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Abstract— We present the Splash programming framework to 

support the effective implementation of multisensor data fusion. 

Multisensor data fusion has been widely exploited in autonomous 

machines since it outperforms algorithms using only a single 

sensor, in terms of accuracy, reliability and robustness. Knowing 

that developers have long been lacking programming language 

support for multisensor data fusion, we offer a dedicated Splash 

language construct along with formal semantics for multisensor 

data fusion. Specifically, we analyze the structural 

characteristics of multisensor data fusion algorithms and derive 

technical issues that the language construct must tackle. We then 

give a detailed account of the language construct along with its 

formal semantics. Finally, we validate its utility and effectiveness 

via its application to a lane keeping assist system. 

I. INTRODUCTION 

Multisensor data fusion, or sensor fusion, is a technique that 
estimates information about the nearby situation using data 
from multiple sensors [1], [2]. Sensor fusion-based algorithms 
are widely used in autonomous machines since they are more 
accurate, reliable and robust than algorithms using only a 
single sensor. For example, an autonomous vehicle fuses 
various sensor inputs such as cameras, LiDARs and radars for 
localization, object detection and scene segmentation [3], [4], 
[5]. 

As the application area of sensor fusion is rapidly 
expanding, a wide variety of sensor fusion algorithms have 
been actively designed and implemented into real systems such 
as robots, drones and self-driving cars. Despite such popularity, 
developers still face many technical difficulties in realizing 
sensor fusion algorithms. Once programmers finish designing 
a sensor fusion algorithm, they must translate the algorithm 
into executable code, simultaneously considering various 
implementation issues such as synchronization among multiple 
sensor inputs, enforcing arbitrarily-formed, user-defined 
triggering conditions, estimating missing sensor inputs and 
handling timeout exceptions, to name a few. 

Consequently, developers are forced to rely on ad hoc 
practices in implementing sensor fusion algorithms. They try 
to avoid the abovementioned issues by adopting unrealistic 
assumptions. For example, they often assume that all sensor 
inputs are perfectly synchronized. In reality, such a naive 
assumption requires a non-trivial amount of implementation 
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efforts later on, due to the unsynchronized behavior of sensors 
in the final target system. 

Such an ad hoc practice of programming sensor fusion 
often demands laborious and error-prone coding and tuning, 
and thus makes an underlying sensor fusion algorithm 
intertwined with the code that deals with the abovementioned 
issues. This will seriously jeopardize the correctness and 
functional safety of autonomous machines. In turn, this calls 
for a generalized programming framework with a well-defined 
programming abstraction that can aid programmers in 
implementing sensor fusion algorithms. 

To address such an urgent demand, we present the Splash 
approach to implementing sensor fusion. Splash is a graphical 
programming framework we have developed to support 
programmers in developing diverse applications for 
autonomous machines [6]. The design goal behind Splash 
consists of four components. First, Splash must provide an 
effective programming abstraction that supports the real-time 
stream processing and sensor fusion of an autonomous 
machine. Second, it must enable programmers to specify 
genuine, end-to-end timing constraints and monitor the 
violation of such constraints at runtime. Third, it must provide 
basic and yet crucial utilities which are exception handling and 
mode change. Finally, during system implementation, it must 
aid programmers with performance optimization and tuning. 

Splash primarily relies on three key language semantics: 
timing semantics, in-order delivery semantics and rate-
controlled data-driven stream processing semantics. These 
semantics serve as a high-level programming abstraction that 
can hide low-level details from programmers. With these 
semantics, Splash can automatically generate code and set up 
interfaces between system components, exempting users from 
manually linking each part of the application. Splash also 
monitors the generated interfaces at runtime, allowing users to 
conveniently handle synchronization and exceptions. 

