



Abstract— We present the Splash programming framework to

support the effective implementation of multisensor data fusion.

Multisensor data fusion has been widely exploited in autonomous

machines since it outperforms algorithms using only a single

sensor, in terms of accuracy, reliability and robustness. Knowing

that developers have long been lacking programming language

support for multisensor data fusion, we offer a dedicated Splash

language construct along with formal semantics for multisensor

data fusion. Specifically, we analyze the structural

characteristics of multisensor data fusion algorithms and derive

technical issues that the language construct must tackle. We then

give a detailed account of the language construct along with its

formal semantics. Finally, we validate its utility and effectiveness

via its application to a lane keeping assist system.

I. INTRODUCTION

Multisensor data fusion, or sensor fusion, is a technique that
estimates information about the nearby situation using data
from multiple sensors [1], [2]. Sensor fusion-based algorithms
are widely used in autonomous machines since they are more
accurate, reliable and robust than algorithms using only a
single sensor. For example, an autonomous vehicle fuses
various sensor inputs such as cameras, LiDARs and radars for
localization, object detection and scene segmentation [3], [4],
[5].

As the application area of sensor fusion is rapidly
expanding, a wide variety of sensor fusion algorithms have
been actively designed and implemented into real systems such
as robots, drones and self-driving cars. Despite such popularity,
developers still face many technical difficulties in realizing
sensor fusion algorithms. Once programmers finish designing
a sensor fusion algorithm, they must translate the algorithm
into executable code, simultaneously considering various
implementation issues such as synchronization among multiple
sensor inputs, enforcing arbitrarily-formed, user-defined
triggering conditions, estimating missing sensor inputs and
handling timeout exceptions, to name a few.

Consequently, developers are forced to rely on ad hoc
practices in implementing sensor fusion algorithms. They try
to avoid the abovementioned issues by adopting unrealistic
assumptions. For example, they often assume that all sensor
inputs are perfectly synchronized. In reality, such a naive
assumption requires a non-trivial amount of implementation

* This research was supported by Institute for Information &

communications Technology Promotion (IITP) grant funded by the Korean

government (MSIT) (No. R7117-16-0164, Development of wide area driving

environment awareness and cooperative driving technology which are based

on V2X wireless communication).

Soonhyun Noh is with Department of Electrical and Computer
Engineering, Seoul National University, Seoul, Korea (e-mail:

shnoh@redwood.snu.ac.kr).

efforts later on, due to the unsynchronized behavior of sensors
in the final target system.

Such an ad hoc practice of programming sensor fusion
often demands laborious and error-prone coding and tuning,
and thus makes an underlying sensor fusion algorithm
intertwined with the code that deals with the abovementioned
issues. This will seriously jeopardize the correctness and
functional safety of autonomous machines. In turn, this calls
for a generalized programming framework with a well-defined
programming abstraction that can aid programmers in
implementing sensor fusion algorithms.

To address such an urgent demand, we present the Splash
approach to implementing sensor fusion. Splash is a graphical
programming framework we have developed to support
programmers in developing diverse applications for
autonomous machines [6]. The design goal behind Splash
consists of four components. First, Splash must provide an
effective programming abstraction that supports the real-time
stream processing and sensor fusion of an autonomous
machine. Second, it must enable programmers to specify
genuine, end-to-end timing constraints and monitor the
violation of such constraints at runtime. Third, it must provide
basic and yet crucial utilities which are exception handling and
mode change. Finally, during system implementation, it must
aid programmers with performance optimization and tuning.

Splash primarily relies on three key language semantics:
timing semantics, in-order delivery semantics and rate-
controlled data-driven stream processing semantics. These
semantics serve as a high-level programming abstraction that
can hide low-level details from programmers. With these
semantics, Splash can automatically generate code and set up
interfaces between system components, exempting users from
manually linking each part of the application. Splash also
monitors the generated interfaces at runtime, allowing users to
conveniently handle synchronization and exceptions.

More importantly, Splash provides a specific programming
abstraction that lays a foundation for supporting multisensor
data fusion in autonomous machines. It consists of a fusion
operator and sensor fusion semantics. We argue that this
abstraction can effectively simplify and thus expedite the

Cheonghwa Lee is with Department of Electrical and Computer

Engineering, Seoul National University, Seoul, Korea (e-mail:

chlee@redwood.snu.ac.kr).

