
 

VOLUME XX, 2017  

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000. 

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number 

Memory-Aware Fair-Share Scheduling for 
Improved Performance Isolation in the Linux 
Kernel 

Jungho Kim1, Philkyue Shin2, Myungsun Kim3 and Seongsoo Hong1,2 

1Department of Transdisciplinary Studies, Seoul National University, Seoul 08826, South Korea 
2Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, South Korea 
3Electrical Division of IT Convergence Engineering, Hansung University, Seoul 02864, South Korea 

Corresponding author: Seongsoo Hong (sshong@redwood.snu.ac.kr) 

This work is supported by the Samsung Electronics’ university R&D program. 

ABSTRACT   Performance interference between QoS and best-effort applications is getting more aggravated 

as data-intensive applications are rapidly and widely spreading in recently emerging computing systems. 

While the completely fair scheduler (CFS) of the Linux kernel has been extensively used to support 

performance isolation in a multitasking environment, it falls short of addressing memory-related interference 

due to memory access contention and insufficient cache coverage. Though quite a few memory-aware 

performance isolation mechanisms have been proposed in the literature, many of them rely on hardware-

based solutions, inflexible resource management or ineffective execution throttling, which makes it difficult 

for them to be used in widely deployed operating systems like Linux running on a COTS SoC platform. We 

propose a memory-aware fair-share scheduling algorithm that can make QoS applications less susceptible to 

memory-related interference from other co-running applications. Our algorithm carefully separates the 

genuine memory-related stall from a running task’s CPU cycles and compensates the task for the memory-

related interference so that the task gets the desired share of CPU before it is too late. The proposed approach 

is adaptive, effective and efficient in the sense that it does not rely on any static allocation or partitioning of 

memory hardware resources and improves the performance of QoS applications with only a negligible 

runtime overhead. Moreover, it is a software-only solution that can be easily integrated into the kernel 

scheduler with only minimal modification to the kernel. We implement our algorithm into the CFS of Linux 

and name the end result mCFS. We show the utility and effectiveness of the approach via extensive 

experiments. 

INDEX TERMS Memory-related interference, backend stall cycle, operating system, Linux, CFS 

I. INTRODUCTION 

Data-intensive applications, most noticeably deep learning-
based applications, are rapidly and widely spreading in 
recently emerging computing systems. Services provided by 
such applications are often human-perceivable and subject to 
quality-of-service (QoS) requirements. As such, system 
developers are tasked with ensuring sufficient computing 
performance for their applications within limited cost, size, 
weight and power budgets of the underlying system [1][2]. 

Between the QoS and best-effort applications, there exists 
unavoidable performance interference since they share 
various computing resources in the system. Such interference 
to QoS applications is malicious since it can indefinitely 
increase their response time and thus prevent them from 

meeting the imposed QoS requirements. Diverse performance 
isolation techniques have been proposed in the literature and 
then widely used as a viable weapon against QoS applications’ 
performance degradation. 

To address the need for performance isolation in extensive 
use cases of industry, Linux has offered the completely fair 
scheduler (CFS) since its 2.6.23 kernel release [3][4][5][6]. 
The CFS has been successfully exploited as a fair-share 
scheduler in numerous Linux installations ranging from huge 
datacenter servers to desktops and to small handheld devices 
such as smartphones. Despite such a significant contribution 
of CFS over a decade, the Linux kernel has started to show its 
limitations in dealing with recently emerging application 
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workloads that generate massive memory traffic. Our 
approach is motivated by such limitations of the Linux kernel. 

While the CFS is capable of fairly distributing CPU cycles 
among running tasks proportionally to the tasks’ weights, it 
cannot take into account interference that the running tasks 
experience due to memory contention and insufficient cache 
coverage. This is because CFS assumes that absolute physical 
performance achieved by a task is proportional to the number 
of CPU cycles allocated to the task. It thus simply attempts to 
equalize the weighted performance of runnable tasks in the 
system. In the presence of memory access contention and 
cache misses, however, the execution of a task may stall and 
waste CPU cycles for nothing. Unless the kernel scheduler 
takes into account such stall cycles, the underlying runtime 
system cannot provide exact performance isolation for QoS 
applications. 

In this paper, we propose a memory-aware fair-share 
scheduling algorithm that can make QoS applications less 
susceptible to memory-related interference from other co-
running applications in the system. We also seamlessly 
integrate the algorithm into CFS with minimal modification 
to the Linux kernel. We name the end result memory-aware 
CFS (mCFS). 

