

Abstract— ROS has been completely refactored and evolved

into ROS 2 to address the ever-increasing software complexity of

autonomous machines. While it has become a de facto standard

software platform for autonomous machines, ROS 2 still has

room for improvement. It lacks support for essential features

such as real-time stream processing, mode change, sensor fusion

and rate control for output shaping. Moreover, its programming

model is at a lower level than what most programmers would

expect.

In this paper, we carefully analyze the shortcomings of ROS 2

and propose to augment it with the Splash programming

framework. In doing so, we host Splash on top of the ROS 2

software stack by conducting model conversion between Splash

and ROS 2. We refer to the end result as Splash on ROS 2. To

show its viability, we conducted a case study with a robot arm

controller performing DNN-based object detection and motion

planning. The case study qualitatively confirms that Splash on

ROS 2 relieves the programming burden on developers,

increases the software development productivity and improves

the quality of the software.

I. INTRODUCTION

Developing software for autonomous machines such as
mobile robots, drones and self-driving cars is becoming more
and more difficult, largely because autonomous machines are
increasingly adopting deep neural network-based machine
learning algorithms [1]. It is well-known that DNN-based
applications tend to introduce serious complexities and
operational complications into an autonomous machine for
various reasons. First, they must coexist and seamlessly
interact with conventional time-driven and/or event-driven
real-time control software even though they are data-driven by
nature [2]. Second, they need a complicated hardware platform
consisting of heterogeneous multicore processors, graphical
processing units (GPU) and neural network accelerators (NNA)
to meet the ever-increasing computing power demand [3].
Third, DNN-based applications need a distributed computing
platform that can deal with a wide variety of dispersed
intelligent sensors and actuators. Lastly, they must correctly
react to diverse sensor fusion scenarios [4].

This gives rise to a versatile runtime software framework
supporting various programming abstractions, particularly
suitable for DNN-based applications [5]. Such runtime

* This research was supported by Hyundai Robotics. (No. 0668-20200206)

and Industrial Strategic Technology Development Program (10079961,

“Development of a deterministic DCU platform with less than 1μs

synchronization for autonomous driving system control”) funded By the
Ministry of Trade, Industry & Energy(MOTIE, Korea).

Hwancheol Kang is with Department of Electrical and Computer

Engineering, Seoul National University, Seoul, Korea (e-mail:
hckang@redwood.snu.ac.kr).

software framework must be able to effectively separate
application software developers from the already complex
distributed hardware platform in order to hide implementation
details from the developers and eventually improve software
development productivity, robustness and reliability.

The robot operating system 2 (ROS 2) is one of the most
successful runtime software frameworks for autonomous
machines [6]. ROS 2 including its predecessor ROS has been
widely used for thousands of robot designs in both industry and
academia. It is still becoming more and more popular [7].

Despite such a great success, ROS 2 is still an on-going
community project; in fact, it is the result of the complete
refactoring of ROS. Now, ROS 2 can support real-time
publish-subscribe communications and swarm operations
among multiple collaborating robots via distributed join and
leave. It also significantly improves the robot system reliability
thru the decentralized node structure [8][9].

Although ROS 2 has many other enhancements over its
predecessor, it still has room for improvement, especially from
the DNN perspective. To address the four desired features that
ROS 2 lacks, we propose to augment ROS 2 with the Splash
programming framework we have developed at Seoul National
University [2][4].

Splash is a graphical programming language that supports
programmers in developing diverse applications for
autonomous machines. The benefits of Splash are mainly four-
fold. First, it provides an effective programming abstraction
that supports the real-time stream processing and sensor fusion
frequently appearing in DNN-based applications. Second, it
enables programmers to specify genuine, end-to-end timing
constraints and monitor the violation of such constraints at
runtime. Third, it provides basic and yet crucial utilities such
as exception handling and mode change to name a few. Finally,
it can aid programmers with performance optimization and
tuning during system implementation.

While Splash was originally up and running on a DDS-
based middleware hosted on Linux [2][4], we retarget Splash
to ROS 2 to take advantage of a plethora of features and
packages that have already existed in ROS 2. In doing so, we
enumerate programming model differences between Splash

Cheonghwa Lee is with Department of Electrical and Computer
Engineering, Seoul National University, Seoul, Korea (e-mail:

chlee@redwood.snu.ac.kr).