Myungsun Kim is with the IT Convergence Engineering Department,

Hansung University, Seoul, Korea (e-mail: kmsjames@hansung.ac.kr).

Seongsoo Hong is with Department of Electrical and Computer
Engineering, Seoul National University, Seoul, Korea. (corresponding author

to provide phone: 82-2-880-8357; fax: 82-2-871-5974; e-mail:

sshong@redwood.snu.ac.kr).

Programming Language Support for Multisensor Data Fusion: The

Splash Approach*

Soonhyun Noh, Cheonghwa Lee, Myungsun Kim and Seongsoo Hong

software development of an autonomous machine by
significantly reducing the implementation complexity

There are many graphical programming frameworks
intended for real-time stream processing in both industry and
academia. Representative examples include RTMaps [7],
Simulink [8] and Ptolemy II [9]. Like Splash, these
frameworks are based on a data-flow process network model
and have extensions that satisfy engineering needs that arise
during production-quality system development. Unfortunately,
neither Simulink nor Ptolemy II provides support for
multisensor data fusion. Only RTMaps allows programmers to
specify the triggering condition of a sensor fusion algorithm in
a limited manner such that the algorithm is always invoked
whenever input is received from a designated sensor. To the
best of our knowledge, Splash is the first and the only
programming language that explicitly and extensively supports
multisensor data fusion.

We have implemented a whole development toolset and
runtime system to realize the Splash programming framework.
We have also written a lane keeping assist system (LKAS)
application using Splash to illustrate how the toolset and
runtime work. We have conducted experiments with the LKAS
application and measured several performance metrics to
validate the utility and effectiveness of the Splash
programming framework.

The remainder of this paper is organized as follows. Section
II gives s brief description of the Splash programming language
to help the readers understand the fusion operator. Section III
analyzes the existing sensor fusion algorithms and motivates
our approach. Section IV presents the fusion operator by way
of its formal semantics and runtime mechanism. Sections V
and VI show the Splash toolset and experimental results.
Finally, a conclusion follows in Section VII.

II. THE SPLASH PROGRAMMING LANGUAGE

To help readers in understanding our programming
abstraction, we give a brief overview of the Splash
programming language, starting with its underlying timing
semantics. We refer the interested readers to [6] for more
details of the Splash language constructs.

A. Timing Semantics and End-to-End Timing Constraints

Time is a first-class entity in Splash in the sense that the
creation time of a live data item is always preserved in its
timestamp, allowing it to be monitored in comparison with an
abstract global clock. We refer to the timestamp that carries the
creation time as a birthmark. If an intermediate process in a
Splash program generates a data item, it inherits the birthmark
from its oldest ancestor. To enforce and monitor various timing
constraints, Splash compares the birthmark of a data item with
the current system time.

Splash supports three types of end-to-end timing
constraints [10].

(1) A freshness constraint on a single sensor value: It
bounds the time it takes for a sensor value to flow
through the system. A sensor value will become
useless if it exceeds the freshness constraint since
sensor values get stale with time.

(2) A correlation constraint on multiple sensor values: It
limits the maximum time difference among a group of
distinct sensor values used for sensor fusion.

(3) A rate constraint on an output port of a process: It
limits the number of output data items produced per
second. A rate constraint is a soft real-time constraint
in the sense that the Splash runtime tries its best to
minimize the jitter between consecutive data items on
the same channel, but does not guarantee that the
stream output port is jitter-free.

Programmers can explicitly annotate these three types of
timing constraints at application development time via
Splash’s language constructs. The Splash runtime will raise an
exception if it detects the violation of an annotated timing
constraint at runtime.

B. Key Language Constructs of Splash

A Splash program is in essence a directed graph that
consists of processing nodes and edges between two processing
nodes. In the Splash terminology, a node and an edge are called
a component and a channel, respectively. A component in a
Splash program is either an atomic component or a composite
component. A composite component is also called a factory.
Atomic components are further classified into four different
types: (1) a processing component, (2) a source component, (3)
a sink component, and (4) a fusion operator.

A component has stream input ports and stream output
ports with the exception of the source and the sink component.
The stream output port of an upstream component is connected
to the stream input port of a downstream component and such
connection creates a channel.