Memory-aware performance isolation is a difficult 
problem to formulate since modern microarchitecture has 
become too complex to be fully analyzed. Moreover, it is 
tricky to accurately measure the amount of genuine memory-
related stall that a given application experiences. Observe that 
an application’s memory-related CPU stall is ascribed to not 
only memory-related interference from other applications but 
also the idiosyncrasy of the application’s code itself. For 
instance, an application demonstrating a sequential data 
access pattern may incur many cache misses during execution, 
even without cache contention. In this case, it is fair to say 
that the performance isolation mechanism should not 
compensate the application for such intrinsic CPU stall. As 
such, a performance isolation algorithm must be able to 
distinguish between the genuine memory-related stall and the 
intrinsic stall. 

To compute the amount of the genuine memory-related 
stall, mCFS uses a runtime formula we derive via qualitative 
analysis of the underlying microarchitecture and quantitative 
analysis of the execution of diverse applications. In this 
formula, we model the genuine memory-related stall using 
easily measurable entities such as stall cycles at the backend 
of the pipeline of the underlying microarchitecture. We duly 
note that the backend stall is caused by cache misses and 
memory access contention as well as data dependencies and 
internal resource contention between micro-operations inside 
the pipeline. To single out the genuine memory-related stall 
from the entire backend stall, the formula subtracts the 
estimated intrinsic stall from the measured backend stall. 

To estimate the amount of intrinsic memory-related stall, 
we introduce the average intrinsic backend stall rate (IBSR) 
of a given application. The average IBSR is a rate of the 
backend stall cycles of an application over a long period of 
time when the application is running alone in an isolated 
manner. It is a characteristic value that represents the memory 

access behavior of a given application. The average IBSR can 
be computed offline on a per-application basis. A backend 
stall cycle count can be easily measured via a performance 
monitoring unit commonly provided by modern SoCs. 

For a given time interval [𝑡1, 𝑡2] , the formula for 
computing the genuine memory-related stall cycle count 
𝑏𝑖

𝑚(𝑡1, 𝑡2) is given as follows where 𝑏𝑖(𝑡1, 𝑡2) is the backend 
stall cycle count: 

𝑏𝑖
𝑚(𝑡1, 𝑡2) = 𝑏𝑖(𝑡1, 𝑡2) − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝐼𝐵𝑆𝑅 ∙ (𝑡2 − 𝑡1) 

We experimentally validate the formula in Sections IV and 
VI.  

The crux of mCFS lies in “memory-aware virtual runtime 
calculation” for the task scheduler. The virtual runtime of a 
task is defined as the task’s cumulative CPU time inversely 
scaled by its weight. In CFS, tasks at the runqueue of a CPU 
core compete for the core and eventually the task with the 
smallest virtual runtime wins it. When computing the virtual 
runtime of a running task, the original CFS considers the CPU 
time that the task physically used, without considering the 
CPU stall time. Since such a notion of virtual runtime cannot 
capture the memory-related interference that a task receives, 
we propose to redefine a task’s virtual runtime in a memory-
aware manner and apply the new notion to the CFS. 

As the first step in memory-aware virtual runtime 
calculation, mCFS performs a computation we name  CPU 
time actualization. In this step, the genuine memory-related 
stall time of a task is deducted from the task’s physical CPU 
time. Since a task is always given actualized CPU time no 
greater than the original CPU time, the task is made to run 
more frequently by mCFS until it receives a sufficient amount 
of actualized CPU time. 

In the next step, mCFS scales the actualized CPU time 
according to the relative performance of the core hosting the 
task. This step is needed to take into account the dynamic 
voltage and frequency scaling (DVFS) of modern SoCs [7][8]. 
Since DVFS changes the operating frequencies of cores at 
runtime, a task would demonstrate performance variability 
without the performance scaling of this step. 

In the final step, mCFS computes virtual runtime from the 
actualized scaled CPU time derived in the previous steps. To 
do so, mCFS divides a task’s actualized scaled CPU time by 
the task’s weight. 

The benefits of mCFS are three-fold. First, mCFS is 
adaptive. Since it does not rely on static memory resource 
allocation or partitioning for performance isolation, it can 
adaptively react to changes in resource demands without 
wasting valuable resources. Second, mCFS is effective. Our 
experiment demonstrates that mCFS achieves less slowdown 
or more performance improvement for the YOLO face 
detection application by up to 67% than the conventional CFS, 
depending on the mix of the co-running applications. It 
yielded a similar performance enhancement with benchmark 
programs as well. Third, mCFS is efficient since it does not 
employ any costly runtime mechanisms such as CPU idling 
or request throttling. It incurs only a negligible runtime 
overhead of 0.091%. 
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We have implemented the proposed approach into Linux 
kernel 4.9.108 on top of the NVIDIA Jetson AGX Xavier 
platform. Since the Xavier series SoC is particularly designed 
for performance-hogging, embedded deep learning-based 
applications, performance isolation is one of the highly 
desired features of the underlying runtime system.  We show 
the effectiveness of mCFS through extensive experiments and 
measurements with SPEC 2017 benchmark suites. We make 
the source code for the mCFS kernel patch, the workload 
generators and the launcher command as well as running 
scripts publicly available so that anybody can evaluate or use 
mCFS freely [9]. 