More importantly, Splash provides a specific programming 
abstraction that lays a foundation for supporting multisensor 
data fusion in autonomous machines. It consists of a fusion 
operator and sensor fusion semantics. We argue that this 
abstraction can effectively simplify and thus expedite the 
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software development of an autonomous machine by 
significantly reducing the implementation complexity 

There are many graphical programming frameworks 
intended for real-time stream processing in both industry and 
academia. Representative examples include RTMaps [7], 
Simulink [8] and Ptolemy II [9]. Like Splash, these 
frameworks are based on a data-flow process network model 
and have extensions that satisfy engineering needs that arise 
during production-quality system development. Unfortunately, 
neither Simulink nor Ptolemy II provides support for 
multisensor data fusion. Only RTMaps allows programmers to 
specify the triggering condition of a sensor fusion algorithm in 
a limited manner such that the algorithm is always invoked 
whenever input is received from a designated sensor. To the 
best of our knowledge, Splash is the first and the only 
programming language that explicitly and extensively supports 
multisensor data fusion. 

We have implemented a whole development toolset and 
runtime system to realize the Splash programming framework. 
We have also written a lane keeping assist system (LKAS) 
application using Splash to illustrate how the toolset and 
runtime work. We have conducted experiments with the LKAS 
application and measured several performance metrics to 
validate the utility and effectiveness of the Splash 
programming framework. 

The remainder of this paper is organized as follows. Section 
II gives s brief description of the Splash programming language 
to help the readers understand the fusion operator. Section III 
analyzes the existing sensor fusion algorithms and motivates 
our approach. Section IV presents the fusion operator by way 
of its formal semantics and runtime mechanism. Sections V 
and VI show the Splash toolset and experimental results. 
Finally, a conclusion follows in Section VII.  

II. THE SPLASH PROGRAMMING LANGUAGE 

To help readers in understanding our programming 
abstraction, we give a brief overview of the Splash 
programming language, starting with its underlying timing 
semantics. We refer the interested readers to [6] for more 
details of the Splash language constructs. 

A. Timing Semantics and End-to-End Timing Constraints 

Time is a first-class entity in Splash in the sense that the 
creation time of a live data item is always preserved in its 
timestamp, allowing it to be monitored in comparison with an 
abstract global clock. We refer to the timestamp that carries the 
creation time as a birthmark. If an intermediate process in a 
Splash program generates a data item, it inherits the birthmark 
from its oldest ancestor. To enforce and monitor various timing 
constraints, Splash compares the birthmark of a data item with 
the current system time. 

Splash supports three types of end-to-end timing 
constraints [10]. 

(1) A freshness constraint on a single sensor value: It 
bounds the time it takes for a sensor value to flow 
through the system. A sensor value will become 
useless if it exceeds the freshness constraint since 
sensor values get stale with time. 

(2) A correlation constraint on multiple sensor values: It 
limits the maximum time difference among a group of 
distinct sensor values used for sensor fusion. 

(3) A rate constraint on an output port of a process: It 
limits the number of output data items produced per 
second. A rate constraint is a soft real-time constraint 
in the sense that the Splash runtime tries its best to 
minimize the jitter between consecutive data items on 
the same channel, but does not guarantee that the 
stream output port is jitter-free. 

Programmers can explicitly annotate these three types of 
timing constraints at application development time via 
Splash’s language constructs. The Splash runtime will raise an 
exception if it detects the violation of an annotated timing 
constraint at runtime. 

B. Key Language Constructs of Splash 

A Splash program is in essence a directed graph that 
consists of processing nodes and edges between two processing 
nodes. In the Splash terminology, a node and an edge are called 
a component and a channel, respectively. A component in a 
Splash program is either an atomic component or a composite 
component. A composite component is also called a factory. 
Atomic components are further classified into four different 
types: (1) a processing component, (2) a source component, (3) 
a sink component, and (4) a fusion operator. 

A component has stream input ports and stream output 
ports with the exception of the source and the sink component. 
The stream output port of an upstream component is connected 
to the stream input port of a downstream component and such 
connection creates a channel. 

The most important language construct in Splash is the 
processing component since it performs computation on input 
data items and produces transformed data items as an output. 
Moreover, a processing component serves as a building block 
for constructing a Splash program. Figure 1 shows the 
graphical representation of a processing component with two 
stream input ports and two stream output ports. 

In order to exploit parallelism explicitly from the 
underlying operating system and computing platform, Splash 
offers a multithreaded process model for a processing 
component. In this model, a processing component consists of 
a group of Splash threads we call sthreads. A sthread is an 
independent logical entity that executes inside a processing 

 

 
 

Figure 1. Splash’s processsing component and associated sthreads. 
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component. Figure 1 shows a processing component that 
resembles a concurrent server design pattern [11]. It has a 
dedicated sthread for each port and several other internal 
sthreads that serve as the worker threads. 