Wooyoung Choi is with Department of Electrical and Computer
Engineering, Seoul National University, Seoul, Korea (e-mail:

wychoi@redwood.snu.ac.kr).

Seongsoo Hong is with Department of Electrical and Computer
Engineering, Seoul National University, Seoul, Korea. (corresponding author

to provide phone: 82-2-880-8357; fax: 82-2-871-5974; e-mail:

sshong@redwood.snu.ac.kr).

Splash on ROS 2: A Runtime Software Framework for Autonomous

Machines*

Hwancheol Kang, Cheonghwa Lee, Wooyoung Choi and Seongsoo Hong

and ROS 2 and then conduct model conversions to reconcile
the differences. We also identify the shortcomings of ROS 2 in
supporting DNN-based applications and augment ROS 2 with
Splash to rectify them. We call the end result Splash on ROS 2.

In this paper, we present the design of Splash on ROS 2 and
show a case study that we perform with a robot arm controller
performing DNN-based object detection and motion planning.
We intend to qualitatively assess the utility and viability of the
proposed approach. Our case study clearly shows that Splash
on ROS 2 is more effective than ROS 2 alone, in terms of
software development productivity and reliability. In fact,
Splash drastically helps reduce development time and effort
due to the following reasons. First, it offers for developers an
intuitive and easy-to-understand programming model based on
a data flow graph known as the Kahn process network [10].
Second, it supports model-based software development where
the code generator automatically produces skeleton code and
meta-data files from a given graphical Splash program with
textual annotations [2][4]. Third, it provides developers with
many built-in modules dealing with essential mechanisms such
as mode change, sensor fusion and control output shaping
[2][4]. Such modules, given in the form of the Splash client and
runtime libraries, fundamentally block the possibility of errors
that might occur if programmers repeatedly wrote code for
such mechanisms. Finally, it provides a feature called the build
unit that can help developers automate the software build and
deployment process while focusing on optimizing the
concurrency and parallelism of the resultant system.

II. BACKGROUND

We propose to augment the programming capability of
ROS 2 with the Splash programming language. This requires
the model conversion from the Splash language constructs into
the ROS 2 programming and execution features. To help

readers understand the model conversion, we give a brief but
essential account of both Splash and ROS 2.

A. Splash Programming Language

This subsection gives a quick overview of the Splash
programming language that is a summary from [2][4]. We refer
the interested readers to [2][4] for more details of the Splash’s
diverse language constructs.

A Splash program is in essence a directed graph that
consists of nodes and edges. Figure 1 shows a sample Splash
program drawn via the Splash schematic capture tool. This
program consists of the perception and planning subsystems
used in our case study of this paper.

In the Splash terminology, a node and an edge of a directed
graph are called a component and a channel, respectively. A
component is either an atomic component or a composite
component. A composite component is also called a factory. A
factory encapsulates a subgraph has external ports. Figure 1
demonstrates two factories interconnected with each other.
Atomic components are further classified into four different
types: (1) a processing component, (2) a source component, (3)
a sink component and (4) a fusion operator.

A component has stream input ports and stream output
ports with the exception of the source and the sink component.
The stream output port of an upstream component is connected
to the stream input port of a downstream component and such
connection creates a channel.

The most important language construct in Splash is the
processing component since it performs computation on input
data items and produces transformed data items as an output.
Moreover, a processing component serves as a building block
for constructing a Splash program.

Figure 1. A Splash program for object detection and motion planning.

Splash supports three types of ports: (1) stream
input/output ports for sending and receiving stream data, (2)
event input/output ports for delivering events and (3) mode
change input/output port for passing mode change signals.

Input and output port types are the subtypes of the port type.
Each port type is associated with one of three port interfaces:
stream, event and mode change port interface. The output port
and the input port connected by a channel must share the same
port interface. Each port interface has a data type for data items
it sends or receives. A data type can be a primitive data type or
a composite data type.