The remainder of the paper is organized as follows. 
Section II surveys existing approaches to memory-aware 
performance isolation on multicore architecture and 
compares the representative techniques with mCFS. Section 
III provides the readers with the technical background of 
mCFS to help them in understanding the proposed approach.  
Section IV defines a measure to estimate the genuine 
memory-related stall and validates its effectiveness.  Section 
V formally states our problem to solve and then defines the 
notion of memory-aware fairness for multicore architecture. 
Section VI explains the proposed solution approach along 
with its kernel-level implementation. Section VII reports on 
the experimental evaluation. Finally, Section VIII concludes 
this paper. 

II. RELATED WORK 

The performance interference problem in a computing system 
has been particularly pronounced for memory resources as 
more and more data-intensive applications are running on a 
heterogeneous multicore system possessing graphics 
processing units (GPU) and neural processing units (NPUs) 
[10][11]. Many studies have been conducted to improve the 
performance of latency-sensitive applications and/or to 
reduce their performance variability in the presence of 
memory-related interference. The existing approaches can be 
classified into spatial memory resource isolation and 
temporal memory resource isolation, depending on how 
memory resources are isolated. 

Spatial memory resource isolation is a technique to 
prevent performance interference among multiple co-running 
applications by physically partitioning memory hardware 
resources used by the applications. Application-aware 
memory channel partitioning in [12] mitigates the problem of 
memory access interference by mapping to different memory 
channels the data of applications that are likely to severely 
interfere with each other. Similarly, the approach in [13] 
allocates a specific subset of DRAM banks to a core using a 
bank-level partition mechanism based on page-coloring 
supported by the underlying operating system. Cache 
partitioning is one of the most representative techniques for 
spatial performance isolation. Kpart in [14] is a hybrid cache 
partitioning and sharing technique that offsets the 
ineffectiveness of the well-known utility-based way-
partitioning. 

Clearly, spatial memory resource isolation is a preventive 
measure to lower memory-related interference in a predictive 
manner but it tends to incur frequent resource over-

provisioning. Some memory resources may not be fully 
utilized and even wasted if applications are not distributed 
adaptively and fairly among the resource partitions. Besides, 
memory resource contention cannot be completely removed 
if a partition is assigned to multiple applications that have to 
run concurrently. 

Temporal memory resource isolation is a technique to 
prevent interference by distinguishing the time when 
applications use cache and memory hardware resources. This 
technique can be further divided into prevention-based and 
compensation-based, depending on whether to avoid or allow 
memory-related interference in advance. 

In prevention-based temporal memory resource isolation, 
the cores that are expected to incur an unfair amount of 
memory resource contention get restricted to run tasks. The 
rate-based approach in [15] throttles down the processing rate 
of a core if it is running a low-priority task and its execution 
is interfering with a high priority task through memory 
resource contention. It considers clock modulation and 
frequency scaling as a rate throttling mechanism. MemGuard 
[16] tries to make the average memory access latency of a 
task no larger than when running on a dedicated memory 
system that processes memory requests at a given service rate. 
To do so, it assigns a specific memory access quota to each 
core in every regulation period and restrains the core having 
depleted its quota from running for the rest of the period. The 
approach in [17] estimates the amount of memory access 
interference that the critical task group is experiencing, by 
using the number of outstanding requests in the request buffer 
at the memory controller. Based on such estimation, it 
throttles down or up memory requests generated by the 
normal task group. 

Like the spatial memory resource isolation, prevention-
based temporal memory resource isolation is a preventive 
technique. Unless the unfairness is measured correctly and 
updated adaptively, it can restrict tasks unnecessarily. Also, it 
may deteriorate the overall system performance when 
memory request throttling is used for the rate control. 

In compensation-based temporal memory resource 
isolation, the tasks that failed to make a desired amount of 
progress get compensated for their tardiness. The source 
throttling technique in [18] estimates unfairness in the shared 
memory system using a task’s slowdown and throttles down 
cores causing interference to the most slowed down core by 
limiting the number of requests they can inject into the system 
and the frequency at which they do. The fair-progress process 
scheduling technique in [19] forces the equally weighted 
tasks to have the same amount of slowdown when they run 
concurrently. It uses the same measure for a task’s slowdown 
as the source throttling technique [18] to monitor the progress 
of all tasks at runtime. It allocates more CPU time to the task 
that experienced a slowdown. The cache-fair algorithm in [20] 
increases a task’s CPU time slice if the task executes fewer 
instructions per cycle than it would under fair cache allocation. 
The algorithm claims that two tasks are cache-friendly if they 
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experience similar miss rates when running together. It 
estimates a task’s fair miss rate and derives its fair cache 
allocation by fitting experimental data into a linear 
approximation function. Dike [21] is a contention-aware 
scheduler for heterogeneous multicore systems. It divides 
execution time into fixed-length quanta. Dike measures the 
memory access rate of every task during every quantum and 
then predicts the potential effects of migrating tasks onto 
different cores. Dike attempts to achieve fairness among the 
tasks by moving them back and forth from the maximum 
frequency core to the minimum frequency core. 