Splash supports three types of ports: (1) stream 
input/output ports for sending and receiving stream data, (2) 
event input/output ports for delivering events and (3) mode 
change input/output port for passing mode change signals. 

Input and output port types are the subtypes of the port type. 
Each port type is associated with one of three port interfaces: 
stream, event and mode change port interface. The output port 
and the input port connected by a channel must share the same 
port interface. 

Each port interface has a data type for data items it sends or 
receives. A data type can be a primitive data type or a 
composite data type. Splash supports five primitive data types: 
(1) a Boolean type, (2) an integer type, (3) a real type, (4) a 
character type and (5) a string type. Splash supports two 
composite data types: (1) arrays and (2) records. 

A channel is a delivery path for steam data. It is represented 
with a solid line from a stream output port to a stream input 
port. The Splash language guarantees that data items always go 
through a channel in the order of their birthmarks. Such in-
order delivery semantics significantly reduces the amount of 
work done at a downstream component.  In order to store data 
items on a channel until they are consumed by a downstream 
component, a FIFO queue is used. In Splash, a FIFO queue is 
on the stream input port of the downstream component instead 
of the stream output port of the upstream component. The fan-
in of a channel is restricted to one, but the fan-out of a channel 
can be greater than one. When a channel is connected to 
multiple input ports, all data items generated from an output 
port are replicated and enqueued into each of the FIFO queues 
at the input ports of downstream components. 

III. LIMITATIONS OF CURRENT PRACTICE OF PROGRAMMING 

SENSOR FUSION 

In this section, we analyze existing sensor fusion 
algorithms and derive issues that developers must tackle to 
implement a sensor fusion algorithm. We then motivate the 
Splash approach to sensor fusion. 

The research into sensor fusion can be classified into two 
categories: measurement fusion and situation fusion. 
Measurement fusion takes raw measurement data directly from 
multiple sensors and uses them together to make an estimation 
[3], [12], [13], [14]. In contrast, situation fusion independently 
estimates each portion of the nearby situation using a 
corresponding sensor and then integrates such portions to get 
the final estimated situation [4], [5], [15].  

For the lack of programming language support for sensor 
fusion, the developers of the existing approaches had to deal 
with the following critical issues on their own inside their 
algorithms and even manually embed their solutions into their 
sensor fusion code. 

(1) A triggering condition that specifies which subset of 
sensor inputs must be present to form a legitimate 
combination of sensor values for fusion. 

(2) A correlation constraint on multiple sensor values as 
defined in Section 2. 

(3) A triggering mechanism that dictates how to produces 
a sensor value combination that satisfies the imposed 
correlation constraint as well as the triggering 
condition. 

(4) A data selection mechanism that specifies which one 
should be selected among multiple legitimate 
combinations of sensor values. 

(5) A data prediction scheme that computes an estimation 
for one or more missing sensor inputs. 

IV. SPLASH’S FUSION OPERATOR 

In this section, we address the abovementioned five issues 
with a language construct and associated formal semantics. We 
name the language construct a fusion operator. 

A fusion operator is an atomic Splash component that 
merges multiple input data streams into a single output data 
stream. Its most peculiar benefit is that programmers can 
graphically specify a triggering condition, a correlation 
constraint and a data prediction scheme via a well-defined 
graphical and textual interface while the triggering mechanism 
and data selection mechanism are automatically synthesized by 
the Splash toolset, transparently from programmers. 

Figure 2 shows the graphical representation of a fusion 
operator. It has two stream input ports and one stream output 
port along with a pop-up data template for specifying a fusion 
rule, which consists of a triggering condition and a correlation 
constraint. The fusion rule can significantly improve the 
correctness of a sensor fusion algorithm since it forces 
programmers to clearly enumerate all the elements of the 
triggering condition. 

Once a programmer specifies a fusion rule for a fusion 
operator, the Splash runtime can automatically check if the 
fusion rule is satisfied, generates a sensor input combination 
that satisfies the fusion rule and finally outputs it. This way, 
Splash can hide low-level details that arise during the system-
wide implementation of sensor fusion algorithms.  

