrates two factories interconnected with each other. 
Atomic components are further classified into four different 
types: (1) a processing component, (2) a source component, (3) 
a sink component and (4) a fusion operator.  

A component has stream input ports and stream output 
ports with the exception of the source and the sink component. 
The stream output port of an upstream component is connected 
to the stream input port of a downstream component and such 
connection creates a channel. 

The most important language construct in Splash is the 
processing component since it performs computation on input 
data items and produces transformed data items as an output. 
Moreover, a processing component serves as a building block 
for constructing a Splash program. 

 

Figure 1. A Splash program for object detection and motion planning. 

 



  

Splash supports three types of ports: (1) stream 
input/output ports for sending and receiving stream data, (2) 
event input/output ports for delivering events and (3) mode 
change input/output port for passing mode change signals. 

Input and output port types are the subtypes of the port type. 
Each port type is associated with one of three port interfaces: 
stream, event and mode change port interface. The output port 
and the input port connected by a channel must share the same 
port interface. Each port interface has a data type for data items 
it sends or receives. A data type can be a primitive data type or 
a composite data type. 

A channel is a delivery path for steam data. It is represented 
with a solid line from a stream output port to a stream input 
port. The Splash language mandates that data items always go 
through a channel in the order of their birthmarks. Such in-
order delivery semantics significantly reduces the amount of 
work done at a downstream component.  In order to store data 
items on a channel until they are consumed by a downstream 
component, an imaginary FIFO queue is assumed. In Splash, 
an imaginary FIFO queue is on the stream input port of the 
downstream component, instead of the stream output port of 
the upstream component. The fan-in of a channel is restricted 
to one, but the fan-out of a channel can be greater than one. 
When a channel is connected to multiple input ports, all data 
items generated from an output port are replicated to all the 
input ports of downstream components. When a data item is 
delivered to an input port, the arriving data item is handled by 
a specified callback function. 

A clink is a delivery path for events and mode change 
signals. It is represented by a dotted line from an output port to 
an input port. Unlike the channel, both fan-in and fan-out of a 
clink can be greater than one.  

Time is a first-class entity in Splash in the sense that the 
creation time of a live data item is always preserved in its 
timestamp, allowing it to be monitored in comparison with an 
abstract global clock. We refer to the timestamp that carries the 
creation time as a birthmark. If an intermediate process in a 
Splash program generates a data item, it inherits the birthmark 
from its oldest ancestor. To enforce and monitor various timing 
constraints, Splash compares the birthmark of a data item with 
the current system time. 

Splash supports three types of end-to-end timing 
constraints [11]. 

(1) A freshness constraint on a single sensor value: It 
bounds the time it takes for a sensor value to flow 
through the system. A sensor value will become 
useless if it exceeds the freshness constraint since 
sensor values get stale with time. 

(2) A correlation constraint on multiple sensor values: It 
limits the maximum time difference among a group of 
distinct sensor values used for sensor fusion. 

(3) A rate constraint on an output port of a process: It 
limits the number of output data items produced per 
second. A rate constraint is a soft real-time constraint 
in the sense that the Splash runtime tries its best to 
minimize the jitter between consecutive data items on 
the same channel, but does not guarantee that the 
stream output port is jitter-free. 

Programmers can explicitly annotate such timing constraints at 
application development time via Splash’s language constructs. 
The Splash runtime will raise an exception if it detects the 
violation of an annotated timing constraint at runtime. 

B. ROS 2 Programming and Execution Model 

A ROS program is also represented with a directed graph 
called a ROS graph. A node in a ROS graph is a building block 
of a ROS program and an edge is a communication link 
between two nodes. Some links are called topics when they 
represent publish-subscribe communications; others are called 
services when they denote client-server communications. A 
ROS node can receive three types of messages: (1) subscription, 
(2) client and (3) service messages. A node reacts to an 
incoming message by activating a callback corresponding to 
the type of the message [7][8][9]. Figure 2 shows a sample 
ROS graph [12]. 

For execution, one or more nodes in a ROS graph can be 
grouped into an operating system process. Such a process is 
associated with a special thread called an executor. The 
executor implements the ROS execution model in that a 
callback is invoked to process an incoming message. ROS 2 
provides two built-in executors: (1) a sequential executor that 
executes callbacks in a single thread and (2) a parallel executor 
that distributes the pending callbacks across multiple worker 
threads obtained from the thread pool [7]. ROS 2 also supports 
arbitrary user-defined executors. Recently, the callback-group-
executor has been introduced and is gaining popularity since it 
allows programmers to prioritize incoming messages via real-
time profiles [13]. 

Despite many improvements made for ROS 2, it still has 
shortcomings when it comes to real-time DNN inference in an 
autonomous machine. 