Our approach belongs to compensation-based temporal 
memory resource isolation. In designing mCFS, we ruled out 
the other two techniques due to their drawbacks we analyzed 
above. The approaches in [20] and [21] come closest to our 
approach.  The cache-fair scheduler [20] compensates a tardy 
task by extending its time slice but the notion of cache-
fairness does not scale up for a system having performance-
asymmetric multicore architecture. Dike [21] makes use of 
task migration between cores to balance tasks’ progress 
whereas mCFS relies on task scheduling. Unfortunately, task 
migration can be very costly when it incurs cache line refills. 
Dike addresses the performance asymmetry of a multicore 
system like mCFS but it works with only two frequency levels. 

III. BACKGROUND 

The approach proposed in this paper is designed for and 
implemented into the Linux kernel running on top of the 
NVIDIA Jetson AGX Xavier platform [22]. We explain the 

architectural elements and performance monitoring unit of 
the Xavier series SoC and the CFS of Linux. 

A. NVIDIA JETSON AGX XAVIER PLATFORM 

The NVIDIA Xavier series SoC includes a CPU complex and 
a GPU as shown in Figure 1. The CPU complex and GPU 
share only the main memory. The Xavier series SoC provides 
performance monitoring units (PMU), which are classified 
into per-core PMUs and uncore PMUs. Table I lists the 
selected per-core PMU events [22][23]. Using them, 
programmers can effectively measure valuable performance 
metrics of the underlying SoC platform including the number 
of instructions per cycle (IPC), the number of cache misses 
and the frontend and the backend stall cycle count. 

Our approach uses only the two events, CPU_CYCLES 

and STALL_BACKEND among PMU events in Table I. Thus, 
it can be easily implemented on any micro architectures 
including various Arm-based SoCs and Intel processors that 
provide the same or similar performance counters. 

B. CLASSIFICATION OF CPU CYCLES 

During the execution of a program, CPU often wastes a 
nontrivial number of valuable CPU cycles without 
performing any useful work [24]. Such a CPU cycle is 
referred to as either a frontend stall cycle or a backend stall 
cycle. They are named after the frontend and backend of the 
pipeline in modern superscalar, out-of-order 
microarchitecture such as the Arm v8.2 Carmel CPU core [22] 
depicted in Figure 2. 

The frontend consists of an instruction fetcher and an 
instruction decoder. Obviously, the frontend fetches 
instructions and decodes them into a series of micro-
operations to issue them to the backend. The frontend utilizes 
the branch predictor, instruction cache (I-cache) and 
instruction TLB (I-TLB) to expedite feeding micro-
operations to the backend. 

The backend includes a micro-operation scheduler, 
various execution units, register files, a data cache (D-cache) 
and a data TLB (D-TLB). The backend schedules micro-
operations buffered at the issued micro-operation queue and 
executes them in an order consistent with data and control 

 
FIGURE 1. CPU complex and GPU of NVIDIA Jetson AGX Xavier platform. 
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TABLE I 

SELECTED PMUV3 PER-CORE PMU EVENTS 
Event 

Number 
Event mnemonic Description 

0x01 L1I_Cache_REFILL Level-1 instruction cache refill 

0x03 L1D_Cache_REFILL Level-1 data cache refill 

0x04 L1D_Cache Level-1 data cache access 

0x08 INST_RETIRED Instruction architecturally executed 

0x11 CPU_CYCLES CPU cycle 

0x14 L1I_Cache Level-1 instruction cache access 

0x23 STALL_FRONTEND No operation issued due to the 

frontend 

0x24 STALL_BACKEND No operation issued due to the 

backend 
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dependencies derived from the original code. It finally writes 
the results back to the register files and D-cache [24].  

I-cache misses, I-TLB misses and branch misprediction 
can make CPU stall at the beginning of the pipeline. This 
phenomenon is called frontend stall. Similarly, lack of 
required resources, such as execution units and memory 
resources inside the pipeline prevents issued micro-
operations from retiring. This is referred to as backend stall. 

Unlike the frontend and backend stall cycles, a running 
task is spending useful cycles where micro-operations are 
retired from the pipeline. Such a cycle is called a retired 
instruction cycle.  The frontend stall counts every CPU cycle 
on which no micro-operation is issued since there are no 
micro-operations available to issue from the frontend [23]. 
The backend stall counts each CPU cycle on which no micro-
operation is issued since the backend is unable to retire any 
micro-operations [23].  