A channel is a delivery path for steam data. It is represented
with a solid line from a stream output port to a stream input
port. The Splash language mandates that data items always go
through a channel in the order of their birthmarks. Such in-
order delivery semantics significantly reduces the amount of
work done at a downstream component. In order to store data
items on a channel until they are consumed by a downstream
component, an imaginary FIFO queue is assumed. In Splash,
an imaginary FIFO queue is on the stream input port of the
downstream component, instead of the stream output port of
the upstream component. The fan-in of a channel is restricted
to one, but the fan-out of a channel can be greater than one.
When a channel is connected to multiple input ports, all data
items generated from an output port are replicated to all the
input ports of downstream components. When a data item is
delivered to an input port, the arriving data item is handled by
a specified callback function.

A clink is a delivery path for events and mode change
signals. It is represented by a dotted line from an output port to
an input port. Unlike the channel, both fan-in and fan-out of a
clink can be greater than one.

Time is a first-class entity in Splash in the sense that the
creation time of a live data item is always preserved in its
timestamp, allowing it to be monitored in comparison with an
abstract global clock. We refer to the timestamp that carries the
creation time as a birthmark. If an intermediate process in a
Splash program generates a data item, it inherits the birthmark
from its oldest ancestor. To enforce and monitor various timing
constraints, Splash compares the birthmark of a data item with
the current system time.

Splash supports three types of end-to-end timing
constraints [11].

(1) A freshness constraint on a single sensor value: It
bounds the time it takes for a sensor value to flow
through the system. A sensor value will become
useless if it exceeds the freshness constraint since
sensor values get stale with time.

(2) A correlation constraint on multiple sensor values: It
limits the maximum time difference among a group of
distinct sensor values used for sensor fusion.

(3) A rate constraint on an output port of a process: It
limits the number of output data items produced per
second. A rate constraint is a soft real-time constraint
in the sense that the Splash runtime tries its best to
minimize the jitter between consecutive data items on
the same channel, but does not guarantee that the
stream output port is jitter-free.

Programmers can explicitly annotate such timing constraints at
application development time via Splash’s language constructs.
The Splash runtime will raise an exception if it detects the
violation of an annotated timing constraint at runtime.

B. ROS 2 Programming and Execution Model

A ROS program is also represented with a directed graph
called a ROS graph. A node in a ROS graph is a building block
of a ROS program and an edge is a communication link
between two nodes. Some links are called topics when they
represent publish-subscribe communications; others are called
services when they denote client-server communications. A
ROS node can receive three types of messages: (1) subscription,
(2) client and (3) service messages. A node reacts to an
incoming message by activating a callback corresponding to
the type of the message [7][8][9]. Figure 2 shows a sample
ROS graph [12].

For execution, one or more nodes in a ROS graph can be
grouped into an operating system process. Such a process is
associated with a special thread called an executor. The
executor implements the ROS execution model in that a
callback is invoked to process an incoming message. ROS 2
provides two built-in executors: (1) a sequential executor that
executes callbacks in a single thread and (2) a parallel executor
that distributes the pending callbacks across multiple worker
threads obtained from the thread pool [7]. ROS 2 also supports
arbitrary user-defined executors. Recently, the callback-group-
executor has been introduced and is gaining popularity since it
allows programmers to prioritize incoming messages via real-
time profiles [13].

Despite many improvements made for ROS 2, it still has
shortcomings when it comes to real-time DNN inference in an
autonomous machine.

(1) It provides only little support for specifying end-to-
end timing constraints or monitoring dynamic timing
violation. In ROS 2, configurable timing constraints
can appear only at the communication level.

(2) The ROS 2 programming model is still at a lower
level than what most programmers would expect. For
instance, a ROS graph directly exposes the details of
publish-subscribe communications. In addition, ROS
2 lacks support for frequently appearing features such
as real-time stream processing, mode change, sensor
fusion and rate control for output shaping.

Figure 2. A ROS graph.

(3) ROS 2 offers little support for automated deployment
that enables users to remotely install, start, stop and
monitor applications. As a result, users need to
manually deploy applications to distributed machines.