In this section, we formally present the semantics of the 
fusion operator and explain its runtime mechanism that the 
Splash code generator relies on. 

A. The Semantics 

A fusion operator with a set of 𝑚 stream input ports 𝑃 =
{𝑝1, 𝑝2, … , 𝑝𝑚} has a fusion rule 𝑅. A fusion rule 𝑅 is defined 
as follows. 

Definition 1. A fusion rule 𝑅 = (𝑀,𝑂, 𝜃, 𝑐) is a tuple where 
𝑀 ⊆ 𝑃  is a set of mandatory ports and 𝑂 ⊆ 𝑃  is a set of 

 

 
 

Figure 2. Graphical representation of a fusion operator. 

 

 



  

optional ports where 𝑀 ∩ 𝑂 = ∅ and 𝑀 ∪ 𝑂 = 𝑃. Also, 𝜃 is a 
threshold on the number of optional ports and 𝑐 is a correlation 
constraint. Let (𝑑1, 𝑑2, … , 𝑑𝑚) be an input tuple where 𝑑𝑖  is 
one of data items present in the port 𝑝𝑖’s input queue. If 𝑝𝑖  is 
empty, 𝑑𝑖 has an empty data item, which is denoted by 𝑑𝑖 = ⊥. 
We define 𝑛𝑂(𝑑1, 𝑑2, … , 𝑑𝑚)  and 𝑛𝑀(𝑑1, 𝑑2, … , 𝑑𝑚)  as the 
numbers of non-empty optional ports and non-empty 
mandatory ports, respectively. For 𝑅 to be satisfied, there must 
exist at least one tuple (𝑑1, 𝑑2, … , 𝑑𝑚) that meets the following 
three conditions. 

(C1) For all ports 𝑝𝑖 ∈ 𝑀, 𝑑𝑖 is not ⊥. 

(C2) 𝑛𝑂(𝑑1, 𝑑2, … , 𝑑𝑚) ≥ 𝜃. 

(C3) For any two non-empty data items 𝑑𝑖  and 𝑑𝑗 , 

|𝑏(𝑑𝑖) − 𝑏(𝑑𝑗)| ≤ 𝑐𝑖  where 𝑏(𝑑)  is the birthmark 

of a data item 𝑑. 

We refer to a tuple (𝑑1, 𝑑2, … , 𝑑𝑚)  that satisfies all of the 
above conditions as a firing tuple. 

A fusion operator generates a firing tuple whenever the 
fusion rule is satisfied. If multiple tuples are eligible, it chooses 
one based on the following rules. 

(R1)  A fusion operator prefers a firing tuple that has the 
smallest birthmark. By processing older data items 
first, the Splash runtime can reduce freshness 
constraint violations. 

(R2)  A fusion operator tries to select the firing tuple with 
the largest 𝑛𝑂(𝑑1, 𝑑2, … , 𝑑𝑚). This is to provide the 
fusion algorithm with information from as many 
sensors as possible. 

The fusion operator prioritizes (R1) over (R2). 

The fusion operator additionally provides a timeout 
mechanism for extrapolating missing sensor inputs. A fusion 
operator gets timed out when no fusion rule has been satisfied 
for the entire timeout interval. At the timeout, a fusion operator 
performs the following steps with the extrapolation command 
𝑒. 

(1) It generates a partially firing tuple (𝑑1, 𝑑2, … , 𝑑𝑚) 
that satisfies only condition (C3). If multiple tuples 
are eligible, it chooses the one with the largest 
𝑛𝑀(𝑑1, 𝑑2, … , 𝑑𝑚); and then ties are broken in favor 
of larger 𝑛𝑂(𝑑1, 𝑑2, … , 𝑑𝑚). 

(2)  For all 𝑑𝑖  such that 𝑑𝑖 =⊥ and 𝑝𝑖 ∈ 𝑀 , it places 𝑒 
for 𝑑𝑖. 

(3) While 𝑛𝑂(𝑑1, 𝑑2, … , 𝑑𝑚) < 𝜃, for each 𝑑𝑖 such that 
𝑑𝑖 =⊥ and 𝑝𝑖 ∈ 𝑂, it repeatedly places 𝑒 for 𝑑𝑖. 