C. CFS OF THE LINUX KERNEL 

The CFS is the primary task scheduler of the Linux kernel 

since its 2.6.23 release. CFS distinguishes itself from its 

predecessors in that its objective is achieving fairness among 

multiple runnable tasks. In Linux, the fairness of a task 

scheduler is defined by the property that the physical 

execution times of tasks should be proportional to their 

weight values [3][4][25]. As such, the weight of a task is an 

important task attribute for CFS. In order to allow users to 

specify a weight value for each task in a way consistent with 

conventional Linux kernels, CFS makes use of nice values. In 

conventional Linux, nice values were used to denote task 

priorities. In CFS, a nice value is mapped to a specific weight 

value. Nice values range over [-20, 19] where a smaller value 

corresponds to a larger weight. 

As a measure of fairness among tasks, CFS introduces a 

notion of virtual runtime. The virtual runtime of a task is 

defined as the task’s cumulative runtime inversely scaled by 

its weight. If virtual runtimes are the same among all the tasks 

at a given point in time, then the tasks are given the exactly 

fair amount of CPU time at that time. Clearly, CFS tries to 

schedule runnable tasks such that they have virtual runtimes 

only with small differences.  

Let 𝑤0 be the weight value of nice value 0 and 𝑤𝑖  be the 

weight value of task 𝜏𝑖. Suppose 𝑝𝑖(𝑡) denotes the amount of 

the cumulative physical runtime of task 𝜏𝑖 at time t. In CFS, 

the virtual runtime 𝑣𝑖(𝑡)  of task 𝜏𝑖  at time t is defined as 

bellow: 

 𝑣𝑖(𝑡) =
𝑤0

𝑤𝑖
× 𝑝𝑖(𝑡) 

The smaller a task’s virtual runtime is, the more the task needs 
to be scheduled. 

In order to enforce fair-share scheduling at a reasonable 

run-time cost, CFS also makes use of the notion of a time slice. 

A time slice is associated with a task and defined as a time 

interval for which the task is allowed to run without being 

preempted. In CFS, the length of a task’s time slice is 

proportional to its weight. The time slice 𝑠𝑖  of a task 𝜏𝑖  is 

computed by 

 

𝑠𝑖 =
𝑤0

∑ 𝑤𝑗𝜏𝑗∈𝑅
× 𝑃 

where 𝑅 is the set of runnable tasks, 𝑤𝑖  is the weight of 𝜏𝑖 

and 𝑃 is the constant for a given workload. In Linux, 𝑃 is 

given as below: 

 

𝑃 = {
𝑠𝑦𝑠𝑐𝑡𝑙_𝑠𝑐ℎ𝑒𝑑_𝑙𝑎𝑡𝑒𝑛𝑐𝑦
𝑚𝑖𝑛_𝑔𝑟𝑎𝑛𝑢𝑙𝑎𝑟𝑖𝑡𝑦 × 𝑛

    
if 𝑛 < 𝑛𝑟_𝑙𝑎𝑡𝑒𝑛𝑐𝑦,

otherwise
 

where n is the number of tasks and 𝑠𝑦𝑠𝑐𝑡𝑙_𝑠𝑐ℎ𝑒𝑑_𝑙𝑎𝑡𝑒𝑛𝑐𝑦, 

𝑛𝑟_𝑙𝑎𝑡𝑒𝑛𝑐𝑦  and 𝑚𝑖𝑛_𝑔𝑟𝑎𝑛𝑢𝑙𝑎𝑟𝑖𝑡𝑦  are system-wide 

constants whose values are 6, 8 and 0.75, respectively, in the 

current Linux implementation. 

CFS is a symmetric multiprocessor scheduling algorithm 

with a distributed runqueue structure. The Linux kernel 

maintains a dedicated runqueue for each core and lets a CFS 

instance of a core make scheduling decisions independently 

of each other. A runqueue for a core keeps a list of its runnable 

tasks. These tasks are sorted according to the non-decreasing 

order of their virtual runtimes. When the currently running 

task runs out of it time slice, CFS selects the first task in the 

runqueue and dispatches it for execution. 

IV. DEFINING AND VALIDATING A MEASURE FOR 
MEMORY-RELATED INTERFERENCE 

It is a challenging mission to come up with a memory-aware 
fair-share scheduling framework that is practically 
implementable in a kernel. In fact, it is often tricky to quantify 
an accurate measure for memory-related interference, 
particularly in a multitasking environment on a complex 
multicore processor. Even if we have a well-defined measure, 
it is sometimes infeasible to instrument it due to the limited 
performance monitoring capabilities of an underlying SoC. 

 
FIGURE 2. Frontend and backend of the pipeline in the Carmel core. 
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To overcome these hurdles in our approach, we define a 
measure that is calculable with only existing PMU hardware 
at a low runtime cost. To come up with the measure, we 
qualitatively analyze backend stall cycles appearing in the 
modern CPU architecture, particularly in the Xavier series 
SoC. We then justify the proposed measure in a quantitative 
manner via experiments.  