The most important language construct in Splash is the
processing component since it performs computation on input
data items and produces transformed data items as an output.
Moreover, a processing component serves as a building block
for constructing a Splash program. Figure 1 shows the
graphical representation of a processing component with two
stream input ports and two stream output ports.

In order to exploit parallelism explicitly from the
underlying operating system and computing platform, Splash
offers a multithreaded process model for a processing
component. In this model, a processing component consists of
a group of Splash threads we call sthreads. A sthread is an
independent logical entity that executes inside a processing

Figure 1. Splash’s processsing component and associated sthreads.

Sthreads

Internal

Sthreads

Dedicated

Sthread

Dispatch Internal

Sthreads

Dedicated

Sthread

Dispatch

Mapped to the

First Input Port

Mapped to the

Second Input Port

component. Figure 1 shows a processing component that
resembles a concurrent server design pattern [11]. It has a
dedicated sthread for each port and several other internal
sthreads that serve as the worker threads.

Splash supports three types of ports: (1) stream
input/output ports for sending and receiving stream data, (2)
event input/output ports for delivering events and (3) mode
change input/output port for passing mode change signals.

Input and output port types are the subtypes of the port type.
Each port type is associated with one of three port interfaces:
stream, event and mode change port interface. The output port
and the input port connected by a channel must share the same
port interface.

Each port interface has a data type for data items it sends or
receives. A data type can be a primitive data type or a
composite data type. Splash supports five primitive data types:
(1) a Boolean type, (2) an integer type, (3) a real type, (4) a
character type and (5) a string type. Splash supports two
composite data types: (1) arrays and (2) records.

A channel is a delivery path for steam data. It is represented
with a solid line from a stream output port to a stream input
port. The Splash language guarantees that data items always go
through a channel in the order of their birthmarks. Such in-
order delivery semantics significantly reduces the amount of
work done at a downstream component. In order to store data
items on a channel until they are consumed by a downstream
component, a FIFO queue is used. In Splash, a FIFO queue is
on the stream input port of the downstream component instead
of the stream output port of the upstream component. The fan-
in of a channel is restricted to one, but the fan-out of a channel
can be greater than one. When a channel is connected to
multiple input ports, all data items generated from an output
port are replicated and enqueued into each of the FIFO queues
at the input ports of downstream components.

III. LIMITATIONS OF CURRENT PRACTICE OF PROGRAMMING

SENSOR FUSION

In this section, we analyze existing sensor fusion
algorithms and derive issues that developers must tackle to
implement a sensor fusion algorithm. We then motivate the
Splash approach to sensor fusion.

The research into sensor fusion can be classified into two
categories: measurement fusion and situation fusion.
Measurement fusion takes raw measurement data directly from
multiple sensors and uses them together to make an estimation
[3], [12], [13], [14]. In contrast, situation fusion independently
estimates each portion of the nearby situation using a
corresponding sensor and then integrates such portions to get
the final estimated situation [4], [5], [15].

For the lack of programming language support for sensor
fusion, the developers of the existing approaches had to deal
with the following critical issues on their own inside their
algorithms and even manually embed their solutions into their
sensor fusion code.

(1) A triggering condition that specifies which subset of
sensor inputs must be present to form a legitimate
combination of sensor values for fusion.

(2) A correlation constraint on multiple sensor values as
defined in Section 2.

(3) A triggering mechanism that dictates how to produces
a sensor value combination that satisfies the imposed
correlation constraint as well as the triggering
condition.

(4) A data selection mechanism that specifies which one
should be selected among multiple legitimate
combinations of sensor values.

(5) A data prediction scheme that computes an estimation
for one or more missing sensor inputs.

IV. SPLASH’S FUSION OPERATOR

In this section, we address the abovementioned five issues
with a language construct and associated formal semantics. We
name the language construct a fusion operator.

A fusion operator is an atomic Splash component that
merges multiple input data streams into a single output data
stream. Its most peculiar benefit is that programmers can
graphically specify a triggering condition, a correlation
constraint and a data prediction scheme via a well-defined
graphical and textual interface while the triggering mechanism
and data selection mechanism are automatically synthesized by
the Splash toolset, transparently from programmers.