(4) It finally outputs (𝑑1, 𝑑2, … , 𝑑𝑚).  

It is the programmers’ responsibility to handle the 
extrapolation command. For example, they may choose to 
either ignore 𝑒 or arrange an extrapolation handler inside the 
processing component directly connected to the output of the 
fusion operator. 

B. The Runtime Mechanism 

The runtime mechanism of a fusion operator is depicted in 
Figure 3. Each stream input port of a fusion operator has an 
input queue that stores data items in ascending order of their 
birthmarks. A fusion operator is associated with a dedicated 
sthread named a fusion sthread. When a data item is inserted 
into any of input queues, a fusion sthread is invoked.  It checks 
if the fusion rule is satisfied. If so, it retrieves data items and 
constructs a firing tuple and outputs it. It repeats until no firing 
tuple is found. Then it gets blocked until a new data item comes 
in.  

The fusion sthread runs the FINDVALIDINPUTTUPLE 
algorithm whose pseudocode is given in Figure 4. The inputs 
of the algorithm are a fusion rule 𝑅 = (𝑀,𝑂, 𝜃, 𝑐) and a set 
𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑚} where 𝑠𝑖 is a list of data items stored in 𝑝𝑖’s 
input queue. Each list is sorted in ascending order of its data 
items’ birthmarks. The algorithm returns a firing tuple 
(𝑑1, 𝑑2, … , 𝑑𝑚) on success or (⊥, ⊥, … , ⊥), otherwise.  

The FINDVALIDINPUTTUPLE algorithm always returns 
the firing tuple with the smallest birthmark when there are 
multiple eligible tuples. The runtime complexity of the 
algorithm is 𝑂(𝑚2 ∙ 𝑙) where 𝑚 be the number of input ports 
of the fusion operator and 𝑙 be the maximum input queue size. 
This is clear because the while loop repeats at most 𝑚 ∙ 𝑙 times 
and it takes 𝑂(𝑚) to run lines 7-9 and 𝑂(1) to run lines 10 and 
11. 

ALGORITHM  FINDVALIDINPUTTUPLE 

Input:  A fusion rules 𝑅 = (𝑀,𝑂, 𝜃, 𝑐)  
A set of lists of data items 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑚} 

 

FINDVALIDINPUTTUPLE(𝑅, 𝑆)   

1:   let index[1 … 𝑚] be a new array 

2:   for 𝑖 = 1 to 𝑚 

3:       if 𝑝𝑖 ∈ 𝑀 ∪ 𝑂 and |𝑠𝑖| > 0 

4:           index[𝑖] ← 1 

5:       else 

6:           index[𝑖] ← NIL 

7:   while index[𝑖] = NIL for 1 ≤ 𝑖 ≤ 𝑚 

8:       if ISVALIDTUPLE(𝑅, 𝑆, index) 

9:           return BUILDTUPLE(𝑆, index) 

10:     𝑘 ← GETEARLISTINDEX(𝑆, index) 

11:     if index[𝑘] < |𝑠𝑘| 
12:         index[𝑘] ← index[𝑘] + 1 

13:     else 

14:         index[𝑘] ← NIL 

15:  return (⊥, ⊥, … , ⊥) 

 
Figure 4. Pseudocode for FINDVALIDINPUTTUPLE. 

 

 
 

Figure 3. Runtime mechanism and entities for a fusion operator. 
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V. SPLASH TOOLSET AND RUNTIME  

In this section, we describe how the Splash toolset and 
runtime work by using a lane keeping assist system (LKAS) 
application as a work-through example. We also demonstrate 
the utility of the fusion operator. 

A.  LKAS using Splash 

We have designed LKAS based on an algorithm in [16]. It 
automatically adjusts the steering angle to keep the ego vehicle 

inside the detected lane. Figure 5 shows the top-level LKAS 
factory. Its inputs include the detected lane, the longitudinal 
velocity of the ego vehicle and the driver steering angle. Its 

output is the target steering angle of the vehicle. The LKAS 

factory consists of four sub-factories: (1) Lane Departure 

Detection, (2) Lane Center Estimation, (3) Lane 

Keeping Control and (4) Steering Angle 

Selection.  