(1) It provides only little support for specifying end-to-
end timing constraints or monitoring dynamic timing 
violation. In ROS 2, configurable timing constraints 
can appear only at the communication level. 

(2) The ROS 2 programming model is still at a lower 
level than what most programmers would expect. For 
instance, a ROS graph directly exposes the details of 
publish-subscribe communications. In addition, ROS 
2 lacks support for frequently appearing features such 
as real-time stream processing, mode change, sensor 
fusion and rate control for output shaping. 

 

Figure 2. A ROS graph. 



  

(3) ROS 2 offers little support for automated deployment 
that enables users to remotely install, start, stop and 
monitor applications. As a result, users need to 
manually deploy applications to distributed machines. 

III. MODEL CONVERSION BETWEEN SPLASH AND ROS 2  

In this section, we explain how Splash on ROS 2 addresses 
the aforementioned shortcomings. In our approach, Splash sits 
on top of the ROS 2 software stack as shown in Figure 3. The 
Splash client and runtime libraries collectively realize the 
Splash framework and provide application programming 
interfaces (APIs) for Splash applications. They play the role of 
mapping the Splash programming entities to those of ROS 2 
via the ROS APIs.  

A. Splash to ROS 2 Mapping 

Each of Splash language constructs is mapped to an entity 
of ROS 2 as specified in TABLE I. First, an atomic component 
is mapped to a ROS 2 node. A processing component can have 
a user-defined callback for each of its input ports. A fusion 
operator has a built-in callback whose role is to check if a 
fusion rule is satisfied and to trigger a fusion function 
whenever needed. 

An output port and an input port are mapped to a publisher 
and a subscriber of ROS 2, respectively. A channel passes data 
items of a known data type from an output port to an input port. 

A clink delivers events of a known data type. Both a channel 
and a clink are mapped to ROS 2 topics. They both possess a 
name and a data type. A channel has a user-defined data type 
and a clink is associated with a built-in data type. 

B. Splash Client Libraries 

The Splash client libraries (scl) provide a programming 
abstraction for Splash applications via APIs written in Python. 
These APIs are a set of wrappers for both the ROS client 
libraries Python wrapper (rclpy) and object-oriented classes for 
Splash entities.  

Coding a Splash application is a two-step process: (1) 
skeleton code generation and (2) algorithm specification. The 
scl provide APIs in both steps. Skeleton code generation is 
done by the Splash code generator using schematic data 
produced by the schematic capture tool. In this step, port 
objects are created with channel information and callback 
functions are generated and registered to input ports. Rate 
constraints are enforced at rate-controlled ports. Component 
objects are created. Freshness constraints are enforced at 
source components. Fusion rules are implemented at fusion 
operators. The port objects are attached to the component 
objects. Build unit objects are created and the component 
objects are added to the build unit objects. The algorithm 
specification step is performed by programmers. They fill in 
their own logic inside callback functions associated with input 
ports. 

In order to implement the mapping rules specified in 
TABLE I, each Splash entity class inherits from the matching 

ROS 2 entity class as shown in Figure 4. Component is a 
subclass of a ROS 2 node class. The ROS 2 node class contains 
properties and methods for managing publishers, subscribers 
and callback functions. Using the properties and methods, the 
scl implement methods for attaching and managing ports inside 
the component class. 

ProcessingComponent, SourceComponent and 

SinkComponent inherit Component. These classes have a 
method for registering callback functions.  When an input port 
object is attached to it, the component object registers the input 

port’s callback function. SourceComponent has a method 

for enforcing a freshness constraint. FusionOperator also 

inherits Component. It has a method for implementing a 
fusion rule with an extrapolation handler. It then registers a 
built-in callback function for sensor fusion. 

InputPort is a subclass of the ROS 2 subscriber class 
that is defined by a message type, a topic name and a callback 
function. Information on a channel or a clink is passed as an 

argument to the constructor of the InputPort object. 

StreamInputPort and EventInputPort inherit 

InputPort.  They have a method for registering a callback 

function. ModeChangeInputPort lacks a callback 

registration method even though it inherits InputPort. 
Instead, a built-in callback function for mode change is 
automatically registered when the object is constructed. 

TABLE I. SPLASH - ROS 2 MAPPING TABLE 

Splash Entities ROS 2 Entities 

Processing Component Node 

Source Component Node 

Sink Component Node 

Fusion Operator Node with built-in callback 

Stream Input Port Subscriber 

Stream Output Port Publisher 

Event Input Port Subscriber 

Event Output Port Publisher 

Mode Change Input Port Subscriber 

Mode Change Output Port Publisher 

Channel Topic 

Clink Topic 
 

 

 

Figure 3. Layered architecture of Splash on ROS2. 