III. MODEL CONVERSION BETWEEN SPLASH AND ROS 2

In this section, we explain how Splash on ROS 2 addresses
the aforementioned shortcomings. In our approach, Splash sits
on top of the ROS 2 software stack as shown in Figure 3. The
Splash client and runtime libraries collectively realize the
Splash framework and provide application programming
interfaces (APIs) for Splash applications. They play the role of
mapping the Splash programming entities to those of ROS 2
via the ROS APIs.

A. Splash to ROS 2 Mapping

Each of Splash language constructs is mapped to an entity
of ROS 2 as specified in TABLE I. First, an atomic component
is mapped to a ROS 2 node. A processing component can have
a user-defined callback for each of its input ports. A fusion
operator has a built-in callback whose role is to check if a
fusion rule is satisfied and to trigger a fusion function
whenever needed.

An output port and an input port are mapped to a publisher
and a subscriber of ROS 2, respectively. A channel passes data
items of a known data type from an output port to an input port.

A clink delivers events of a known data type. Both a channel
and a clink are mapped to ROS 2 topics. They both possess a
name and a data type. A channel has a user-defined data type
and a clink is associated with a built-in data type.

B. Splash Client Libraries

The Splash client libraries (scl) provide a programming
abstraction for Splash applications via APIs written in Python.
These APIs are a set of wrappers for both the ROS client
libraries Python wrapper (rclpy) and object-oriented classes for
Splash entities.

Coding a Splash application is a two-step process: (1)
skeleton code generation and (2) algorithm specification. The
scl provide APIs in both steps. Skeleton code generation is
done by the Splash code generator using schematic data
produced by the schematic capture tool. In this step, port
objects are created with channel information and callback
functions are generated and registered to input ports. Rate
constraints are enforced at rate-controlled ports. Component
objects are created. Freshness constraints are enforced at
source components. Fusion rules are implemented at fusion
operators. The port objects are attached to the component
objects. Build unit objects are created and the component
objects are added to the build unit objects. The algorithm
specification step is performed by programmers. They fill in
their own logic inside callback functions associated with input
ports.

In order to implement the mapping rules specified in
TABLE I, each Splash entity class inherits from the matching

ROS 2 entity class as shown in Figure 4. Component is a
subclass of a ROS 2 node class. The ROS 2 node class contains
properties and methods for managing publishers, subscribers
and callback functions. Using the properties and methods, the
scl implement methods for attaching and managing ports inside
the component class.

ProcessingComponent, SourceComponent and

SinkComponent inherit Component. These classes have a
method for registering callback functions. When an input port
object is attached to it, the component object registers the input

port’s callback function. SourceComponent has a method

for enforcing a freshness constraint. FusionOperator also

inherits Component. It has a method for implementing a
fusion rule with an extrapolation handler. It then registers a
built-in callback function for sensor fusion.

InputPort is a subclass of the ROS 2 subscriber class
that is defined by a message type, a topic name and a callback
function. Information on a channel or a clink is passed as an

argument to the constructor of the InputPort object.

StreamInputPort and EventInputPort inherit

InputPort. They have a method for registering a callback

function. ModeChangeInputPort lacks a callback

registration method even though it inherits InputPort.
Instead, a built-in callback function for mode change is
automatically registered when the object is constructed.

TABLE I. SPLASH - ROS 2 MAPPING TABLE

Splash Entities ROS 2 Entities

Processing Component Node

Source Component Node

Sink Component Node

Fusion Operator Node with built-in callback

Stream Input Port Subscriber

Stream Output Port Publisher

Event Input Port Subscriber

Event Output Port Publisher

Mode Change Input Port Subscriber

Mode Change Output Port Publisher

Channel Topic

Clink Topic

Figure 3. Layered architecture of Splash on ROS2.

OutputPort is a subclass of the ROS 2 publisher class
that is defined by a message type and a topic name. The
publisher class has a method for publishing a message.

StreamOutputPort inherits OutputPort. By extending
the method for publishing, the scl implement a method for
publishing a message simultaneously. The method also checks
for the violation of a freshness constraint inside

StreamOutputPort. When a StreamOutputPort

object, which is attached to a SourceComponent object,
publishes a message, a freshness constraint and a birthmark are

added to the message. StreamOutputPort class has a

method for enforcing a rate constraint. EventOutputPort

and ModeChangeOutputPort inherit OutputPort. The
former triggers an event with an event name. The latter obtains
an event name and a name of the target factory for mode
change from the graphical Splash program.