A. CLASSIFYING BACKEND STALL CYCLES AND 
DEFINING THE MEASURE 

As described in the previous section, the backend of a pipeline 
in the modern SoC architecture executes arithmetic micro-
operations with either the integer execute unit or the FP 
execute unit. It also processes memory micro-operations 
using the load/store unit that exploits the memory hierarchy 
consisting of the L1, L2, L3 cache and memory. The situation 
where the backend has to wait for nothing can be divided into 
four cases depending on the reason: 

1) The backend has to wait for the arithmetic unit required 

by the current micro-operation to be released if the unit 

is being occupied by another micro-operation. A long 

latency divide micro-operation tends to cause such 

serialization. Stall in this case usually lasts only for a 

couple of CPU cycles [24]. 

2) It has to wait until operands stored in registers become 

available in the presence of data dependency. Stall in this 

case is short in time as well, only for a few CPU cycles 

[24]. 

3) It has to wait for D-cache misses to be dealt with even if 

the task is running alone in the system. Stall in this case 

lasts for a nontrivial number of CPU cycles due to a huge 

gap between CPU cycle time and memory access time 

[24]. 

4) It has to wait for the handling of additional D-cache 

misses that arise since the running task is sharing the 

cache with other co-running tasks in the system. When 

severe memory access contention among the cores is 

coupled with excessive D-cache misses, stall in this case 

can be significantly increased. 

Backend stall belonging to the first three cases results 
from intra-task attributes such as the data dependencies and 
intrinsic cache behavior of the task’s code. We refer to such 
backend stall as intrinsic backend stall. Backend stall 
belonging to the last case occurs due to memory-related 
interference among multiple co-running tasks in the system. 
We call such backend stall genuine memory-related backend 
stall.  

By definition, the whole backend stall is the sum of 
intrinsic and genuine memory-related backend stall. We 
formally define them as follows:  

Definition 1. Let 𝑏𝑖
∗(𝑡1, 𝑡2)  and 𝑏𝑖

𝑚(𝑡1, 𝑡2)  be the intrinsic 
and genuine memory-related backend stall cycle counts of a 
task 𝜏𝑖 in a time interval [𝑡1, 𝑡2], respectively. By definition, 
the total backend stall cycle count of 𝜏𝑖  in [𝑡1, 𝑡2]  is as 
follows: 

𝑏𝑖(𝑡1, 𝑡2) = 𝑏𝑖
∗(𝑡1, 𝑡2) + 𝑏𝑖

𝑚(𝑡1, 𝑡2) 

In our approach, we propose to use 𝑏𝑖
𝑚(𝑡1, 𝑡2)  as a 

measure of the memory-related interference of 𝜏𝑖 in [𝑡1, 𝑡2]. 
In what follows, we show that 𝑏𝑖

𝑚(𝑡1, 𝑡2) serves correctly in 
our memory-aware fair-share scheduling.  

B. EXPERIMENTAL VALIDATION OF THE MEASURE 

We validate the effectiveness of the proposed measure 
through experiments with highly memory-intensive 
benchmark programs selected from the 43 benchmarks of 

SPEC CPU2017 [26][27]. They are 619.lbm_s, 

620.omnetpp_s and 623.xalancbmk_s. We ran the 
benchmarks on the NVIDIA Jetson AGX Xavier platform. 
Table II gives the detailed specification of the hardware and 
the system software that constitute the experimental platform. 
During the experiments, we cautiously controlled factors that 
might affect the memory access patterns. For instance, we 
fixed the operating frequencies of the CPU, GPU and EMC 
(external memory controller) throughout the experiments. 

The test variable of the experiments was the amount of 
memory-related interference and the evaluation metric was 
the genuine memory-related backend stall cycle count during 
the entire execution of each benchmark. The amount of 
memory-related interference is affected by the number of 
cache misses and the memory access time in handling each 
cache miss. As such, the memory-related interference was 
generated by the workload consisting of a cache contention 
generator and a memory access contention generator. 

The cache contention generator is a simple C program that 
is designed to incur cache line refill for each load/store 
instruction. We controlled the amount of cache contention by 
stuffing the different number of arithmetic instructions 
between two consecutive bundles of load/store instructions. 
We made five test instances: no cache contention generator 
running and four cache contention generator instances with 
ratios of load/store instructions and arithmetic instructions 
being 1:15, 1:10, 1:5 and 1:1, respectively. 

The memory access contention generator is a 
multithreaded CUDA program. Each CUDA thread 
repeatedly performed memory reads of 8MB and memory 
writes of 4MB in turn. We varied the number of memory 
requests by changing the number of CUDA threads.  