Figure 2 shows the graphical representation of a fusion
operator. It has two stream input ports and one stream output
port along with a pop-up data template for specifying a fusion
rule, which consists of a triggering condition and a correlation
constraint. The fusion rule can significantly improve the
correctness of a sensor fusion algorithm since it forces
programmers to clearly enumerate all the elements of the
triggering condition.

Once a programmer specifies a fusion rule for a fusion
operator, the Splash runtime can automatically check if the
fusion rule is satisfied, generates a sensor input combination
that satisfies the fusion rule and finally outputs it. This way,
Splash can hide low-level details that arise during the system-
wide implementation of sensor fusion algorithms.

In this section, we formally present the semantics of the
fusion operator and explain its runtime mechanism that the
Splash code generator relies on.

A. The Semantics

A fusion operator with a set of 𝑚 stream input ports 𝑃 =
{𝑝1, 𝑝2, … , 𝑝𝑚} has a fusion rule 𝑅. A fusion rule 𝑅 is defined
as follows.

Definition 1. A fusion rule 𝑅 = (𝑀,𝑂, 𝜃, 𝑐) is a tuple where
𝑀 ⊆ 𝑃 is a set of mandatory ports and 𝑂 ⊆ 𝑃 is a set of

Figure 2. Graphical representation of a fusion operator.

optional ports where 𝑀 ∩ 𝑂 = ∅ and 𝑀 ∪ 𝑂 = 𝑃. Also, 𝜃 is a
threshold on the number of optional ports and 𝑐 is a correlation
constraint. Let (𝑑1, 𝑑2, … , 𝑑𝑚) be an input tuple where 𝑑𝑖 is
one of data items present in the port 𝑝𝑖’s input queue. If 𝑝𝑖 is
empty, 𝑑𝑖 has an empty data item, which is denoted by 𝑑𝑖 = ⊥.
We define 𝑛𝑂(𝑑1, 𝑑2, … , 𝑑𝑚) and 𝑛𝑀(𝑑1, 𝑑2, … , 𝑑𝑚) as the
numbers of non-empty optional ports and non-empty
mandatory ports, respectively. For 𝑅 to be satisfied, there must
exist at least one tuple (𝑑1, 𝑑2, … , 𝑑𝑚) that meets the following
three conditions.

(C1) For all ports 𝑝𝑖 ∈ 𝑀, 𝑑𝑖 is not ⊥.

(C2) 𝑛𝑂(𝑑1, 𝑑2, … , 𝑑𝑚) ≥ 𝜃.

(C3) For any two non-empty data items 𝑑𝑖 and 𝑑𝑗 ,

|𝑏(𝑑𝑖) − 𝑏(𝑑𝑗)| ≤ 𝑐𝑖 where 𝑏(𝑑) is the birthmark

of a data item 𝑑.

We refer to a tuple (𝑑1, 𝑑2, … , 𝑑𝑚) that satisfies all of the
above conditions as a firing tuple.

A fusion operator generates a firing tuple whenever the
fusion rule is satisfied. If multiple tuples are eligible, it chooses
one based on the following rules.

(R1) A fusion operator prefers a firing tuple that has the
smallest birthmark. By processing older data items
first, the Splash runtime can reduce freshness
constraint violations.

(R2) A fusion operator tries to select the firing tuple with
the largest 𝑛𝑂(𝑑1, 𝑑2, … , 𝑑𝑚). This is to provide the
fusion algorithm with information from as many
sensors as possible.

The fusion operator prioritizes (R1) over (R2).

The fusion operator additionally provides a timeout
mechanism for extrapolating missing sensor inputs. A fusion
operator gets timed out when no fusion rule has been satisfied
for the entire timeout interval. At the timeout, a fusion operator
performs the following steps with the extrapolation command
𝑒.

(1) It generates a partially firing tuple (𝑑1, 𝑑2, … , 𝑑𝑚)
that satisfies only condition (C3). If multiple tuples
are eligible, it chooses the one with the largest
𝑛𝑀(𝑑1, 𝑑2, … , 𝑑𝑚); and then ties are broken in favor
of larger 𝑛𝑂(𝑑1, 𝑑2, … , 𝑑𝑚).

(2) For all 𝑑𝑖 such that 𝑑𝑖 =⊥ and 𝑝𝑖 ∈ 𝑀 , it places 𝑒
for 𝑑𝑖.