C. Splash Runtime Libraries

The Splash runtime libraries (srl) offer essential runtime
functionalities such as (1) callback execution, (2) rate control,
(3) sensor fusion and (4) mode change.

Callback execution is a functionality to coordinate the
execution of callbacks registered to components. The srl
implement the Splash executor that is similar to the callback-
group-executor [13]. The Splash executor puts an emphasis on
asynchronous event handling, message prioritization and in-
order message delivery. It has two queues, one for data and the
other for events. When a callback is registered to an input port,
it is associated with a specific queue depending on the type of
the input port. The Splash executor prioritizes the event queue
over the data queue. Events are queued in the FIFO order while
data items are stored according to the nondecreasing order of
their birthmarks.

Rate control is a mechanism that prevents bursty data traffic
by limiting the number of output data items that are generated

per unit time [2]. When a StreamOutputPort object
publishes a message with a rate constraint, it stores the message
into a queue of the associated rate controller, instead of
immediately calling the ROS 2 publishing method. The rate
controller has a queue and a timer for each rate-controlled
output port. On each periodic invocation, the rate controller
looks up the output queue to find the oldest message. If there is

at least on fresh message in the queue, the rate controller calls
the ROS 2 publishing method.

Sensor fusion is a mechanism that estimates information
about nearby situation by processing data from multiple
sensors. To support sensor fusion, Splash offers a fusion
operator with which programmers specify a fusion rule, a
correlation constraint and an extrapolation handler via a well-
defined graphical and textual interface. The fusion operator
internally runs the optimal sensor fusion algorithm that we
came up with in our previous work [4]. The algorithm is
guaranteed to generate a tuple of multiple sensor data that
satisfies the user-specified fusion rule if one exits. A

FusionOperator object has a method that implements the
fusion rule. When the method is called, it first creates a queue
for each stream input port attached to the object. Whenever a
message arrives at any of the input ports, a built-in callback
function enqueues the message into the corresponding queue
and runs the sensor fusion algorithm to get a valid tuple. This
tuple is published through the corresponding output port. If the
algorithm cannot find any valid tuple, a user-defined
extrapolation handler is called instead.

Mode change is a mechanism that activates or deactivates
a selected subgroup of components in a factory that has
multiple execution modes [2].The srl offer a module called the
mode manager to support the mechanism. In response to a
mode change request, an event triggering method is called with
a target factory name and an event name through a

ModeChangeOutputPort object. Then the mode manager
publishes a mode change message to components in the target
factory. The components that received the message are
activated or deactivated through the execution of a built-in
callback function.

IV. CASE STUDY

In order to demonstrate the utility of Splash on ROS 2 as a
versatile programming framework for autonomous machines,
we have conducted a case study in which a robot arm controller
performs DNN-based object detection and motion planning.
Specifically, our case study is composed of a robot arm
controller and a simulator. The simulator includes a dynamics
engine that reflects the physical characteristics of the robot and
a visualizer that expresses robots, objects and sensors in three
dimensional space. As shown inFigure 5, the robot arm picks

Figure 4. Class hierarchy among ROS and Splash classes

up the dropped object at a random location and moves it to the
designated location.

The robot controller program we had drawn using the
Splash schematic capture tool already appeared in Figure 1 in
Section II. Apparently, the graphical program looks quite
straightforward: It is composed of a perception subsystem and
a planning subsystem. As stated previously, the Splash code
generator automatically produces skeleton code from the
schematic data that the schematic capture tool generates.
Unlike our expectation, the resultant code forms a very
complex source tree. To make the source code management
easier, the Splash code generator packages the entire source
tree into a ROS 2 package as shown in Figure 6. At the top
directory is a ROS 2 package. It contains a Python package,
which in turn contains a Splash package. It is a subpackage that
contains the hierarchy of the skeleton code.