  

OutputPort is a subclass of the ROS 2 publisher class 
that is defined by a message type and a topic name. The 
publisher class has a method for publishing a message. 

StreamOutputPort inherits OutputPort. By extending 
the method for publishing, the scl implement a method for 
publishing a message simultaneously. The method also checks 
for the violation of a freshness constraint inside 

StreamOutputPort. When a StreamOutputPort 

object, which is attached to a SourceComponent object, 
publishes a message, a freshness constraint and a birthmark are 

added to the message. StreamOutputPort class has a 

method for enforcing a rate constraint. EventOutputPort 

and ModeChangeOutputPort inherit OutputPort. The 
former triggers an event with an event name. The latter obtains 
an event name and a name of the target factory for mode 
change from the graphical Splash program.  

C. Splash Runtime Libraries 

The Splash runtime libraries (srl) offer essential runtime 
functionalities such as (1) callback execution, (2) rate control, 
(3) sensor fusion and (4) mode change. 

Callback execution is a functionality to coordinate the 
execution of callbacks registered to components. The srl 
implement the Splash executor that is similar to the callback-
group-executor [13]. The Splash executor puts an emphasis on 
asynchronous event handling, message prioritization and in-
order message delivery. It has two queues, one for data and the 
other for events. When a callback is registered to an input port, 
it is associated with a specific queue depending on the type of 
the input port. The Splash executor prioritizes the event queue 
over the data queue. Events are queued in the FIFO order while 
data items are stored according to the nondecreasing order of 
their birthmarks.  

Rate control is a mechanism that prevents bursty data traffic 
by limiting the number of output data items that are generated 

per unit time [2]. When a StreamOutputPort object 
publishes a message with a rate constraint, it stores the message 
into a queue of the associated rate controller, instead of 
immediately calling the ROS 2 publishing method. The rate 
controller has a queue and a timer for each rate-controlled 
output port. On each periodic invocation, the rate controller 
looks up the output queue to find the oldest message. If there is 

at least on fresh message in the queue, the rate controller calls 
the ROS 2 publishing method. 

Sensor fusion is a mechanism that estimates information 
about nearby situation by processing data from multiple 
sensors. To support sensor fusion, Splash offers a fusion 
operator with which programmers specify a fusion rule, a 
correlation constraint and an extrapolation handler via a well-
defined graphical and textual interface. The fusion operator 
internally runs the optimal sensor fusion algorithm that we 
came up with in our previous work [4]. The algorithm is 
guaranteed to generate a tuple of multiple sensor data that 
satisfies the user-specified fusion rule if one exits. A 

FusionOperator object has a method that implements the 
fusion rule. When the method is called, it first creates a queue 
for each stream input port attached to the object. Whenever a 
message arrives at any of the input ports, a built-in callback 
function enqueues the message into the corresponding queue 
and runs the sensor fusion algorithm to get a valid tuple. This 
tuple is published through the corresponding output port. If the 
algorithm cannot find any valid tuple, a user-defined 
extrapolation handler is called instead. 

Mode change is a mechanism that activates or deactivates 
a selected subgroup of components in a factory that has 
multiple execution modes [2].The srl offer a module called the 
mode manager to support the mechanism. In response to a 
mode change request, an event triggering method is called with 
a target factory name and an event name through a 

ModeChangeOutputPort object. Then the mode manager 
publishes a mode change message to components in the target 
factory. The components that received the message are 
activated or deactivated through the execution of a built-in 
callback function.  

IV. CASE STUDY 

In order to demonstrate the utility of Splash on ROS 2 as a 
versatile programming framework for autonomous machines, 
we have conducted a case study in which a robot arm controller 
performs DNN-based object detection and motion planning. 
Specifically, our case study is composed of a robot arm 
controller and a simulator. The simulator includes a dynamics 
engine that reflects the physical characteristics of the robot and 
a visualizer that expresses robots, objects and sensors in three 
dimensional space. As shown inFigure 5, the robot arm picks 

 

 

Figure 4. Class hierarchy among ROS and Splash classes 

 

 



  

up the dropped object at a random location and moves it to the 
designated location.  

The robot controller program we had drawn using the 
Splash schematic capture tool already appeared in Figure 1 in 
Section II. Apparently, the graphical program looks quite 
straightforward: It is composed of a perception subsystem and 
a planning subsystem. As stated previously, the Splash code 
generator automatically produces skeleton code from the 
schematic data that the schematic capture tool generates. 
Unlike our expectation, the resultant code forms a very 
complex source tree. To make the source code management 
easier, the Splash code generator packages the entire source 
tree into a ROS 2 package as shown in Figure 6. At the top 
directory is a ROS 2 package. It contains a Python package, 
which in turn contains a Splash package. It is a subpackage that 
contains the hierarchy of the skeleton code. 