(3) While 𝑛𝑂(𝑑1, 𝑑2, … , 𝑑𝑚) < 𝜃, for each 𝑑𝑖 such that
𝑑𝑖 =⊥ and 𝑝𝑖 ∈ 𝑂, it repeatedly places 𝑒 for 𝑑𝑖.

(4) It finally outputs (𝑑1, 𝑑2, … , 𝑑𝑚).

It is the programmers’ responsibility to handle the
extrapolation command. For example, they may choose to
either ignore 𝑒 or arrange an extrapolation handler inside the
processing component directly connected to the output of the
fusion operator.

B. The Runtime Mechanism

The runtime mechanism of a fusion operator is depicted in
Figure 3. Each stream input port of a fusion operator has an
input queue that stores data items in ascending order of their
birthmarks. A fusion operator is associated with a dedicated
sthread named a fusion sthread. When a data item is inserted
into any of input queues, a fusion sthread is invoked. It checks
if the fusion rule is satisfied. If so, it retrieves data items and
constructs a firing tuple and outputs it. It repeats until no firing
tuple is found. Then it gets blocked until a new data item comes
in.

The fusion sthread runs the FINDVALIDINPUTTUPLE
algorithm whose pseudocode is given in Figure 4. The inputs
of the algorithm are a fusion rule 𝑅 = (𝑀,𝑂, 𝜃, 𝑐) and a set
𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑚} where 𝑠𝑖 is a list of data items stored in 𝑝𝑖’s
input queue. Each list is sorted in ascending order of its data
items’ birthmarks. The algorithm returns a firing tuple
(𝑑1, 𝑑2, … , 𝑑𝑚) on success or (⊥, ⊥, … , ⊥), otherwise.

The FINDVALIDINPUTTUPLE algorithm always returns
the firing tuple with the smallest birthmark when there are
multiple eligible tuples. The runtime complexity of the
algorithm is 𝑂(𝑚2 ∙ 𝑙) where 𝑚 be the number of input ports
of the fusion operator and 𝑙 be the maximum input queue size.
This is clear because the while loop repeats at most 𝑚 ∙ 𝑙 times
and it takes 𝑂(𝑚) to run lines 7-9 and 𝑂(1) to run lines 10 and
11.

ALGORITHM FINDVALIDINPUTTUPLE

Input: A fusion rules 𝑅 = (𝑀,𝑂, 𝜃, 𝑐)
A set of lists of data items 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑚}

FINDVALIDINPUTTUPLE(𝑅, 𝑆)

1: let index[1 … 𝑚] be a new array

2: for 𝑖 = 1 to 𝑚

3: if 𝑝𝑖 ∈ 𝑀 ∪ 𝑂 and |𝑠𝑖| > 0

4: index[𝑖] ← 1

5: else

6: index[𝑖] ← NIL

7: while index[𝑖] = NIL for 1 ≤ 𝑖 ≤ 𝑚

8: if ISVALIDTUPLE(𝑅, 𝑆, index)

9: return BUILDTUPLE(𝑆, index)

10: 𝑘 ← GETEARLISTINDEX(𝑆, index)

11: if index[𝑘] < |𝑠𝑘|
12: index[𝑘] ← index[𝑘] + 1

13: else

14: index[𝑘] ← NIL

15: return (⊥, ⊥, … , ⊥)

Figure 4. Pseudocode for FINDVALIDINPUTTUPLE.

Figure 3. Runtime mechanism and entities for a fusion operator.

Input Queue

Input Queue

Fusion

Sthread

Stream

Input

Stream

Input

Stream

Output

V. SPLASH TOOLSET AND RUNTIME

In this section, we describe how the Splash toolset and
runtime work by using a lane keeping assist system (LKAS)
application as a work-through example. We also demonstrate
the utility of the fusion operator.

A. LKAS using Splash

We have designed LKAS based on an algorithm in [16]. It
automatically adjusts the steering angle to keep the ego vehicle

inside the detected lane. Figure 5 shows the top-level LKAS
factory. Its inputs include the detected lane, the longitudinal
velocity of the ego vehicle and the driver steering angle. Its

output is the target steering angle of the vehicle. The LKAS

factory consists of four sub-factories: (1) Lane Departure

Detection, (2) Lane Center Estimation, (3) Lane

Keeping Control and (4) Steering Angle

Selection.