A factory in a Splash program is converted to a subpackage.
Each component contained in a factory becomes the factory’s
subpackage. A component subpackage has a module for

creating a Component object and attaching Port objects to

the Component object. Its code is given in Figure 8.

All input ports attached to a component become the
component’s subpackage that contains a callback module for
each input port. The callback module is named after the
channel to which the input port is connected. The callback
function inside the module is the place where programmers
insert their own code as shown in Figure 9.

A build unit is an individual software entity for build,
deployment and execution on a distributed system. To create a

BuildUnit object and add related Component objects to it,
Splash offers the build unit module as shown in Figure 10. The
main module, an entry point of a Splash program, imports the

build unit module and calls the run method of the

BuildUnit object to start off a Splash program, as in Figure
11.

In addition to constructing a hierarchical code structure as
explained above, the Splash code generator produces code for
the connection logic between components in a Splash program.
Figure 7 shows the ROS graph representing the various ROS
nodes and connections between them.

Figure 5. Overview of the case study.

Figure 6. Hierarchical source tree for generated skeleton code.

Figure 7. ROS graph in execution.

semantic_segmentation

fusion_operator_0

camera_rgb

camera_depth

bitwise_and_crop

fusion_operator_1

pointcloud_feature_extraction

rgb_feature_extraction

image_rgb

image_depth

image_rgb image_mask

fusion_0

image_rgb_cropped

image_mask_cropped

image_depth_cropped

fusion_1

fusion_operator_2feature_pointcloud

feature_rgb

pose_estimation

fusion_2

pose_refinement
pose

perception_factory

state_reader

planning_factory

fusion_operator_3 decision_making

waypoints_generation

gripper_commander

interpolation

joint_commander

state_robot

pose_refined

fusion_3
pose_goal

grip_command

waypoints

waypoints_interpolated

#perception_factory/bitwise_and_crop/bitwise_and_crop.py

from scl.components import ProcessingComponent

....

from sensor_msgs.msg import Image

from .input_ports import fusion_0

def build():

 component = ProcessingComponent()

 component.attach(StreamInputPort("fusion_0", fusion_0.callback))

 component.attach(StreamOutputPort("image_rgb_cropped", Image))

 component.attach(StreamOutputPort("image_depth_cropped", Image))

 return component

Figure 8. Source code for component module.

perception_factory/bitwise_and_crop/input_ports/fusion_0.py

from sensor_msgs.msg import Image

def callback(component, msg):

output = Image()

 # user logic

component.write("image_mask_cropped", output)

Figure 9. Source code for input callback module.

build_units/default_build_unit.py

from scl.build_unit import BuildUnit

....

def run():

build_unit = BuildUnit("default_build_unit")

build_unit.add(camera_rgb.build())

build_unit.add(camera_depth.build())

build_unit.add(semantic_segmentation.build())

build_unit.add(fusion_operator_0.build())

....

build_unit.run()

Figure 10. Source code for build unit module.

default_build_unit_exec.py

from .splash.build_units import default_build_unit

def main():

default_build_unit.run()

Figure 11. Source code for the main module.

The case study clearly reveals that Splash on ROS 2
provides developers with a useful and effective programming
abstraction that can relieve the programming burden on
developers, increase the software development productivity
and improve the quality of the software. Such benefits are due
to the three features of Splash on ROS 2: (1) The Splash
progrmming language offers the appropriate level of
abstraction so that programmers can avoid a low-level
programming details such as communicating nodes and
publish-subscribe communications. (2) The Splash code
generator produces the skeleton code and the connection logic
between communicating nodes so that developers can get away
with writing tedious and error-prone house-keeping code in
their programs. (3) The Splash client and runtime libraries can
help developers avoid coding complex but frequently
appearing mechasnisms such as mode change, sensor fusion
and rate control.

V. CONCLUSION

We proposed Splash on ROS 2 as a versatile runtime
software framework for autonomous machines. It offers
support for essential features such as real-time stream
processing, mode change, sensor fusion and rate control for
output shaping. These features are exposed to programmers as
language constructs that they use in Splash applications. The
Splash toolset automatically generates high-level language
code according to the semantics of those language constructs.
The generated code makes use of APIs provided by the Splash
client libraries (scl) and the Splash runtime libraries (srl). These
libraries are implemented on top of the ROS 2 software stack
and collectively perform model conversion between Splash
and ROS 2.