A factory in a Splash program is converted to a subpackage. 
Each component contained in a factory becomes the factory’s 
subpackage. A component subpackage has a module for 

creating a Component object and attaching Port objects to 

the Component object. Its code is given in Figure 8. 

All input ports attached to a component become the 
component’s subpackage that contains a callback module for 
each input port. The callback module is named after the 
channel to which the input port is connected. The callback 
function inside the module is the place where programmers 
insert their own code as shown in Figure 9. 

A build unit is an individual software entity for build, 
deployment and execution on a distributed system. To create a 

BuildUnit object and add related Component objects to it, 
Splash offers the build unit module as shown in Figure 10. The 
main module, an entry point of a Splash program, imports the 

build unit module and calls the run method of the 

BuildUnit object to start off a Splash program, as in Figure 
11. 

In addition to constructing a hierarchical code structure as 
explained above, the Splash code generator produces code for 
the connection logic between components in a Splash program.  
Figure 7 shows the ROS graph representing the various ROS 
nodes and connections between them.  

 

Figure 5. Overview of the case study. 

 

 

Figure 6. Hierarchical source tree for generated skeleton code. 

 

 
Figure 7. ROS graph in execution. 
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#perception_factory/bitwise_and_crop/bitwise_and_crop.py 

from scl.components import ProcessingComponent 

.... 

from sensor_msgs.msg import Image 

from .input_ports import fusion_0 

def build(): 

    component = ProcessingComponent() 

    component.attach(StreamInputPort("fusion_0", fusion_0.callback)) 

    component.attach(StreamOutputPort("image_rgb_cropped", Image)) 

    component.attach(StreamOutputPort("image_depth_cropped", Image)) 

    return component 

Figure 8. Source code for component module. 

 

# perception_factory/bitwise_and_crop/input_ports/fusion_0.py 

from sensor_msgs.msg import Image 

def callback(component, msg):  

output = Image() 

    .... # user logic 

component.write("image_mask_cropped", output) 

Figure 9. Source code for input callback module. 

 

# build_units/default_build_unit.py 

from scl.build_unit import BuildUnit 

....  

def run(): 

build_unit = BuildUnit("default_build_unit") 

build_unit.add(camera_rgb.build()) 

build_unit.add(camera_depth.build()) 

build_unit.add(semantic_segmentation.build()) 

build_unit.add(fusion_operator_0.build()) 

.... 

build_unit.run() 

Figure 10. Source code for build unit module. 

 

# default_build_unit_exec.py 

from .splash.build_units import default_build_unit 

def main(): 

default_build_unit.run() 

Figure 11. Source code for the main module. 

 

 



  

The case study clearly reveals that Splash on ROS 2 
provides developers with a useful and effective programming 
abstraction that can relieve the programming burden on 
developers, increase the software development productivity 
and improve the quality of the software. Such benefits are due 
to the three features of Splash on ROS 2: (1) The Splash 
progrmming language offers the appropriate level of 
abstraction so that programmers can avoid a low-level 
programming details such as communicating nodes and 
publish-subscribe communications. (2) The Splash code 
generator produces the skeleton code and the connection logic 
between communicating nodes so that developers can get away 
with writing tedious and error-prone house-keeping code in 
their programs.  (3) The Splash client and runtime libraries can 
help developers avoid coding complex but frequently 
appearing mechasnisms such as mode change, sensor fusion 
and rate control.  

V. CONCLUSION 

We proposed Splash on ROS 2 as a versatile runtime 
software framework for autonomous machines. It offers 
support for essential features such as real-time stream 
processing, mode change, sensor fusion and rate control for 
output shaping. These features are exposed to programmers as 
language constructs that they use in Splash applications. The 
Splash toolset automatically generates high-level language 
code according to the semantics of those language constructs. 
The generated code makes use of APIs provided by the Splash 
client libraries (scl) and the Splash runtime libraries (srl). These 
libraries are implemented on top of the ROS 2 software stack 
and collectively perform model conversion between Splash 
and ROS 2. 

We conducted a case study with a robot arm controller 
performing DNN-based object detection and motion planning. 
The case study confirmed that Splash on ROS 2 relieves the 
programming burden on developers, increases the software 
development productivity and improves the quality of the 
software. 

There are several future research directions along which 
our programming framework can be extended. First, we are 
planning to include service orientation thru which new or 
updated services are dynamically deployed to autonomous 
machines and become immediately available to users [14][15]. 
Second, we plan on conducting in-depth case studies in the 
autonomous vehicle domain where the benefits of our 
programming framework stand out. Finally, we will evaluate 
the performance and run-time overhead of Splash-based 
systems with extensive experiments. The results look 
promising. 
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