To illustrate the internals of a factory, we choose the Lane

Center Estimation factory from Figure 5 and draw it in
Figure 6. The factory computes the curvature of the lane, the
lateral offset between the ego vehicle and the center of the lane
and the heading angle of the ego vehicle. To generate such
outputs, it first checks if the left and the right boundary of the
detected lane are clear enough to be used for estimation and
selects one of the boundaries as a reference. It also estimates
the curvature of the forward lane on which the ego vehicle runs
over the next three seconds using the curvature computed
through the currently detected lane.

Figure 5. Lane Keeping Assist System factory.

Figure 5.

LKAS

Lane
Detections

Longitudinal
Velocity

Driver
Steering
Angle

Lane Center
Estimation

Lane Departure
Detection

Lane Keeping Control Target
Steering
Angle

Steering Angle
Selection

LKASDriver

Source Component Attribute

Freshness Constraint 200ms

Source Component Attribute

Freshness Constraint 200ms

Source Component Attribute

Freshness Constraint 200ms

Output Port Attribute

Rate Constraint 15Hz

Figure 6. Lane Center Estimation factory.

Lane Center Estimation

Check Lane
Strength

Compute
Heading Angle

Compute
Lateral Offset

Compute
Curvature and

Its Derivative
Estimate
Preview

Curvature

Fusion Operator Attribute

Correlation Constraint 10ms

Figure 7. Splash schematic editor.

In Splash, programmers can annotate timing constraints
with a processing component. In Figure 5, three source
components have 200ms as their freshness constraint. The
stream output port has 15HZ as its rate constraint. A fusion
operator appears in Figure 6. It has 10ms as a correlation
constraint.

B. Splash Toolset

We provide Splash programmers with two development
tools: a schematic editor and a code generator.

Splash is a coordination language that is used to specify the
interactions between components. A host language such as
C++ is used to define subprograms inside a component [17].
Programmers use the schematic editor shown in Figure 7 to
write a coordination program in Splash. Once a programmer
finishes writing a coordination program, the schematic editor
can produce a JSON file, which is used by the code generator.

The JSON file for the lane center estimation factory
is shown in Figure 8. It contains information about a factory
and internal language constructs such as processing
components, fusion operators, channels and stream
input/output ports.

 The code generator takes a JSON file produced by the
schematic editor and outputs two types of files: an IDL
(interface definition language) file [18] and template source
code files written in C++. An IDL file describes the data type

of each port interface. Figure 9 shows the IDL output for the

Lane Center Estimation factory.

We explain the template code using the Check Lane

Strength processing component in the Lane Center

Estimation factory as an example. As shown in Figure 10,
the template code contains two segments: configuration (lines
3-12) and execution (line 13). In the configuration segment, the
processing component and its internal stream input/output port
objects are declared (lines 3-7) and initialized (lines 8-10). The
stream input/output port objects are attached to the processing
component object (lines 11-12). In the execution segment, it
waits for a data item to come in on the input port (line 13).

When a data item arrives, the user function for the Check

Lane Strength processing component is called (lines 16-
22). Programmers should fill in their own logic inside the user
function (line 20).

After filling in the template source code, programmers
compile source code files and build an executable image using

1: module LaneCenterEstimation

2: {

3: struct data0

4: {

5: double curvature;

6: double curvature_derivative;

7: // …

8: };

9: struct data1

10: {
11: bool detected;
12: };
13: // …
14: };

Figure 9. IDL output for Lane Center Estimation factory.

1: int main(void)

2: {

3: ProcessingComponent pc;

4: StreamInputPort

5: <LaneCenterEstimation::data0> sin0;

6: StreamOutputPort

7: <LaneCenterEstimation n::data1> sout0;

8: pc.initialize("CheckLaneStrength");

9: sin0.initialize();

10: sout0.initialize(30);
11: sin0.attach(&pc, "topic1");
12: sout0.attach(&pc, "topic2");
13: pc.run();
14: }
15:
16: template<typename t> void
17: ProcessingComponent<t>::usr_func(t input)
18: {
19: LaneCenterEstimation::data1 output
20: // Write user logic here
21: this->write(&output_data, "topic1");
22: }

Figure 10. Template code for

Check Lane Strength processing component.