We conducted a case study with a robot arm controller
performing DNN-based object detection and motion planning.
The case study confirmed that Splash on ROS 2 relieves the
programming burden on developers, increases the software
development productivity and improves the quality of the
software.

There are several future research directions along which
our programming framework can be extended. First, we are
planning to include service orientation thru which new or
updated services are dynamically deployed to autonomous
machines and become immediately available to users [14][15].
Second, we plan on conducting in-depth case studies in the
autonomous vehicle domain where the benefits of our
programming framework stand out. Finally, we will evaluate
the performance and run-time overhead of Splash-based
systems with extensive experiments. The results look
promising.

REFERENCES

[1] S. Wang, A. Pathania and T. Mitra, “Neural network inference on
mobile SoCs,” IEEE Design & Test, vol. 37, issue. 5, pp. 50–57, Oct.

2020.

[2] S. Noh and S. Hong, “A graphical programming framework for an
autonomous machine,” in proc. The 16th International Conference on
Ubiquitous Robot (UR), 2019, pp. 660-666.

[3] J. Kim, P. Shin, M. Kim and S. Hong, "Memory-aware fair-share
scheduling for improved performance isolation in the Linux kernel,"
IEEE Access, vol. 8, pp. 98874-98886, Jun. 2020

[4] S. Noh and S. Hong, “Programming language support for multisensor
data fusion: the Splash approach,” in proc. The 17th International
Conference on Ubiquitous Robot (UR), 2020, pp. 429-436.

[5] A. Hellmund, S. Wirges, Ö. Ş. Taş, C. Bandera and N. O. Salscheider,
"Robot operating system: A modular software framework for automated
driving," in proc. IEEE 19th International Conference on Intelligent
Transportation Systems (ITSC), 2016, pp. 1564-1570.

[6] Open Source Robotics Foundation (OSRF), “ROS 2,” [online]
Available: https://github.com/ros2.

[7] D. Casini, T. Blaß, I. Lütkebohle and B. B. Brandenburg, “Response-
time analysis of ROS 2 processing chains under reservation-based
scheduling,” in proc. 31st Euromicro Conference on Real-Time Systems
(ECRTS), 2019, pp. 6:1-6:23.

[8] J. Kim, J. M. Smereka, C. Cheung, S. Nepal and M. Grobler, “Security

and performance considerations in ROS 2: a balancing act,”

Computing Research Repository, arXiv preprint arXiv:1809.09566,
Sep. 2018.

[9] Y. Yang and T. Azumi, "Exploring real-time executor on ROS 2," in

proc. IEEE International Conference on Embedded Software and
Systems (ICESS), 2020, pp. 1-8.

[10] G. Kahn, “The semantics of a simple language for parallel

programming,” in proc. IFIP Congress, 1974, pp. 471-475.

[11] R. Gerber, S. Hong and M. Saksena, “Guaranteeing real-time
requirements with resource-based calibration of periodic processes,”

IEEE Transactions on Software Engineering, vol. 21, no. 7, pp. 579-

592, 1995.
[12] A ROS graph, [online] Available:

https://docs.ros.org/en/foxy/_images/Nodes-TopicandService.gif

[13] R. Lange, “Mixed real-time criticality with ROS 2 - the callback
group-level executor,” in ROSCon 2018, Lightning Talk, 2018.

[14] S. Fürst and M. Bechter, "AUTOSAR for Connected and Autonomous

Vehicles: The AUTOSAR Adaptive Platform," in proc. 46th Annual

IEEE/IFIP International Conference on Dependable Systems and

Networks Workshop (DSN-W), 2016, pp. 215-217.

[15] M. Stepanović, J. Jovičić, G. Stupar and M. Kovačević, "Application
lifecycle management in automotive: Adaptive AUTOSAR example,"

in proc. IEEE 8th International Conference on Consumer Electronics

- Berlin (ICCE-Berlin), 2018, pp. 1-4.