To create a discrete value space for the test variable that 
ranges over various amounts of memory-related interference, 

TABLE II 

SPECIFICATION OF NVIDIA JETSON AGX XAVIER 

Classification Description 

HW 

CPU 8-core ARM v8.2 Carmel 64-bit CPU, 

8MB L2, 4MB L3 cache 

GPU 512-core Volta GPU with Tensor cores 

Memory 16GB 256-Bit LPDDR4x, 137GB/s 

Storage 32GB eMMC 5.1 

SW 

Kernel Linux 4.9.108 

OS Ubuntu 18.04.1 LTS 

SW package JetPack 4.1.1 

C library GNU C library 2.27 

GPGPU library CUDA 10.0 

C compiler GNU Arm compiler 7.4.0 

GPGPU compiler CUDA v10.0.117 
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we made two memory access contention cases for each cache 
contention instance: no memory access contention via zero 
CUDA thread and the maximum memory access contention 
via 64 CUDA threads. More than 64 CUDA threads did not 
make a noticeable increase in memory access contention due 
to memory bandwidth saturation. As a result, our test variable 
has ten unique combinations. 

For each experimental run, we pinned a benchmark 
program on core 7 and allocated an instance of the cache 
contention generator onto each core so that they could cover 
L1, L2 and L3 cache contention altogether. We ran the 
memory access contention generator on the GPU. Among 
per-core PMU events shown in Table I, we counted the 

STALL_BACKEND event in each experimental run. 

Our experiments were conducted in two steps. We first 
measured the intrinsic backend stall of each benchmark 
program by running it alone until termination and then 
counting the backend stall cycles. By definition, this count 
was the amount of the intrinsic backend stall of the 
benchmark. Next, we ran each benchmark to completion 
while imposing different amounts of memory-related 
interference as stated above. We then counted backend stall 
cycles in each experimental run. 

Figure 3 shows the experimental results. The horizontal 
axis denotes the amount of memory interference expressed by 
the test variable space. The vertical axis is the number of 
backend stall cycles, which is decomposed into an intrinsic 
backend stall cycle count below and a genuine memory-
related backend stall cycle count above. The experimental 
results clearly show that the genuine memory-related backend 
stall cycle count increases with memory-related interference. 
Also, it is observed that cache contention has a greater impact 
on memory-related interference than memory access 
contention, which is consistent with our intuition. 

V. PROBLM FORMULATION 

In this section, we model our target system and define the 
notion of memory-aware fairness. We then formulate the 
problem at hand. We summarize frequently used notations in 
Table III. 

A. TARGET SYSTEM AND TASK MODEL 

Our target system is a symmetric multicore processor that 

consists of a set 𝑃  of identical cores. The target system 

employs dynamic voltage and frequency scaling (DVFS) for 

reducing power consumption. To work under DVFS, mCFS 

TABLE III 

NOTATIONS 

Symbol Definition 

𝑃  Set of cores 

𝐹  Set of allowable operating frequency of a core 

𝑟(𝑓)  Relative performance of frequency 𝑓 ∈ 𝐹 

𝑄  Set of QoS tasks 

𝐵  Set of best-effort tasks 

𝜏𝑖  Task in 𝑄 ∪ 𝐵 

𝑤𝑖  Weight of task 𝜏𝑖 

𝑐𝑖(𝑡1, 𝑡2)  Measured CPU time of task 𝜏𝑖 in [𝑡1, 𝑡2] 

𝑐𝑖
𝑎(𝑡1, 𝑡2)  Actualized CPU time of task 𝜏𝑖 in [𝑡1, 𝑡2] 

𝑐𝑖
𝑎𝑠(𝑡1, 𝑡2)  Actualized scaled CPU time of task 𝜏𝑖 in [𝑡1, 𝑡2] 

𝑛𝑖(𝑡1, 𝑡2)  Measured CPU cycles of task 𝜏𝑖 in [𝑡1, 𝑡2] 

𝑏𝑖(𝑡1, 𝑡2)  Measured backend stall cycles of task 𝜏𝑖 in [𝑡1, 𝑡2] 

𝑏𝑖
∗(𝑡1, 𝑡2)  Intrinsic backend stall cycles of task 𝜏𝑖 in [𝑡1, 𝑡2] 

𝑏𝑖
𝑚(𝑡1, 𝑡2)  Genuine memory-related backend stall cycles of task 𝜏𝑖 in [𝑡1, 𝑡2] 

𝑣𝑖(𝑡1, 𝑡2)  Actualized scaled virtual runtime (ASVR) of task 𝜏𝑖 in [𝑡1, 𝑡2] 

|𝑣𝑖,𝑗(𝑡)|  ASVR difference between 𝜏𝑖 and 𝜏𝑗 in [0, 𝑡] 