To illustrate the internals of a factory, we choose the Lane 

Center Estimation factory from Figure 5 and draw it in 
Figure 6. The factory computes the curvature of the lane, the 
lateral offset between the ego vehicle and the center of the lane 
and the heading angle of the ego vehicle. To generate such 
outputs, it first checks if the left and the right boundary of the 
detected lane are clear enough to be used for estimation and 
selects one of the boundaries as a reference. It also estimates 
the curvature of the forward lane on which the ego vehicle runs 
over the next three seconds using the curvature computed 
through the currently detected lane. 

 
 

Figure 5.  Lane Keeping Assist System factory. 
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Figure 6. Lane Center Estimation factory. 
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Figure 7. Splash schematic editor. 

 

 



  

In Splash, programmers can annotate timing constraints 
with a processing component. In Figure 5, three source 
components have 200ms as their freshness constraint. The 
stream output port has 15HZ as its rate constraint. A fusion 
operator appears in Figure 6. It has 10ms as a correlation 
constraint. 

B.  Splash Toolset 

We provide Splash programmers with two development 
tools: a schematic editor and a code generator. 

Splash is a coordination language that is used to specify the 
interactions between components. A host language such as 
C++ is used to define subprograms inside a component [17]. 
Programmers use the schematic editor shown in Figure 7 to 
write a coordination program in Splash. Once a programmer 
finishes writing a coordination program, the schematic editor 
can produce a JSON file, which is used by the code generator. 

The JSON file for the lane center estimation factory 
is shown in Figure 8. It contains information about a factory 
and internal language constructs such as processing 
components, fusion operators, channels and stream 
input/output ports.  

 The code generator takes a JSON file produced by the 
schematic editor and outputs two types of files: an IDL 
(interface definition language) file [18] and template source 
code files written in C++. An IDL file describes the data type 

of each port interface. Figure 9 shows the IDL output for the 

Lane Center Estimation factory.  

We explain the template code using the Check Lane 

Strength processing component in the Lane Center 

Estimation factory as an example. As shown in Figure 10, 
the template code contains two segments: configuration (lines 
3-12) and execution (line 13). In the configuration segment, the 
processing component and its internal stream input/output port 
objects are declared (lines 3-7) and initialized (lines 8-10). The 
stream input/output port objects are attached to the processing 
component object (lines 11-12). In the execution segment, it 
waits for a data item to come in on the input port (line 13). 

When a data item arrives, the user function for the Check 

Lane Strength processing component is called (lines 16-
22). Programmers should fill in their own logic inside the user 
function (line 20). 

After filling in the template source code, programmers 
compile source code files and build an executable image using 

 
1: module LaneCenterEstimation 

2: { 

3:     struct data0 

4:     { 

5:         double curvature; 

6:         double curvature_derivative; 

7:         // … 

8:     }; 

9:     struct data1 

10:     { 
11:         bool detected; 
12:     }; 
13:     // … 
14: }; 

 

Figure 9. IDL output for Lane Center Estimation factory. 

 

 

1: int main(void) 

2: { 

3:     ProcessingComponent pc; 

4:     StreamInputPort 

5:     <LaneCenterEstimation::data0> sin0; 

6:     StreamOutputPort 

7:     <LaneCenterEstimation n::data1> sout0; 

8:     pc.initialize("CheckLaneStrength"); 

9:     sin0.initialize(); 

10:     sout0.initialize(30); 
11:     sin0.attach(&pc, "topic1"); 
12:     sout0.attach(&pc, "topic2"); 
13:     pc.run(); 
14: } 
15:  
16: template<typename t> void  
17: ProcessingComponent<t>::usr_func(t input) 
18: { 
19:     LaneCenterEstimation::data1 output 
20:     // Write user logic here 
21:     this->write(&output_data, "topic1"); 
22: } 

 

Figure 10. Template code for 

Check Lane Strength processing component. 