1: {

2: "name": "LaneCenterEstimation",

3: "ProcessingComponent": [

4: {

5: "name": "CheckLaneStrength",

6: "stream_input_port": {"source_channel": "//@top_level_factory/@factory.0/@channel.0"},

7: "stream_output_port": {"target_channel": //@top_level_factory/@factory.0/@channel.1"}

8: },

9: …

10:],
11: "FusionOperator": {
12: …
13: },
14: "Channel": [
15: …
16:],
17: …
18: }

Figure 8. JSON output for Lane Center Estimation factory generated by the schematic editor.

the compiler of the host language and the IDL preprocessor
[18].

C. Splash Runtime

The Splash runtime consists of two layers of software as
shown in Figure 11. At the top layer is the Splash framework
that consists of runtime libraries and modules written in the
host language. The user-augmented template code uses the
library provided by the Splash framework as shown in Figure
10. The runtime libraries are divided into four subtypes
according to their functions: (1) execution and communication,
(2) fusion, (3) time management and (4) exception handling.
The Splash framework also comes with three runtime modules:
(1) the rate controller, (2) the mode manager and (3) the timing
behavior monitor.

At the bottom layer lies a runtime system based on DDS
(data distribution services) and Linux. DDS is a well-known
specification for real-time publish-subscribe communication
[19]. We chose OpenSplice DDS because it is open source and
implements the specification efficiently [20].

VI. VALIDATING FUSION OPERATOR

 In this section, we validate the effectiveness of the fusion
operator by experimentally assessing the performance of the
LKAS. We first describe the execution environment of our
experiments and performance metrics. We then present the
experimental results.

A. Execution Environment and Metrics for Validation

We simulated a driving environment with MathWorks’
Simulink for our experiments [16]. Specifically, we created a
closed-loop simulator on top of two machines: one running the
Splash implementation of LKAS and the other executing the
driving simulator. The LKAS receives sensor values from the
simulator and outputs a target steering wheel angle. The

simulator in turn receives the steering wheel angle as its input.
The software organization is shown in Figure 12.

We chose two metrics to evaluate the performance of the
LKAS: the maximum birthmark difference between data items
in each firing tuple and the average runtime overhead of the

fusion operator. The FINDVALIDINPUTTUPLE algorithm is
responsible for most of the overhead.

B. Experimental Results

In our first experiment, we ran the LKAS program for 30
seconds and measured the maximum birthmark differences
between data items in firing tuples generated by the

Estimate Preview Curvature fusion operator inside

the Lane Center Estimation factory. Figure 13 shows
the result. The maximum birthmark difference between data
items in every firing tuple was always less than the fusion
operator’s correlation constraint, 10 milliseconds. This result
confirms that the fusion operator satisfied the annotated
correlation constraint.

In our second experiment, we measured the average

running time of the FINDVALIDINPUTTUPLE algorithm. As
expected, the runtime overhead was only 7 microseconds on
average, which is negligible.

VII. CONCLUSION

In this paper, we presented the fusion operator of Splash
along with its formal semantics. Due to the lack of proper
linguistic support, programmers had to desperately resort to
laborious and error-prone coding and tuning during the
implementation of sensor fusion algorithms. Such an ad hoc
practice leads to an undesirable code structure where sensor
fusion code is deeply intertwined with managerial code that
deals with tricky implementation details. This will seriously
deteriorate code quality and jeopardize the correctness and
functional safety of autonomous machines

 The greatest benefit of the Splash approach is that
programmers can graphically specify a triggering condition, a
correlation constraint and a data prediction scheme via a well-
defined interface while the triggering mechanism and data
selection mechanism are automatically synthesized by the
Splash code generator, transparently from programmers. As a

Figure 12. Runtime platform for LKAS and driving simulator.

Linux 4.20 and
OpenSplice DDS 6.7

MATLAB Simulink 9.2

Driving
Simulator

LKAS

Target
Steering Angle

Sensor Values

Figure 11. Splash runtime architecture.

Hardware

Runtime
Systems

Linux Kernel

DDS (Data Distribution Service)

RTPS (Real-Time Publish-Subscribe)

DCPS (Data-Centric Publish-Subscribe)

Splash
Framework

Runtime Libraries Runtime Modules

Fusion
Time

Mgmt.
Exception
Handling

Rate
Controller

Exec. and
Comm.