 

1: { 

2:    "name": "LaneCenterEstimation", 

3:    "ProcessingComponent": [ 

4:       { 

5:          "name": "CheckLaneStrength", 

6:          "stream_input_port": {"source_channel": "//@top_level_factory/@factory.0/@channel.0"}, 

7:          "stream_output_port": {"target_channel": //@top_level_factory/@factory.0/@channel.1"} 

8:       }, 

9:       … 

10:    ], 
11:    "FusionOperator": { 
12:       … 
13:    }, 
14:    "Channel": [ 
15:       … 
16:    ], 
17:    … 
18: }  

 

Figure 8. JSON output for Lane Center Estimation factory generated by the schematic editor. 

 

 



  

the compiler of the host language and the IDL preprocessor 
[18]. 

C. Splash Runtime 

The Splash runtime consists of two layers of software as 
shown in Figure 11. At the top layer is the Splash framework 
that consists of runtime libraries and modules written in the 
host language. The user-augmented template code uses the 
library provided by the Splash framework as shown in Figure 
10. The runtime libraries are divided into four subtypes 
according to their functions: (1) execution and communication, 
(2) fusion, (3) time management and (4) exception handling. 
The Splash framework also comes with three runtime modules: 
(1) the rate controller, (2) the mode manager and (3) the timing 
behavior monitor.  

At the bottom layer lies a runtime system based on DDS 
(data distribution services) and Linux. DDS is a well-known 
specification for real-time publish-subscribe communication 
[19]. We chose OpenSplice DDS because it is open source and 
implements the specification efficiently [20].  

VI. VALIDATING FUSION OPERATOR 

 In this section, we validate the effectiveness of the fusion 
operator by experimentally assessing the performance of the 
LKAS. We first describe the execution environment of our 
experiments and performance metrics. We then present the 
experimental results.  

A. Execution Environment and Metrics for Validation 

We simulated a driving environment with MathWorks’ 
Simulink for our experiments [16]. Specifically, we created a 
closed-loop simulator on top of two machines: one running the 
Splash implementation of LKAS and the other executing the 
driving simulator. The LKAS receives sensor values from the 
simulator and outputs a target steering wheel angle. The 

simulator in turn receives the steering wheel angle as its input. 
The software organization is shown in Figure 12. 

We chose two metrics to evaluate the performance of the 
LKAS: the maximum birthmark difference between data items 
in each firing tuple and the average runtime overhead of the 

fusion operator. The FINDVALIDINPUTTUPLE algorithm is 
responsible for most of the overhead. 

B. Experimental Results 

In our first experiment, we ran the LKAS program for 30 
seconds and measured the maximum birthmark differences 
between data items in firing tuples generated by the 

Estimate Preview Curvature fusion operator inside 

the Lane Center Estimation factory. Figure 13 shows 
the result. The maximum birthmark difference between data 
items in every firing tuple was always less than the fusion 
operator’s correlation constraint, 10 milliseconds. This result 
confirms that the fusion operator satisfied the annotated 
correlation constraint.  

In our second experiment, we measured the average 

running time of the FINDVALIDINPUTTUPLE algorithm. As 
expected, the runtime overhead was only 7 microseconds on 
average, which is negligible. 

VII. CONCLUSION 

In this paper, we presented the fusion operator of Splash 
along with its formal semantics. Due to the lack of proper 
linguistic support, programmers had to desperately resort to 
laborious and error-prone coding and tuning during the 
implementation of sensor fusion algorithms. Such an ad hoc 
practice leads to an undesirable code structure where sensor 
fusion code is deeply intertwined with managerial code that 
deals with tricky implementation details. This will seriously 
deteriorate code quality and jeopardize the correctness and 
functional safety of autonomous machines 

 The greatest benefit of the Splash approach is that 
programmers can graphically specify a triggering condition, a 
correlation constraint and a data prediction scheme via a well-
defined interface while the triggering mechanism and data 
selection mechanism are automatically synthesized by the 
Splash code generator, transparently from programmers. As a 

 

 
 

Figure 12. Runtime platform for LKAS and driving simulator. 
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Figure 11. Splash runtime architecture. 
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Figure 13. Maximum birthmark differences between data items 

in firing tuples. 
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result, programmers can be safely exempted from manual code 
development. 

We validated the utility and effectiveness of the fusion 
operator via its application to a lane keeping assist system. The 
result looks promising. 
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