Timing
Behavior
Monitor

Mode
Manager

Splash Applications

Figure 13. Maximum birthmark differences between data items

in firing tuples.

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30

M
a

x
 B

ir
th

m
a

rk
 D

if
fe

re
n

ce
 (m

s)

Time (sec)

result, programmers can be safely exempted from manual code
development.

We validated the utility and effectiveness of the fusion
operator via its application to a lane keeping assist system. The
result looks promising.

REFERENCES

[1] B. Khaleghi, A. Khamis, F. O. Karray, and S. N. Razavi, “Multisensor

data fusion: A review of the state-of-the-art,” Inf. Fusion, vol. 14, no.

1, pp. 28–44, Jan. 2013.
[2] Hugh Durrant-Whyte, “Multi-Sensor Data Fusion,” The University of

Sydney, 2001.

[3] H. Cho, Y.-W. Seo, B. V. K. V. Kumar, and R. R. Rajkumar, “A
multi-sensor fusion system for moving object detection and tracking in

urban driving environments,” in 2014 IEEE International Conference

on Robotics and Automation (ICRA), 2014, pp. 1836–1843.
[4] R. Zhang, S. A. Candra, K. Vetter, and A. Zakhor, “Sensor fusion for

semantic segmentation of urban scenes,” in 2015 IEEE International

Conference on Robotics and Automation (ICRA), 2015, vol. 2015-
June, no. June, pp. 1850–1857.

[5] R. O. Chavez-Garcia and O. Aycard, “Multiple Sensor Fusion and

Classification for Moving Object Detection and Tracking,” IEEE
Trans. Intell. Transp. Syst., vol. 17, no. 2, pp. 525–534, Feb. 2016.

[6] S. Noh and S. Hong, “Splash: a graphical programming framework for

an autonomous machine,” International Conference on Ubiquitous
Robots (UR), submitted for publication.

[7] N. d. Lac, C. Delaunay and G. Michel, “RTMaps: real time,

multisensor, advanced prototyping software,” National Workshop on
Control Architectures of Robots, 2008.

[8] “Simulink,” [Online]. Available:

https://www.mathworks.com/help/simulink/index.html.
[9] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S.

Neuendorffer, S. Sachs and Y. Xiong, “Taming heterogeneity - the

Ptolemy approach,” Proceedings of the IEEE, 2003.
[10] R. Gerber, S. Hong and M. Saksena, “Guaranteeing real-time

requirements with resource-based calibration of periodic processes,”

IEEE Transactions on Software Engineering, 1995.
[11] C. Breshears, “The art of concurrency,” O'Reilly, 2009.

[12] L. Drolet, F. Michaud, and J. Cote, “Adaptable sensor fusion using

multiple Kalman filters,” in Proceedings. 2000 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2000), 2000, vol.

2, pp. 1434–1439.

[13] Feng Liu, J. Sparbert, and C. Stiller, “IMMPDA vehicle tracking
system using asynchronous sensor fusion of radar and vision,” in 2008

IEEE Intelligent Vehicles Symposium, 2008, pp. 168–173.

[14] P. Geneva, K. Eckenhoff, and G. Huang, “Asynchronous Multi-Sensor
Fusion for 3D Mapping and Localization,” in 2018 IEEE International

Conference on Robotics and Automation (ICRA), 2018, pp. 1–6.

[15] N. Floudas, A. Polychronopoulos, O. Aycard, J. Burlet, and M.
Ahrholdt, “High Level Sensor Data Fusion Approaches For Object

Recognition In Road Environment,” in 2007 IEEE Intelligent Vehicles

Symposium, 2007, pp. 136–141.
[16] “Lane keeping assist with lane detection,” [Online]. Available:

https://www.mathworks.com/help/mpc/ug/lane-keeping-assist-with-

lane-detection.html
[17] E. A. Lee and T. M. Parks, “Dataflow process networks,” Proceedings

of the IEEE, 1995.

[18] Adlink, “Vortex OpenSplice IDL preprocessor guide,” 2018.
[19] OMG, “Data distribution service (DDS) version 1.4,” 2015.

[20] “Vortex OpenSplice,” [Online]. Available:
https://github.com/ADLINK-IST/opensplice.