𝑣𝑚𝑎𝑥(𝑡)  The biggest |𝑣𝑖,𝑗(𝑡)| in [0, 𝑡] 

𝛾𝑖(𝑓, 𝑡1, 𝑡2)  IBSR of task 𝜏𝑖 in [𝑡1, 𝑡2] uner a given operating frequency 𝑓 ∈ 𝐹 

𝛾𝑖̅(𝑓)  Average IBSR of task 𝜏𝑖 uner a given operating frequency 𝑓 ∈ 𝐹 

 

 

 
FIGURE 3. Relationship between memory-related interference and backend stall cycle count. 
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must take into account the changing performance of each core 

when computing the virtual runtime of a task running on that 

core. To aid in this process, we use a frequency-to-relative 

performance mapping 𝑟: 𝐹 → 𝑅 where 𝐹 is a set of allowable 

frequencies of the target system and 𝑅  is a set of relative 

performance values. The relative performance 𝑟(𝑓) is simply 

the speedup factor against the base performance 𝑟(𝑓𝑚𝑖𝑛) 

where 𝑓𝑚𝑖𝑛  is the minimum frequency in 𝐹 . We statically 

build the mapping table containing an entry 𝑟(𝑓)  for each 

𝑓 ∈ 𝐹, as explained in [5][6]. Figure 4 shows such a mapping 

table in graph form.  

We present the application model. An application is a 

multithreaded Linux process. In Linux, a user-level thread 

becomes a task that is a kernel-level entity scheduled by the 

kernel. An application can be either a QoS application or a 

best-effort application, based on the programmer’s decision. 

By definition, all threads belonging to a QoS application 

become QoS tasks. A dedicated launcher process is used to 

fork a process from a QoS application’s executable code, 

which will be explained in the next section. A best-effort 

application is an ordinary Linux application and does not 

require any special treatment in mCFS. 

We define the task model. The target system runs a set of 
𝑛 tasks 𝑄 ∪ 𝐵 = {𝜏1, 𝜏2, … , 𝜏𝑛} where 𝑄 is a set of QoS tasks 
and 𝐵  is a set of best-effort tasks. The system developer 
classifies a task as stated above. QoS tasks are processed by 
mCFS while best-effort tasks are handled by the conventional 
CFS. The rationale behind this decision is that QoS tasks must 
be compensated for genuine memory-related interference at 
the cost of the degraded performance of best-effort tasks. 
CPU bandwidth allocation among tasks is a zero-sum game 
anyway and it is semantically correct that best-effort tasks 
become victims. 

A task 𝜏𝑖 in 𝑄 ∪ 𝐵 is associated with a fixed weight value 
denoted by 𝑤𝑖 . Recall that the virtual runtime of a task is 
defined as the task’s cumulative runtime inversely scaled by 
its weight in CFS. CFS uses virtual runtime as a measure of 
fairness. 

In order to incorporate memory-aware fairness into CFS, 
we extend our previous work on scaled virtual runtime in 
[5][6]. Specifically, we define actualized scaled virtual 
runtime (ASVR). To do so, we first introduce the notion of 

actualized CPU time of a task 𝜏𝑖  for a given time interval 
[𝑡1, 𝑡2]. We then scale the actualized CPU time according to 
the operating frequency in that time interval. Finally, we 
compute the virtual runtime by dividing the actualized scaled 
CPU time by its weight. Using the virtual runtime, we finally 
define the memory-aware fairness and formulate the problem 
at hand. 

We let 𝑐𝑖(𝑡1, 𝑡2)  and 𝑛𝑖(𝑡1, 𝑡2) denote the CPU time and 
the CPU cycle count of 𝜏𝑖 in [𝑡1, 𝑡2], respectively. 

Definition 2. Actualized CPU time of a task 𝜏𝑖 at the end of 
a time interval [𝑡1, 𝑡2] is 

𝑐𝑖
𝑎(𝑡1, 𝑡2) = {

𝑐𝑖(𝑡1, 𝑡2) ∙ (1 −
𝑏𝑖

𝑚(𝑡1, 𝑡2)

𝑛𝑖(𝑡1, 𝑡2)
)             𝑖𝑓 𝜏𝑖 ∈ 𝑄

 𝑐𝑖(𝑡1, 𝑡2)                                               𝑖𝑓 𝜏𝑖 ∈ 𝐵

 

The actualized CPU time of a best-effort task is the same 
as the CPU time since best-effort tasks are not compensated 
for any memory-related interference. The actualized CPU 
time of a QoS task is defined as the CPU time deducted by 
the stall time due to genuine memory-related interference. 
Recall that 𝑏𝑖

𝑚(𝑡1, 𝑡2)  is the genuine memory-related 
backend stall cycle count in [𝑡1, 𝑡2]. 

We now scale the actualized CPU time according to the 
operating frequency as follows: 

Definition 3. Actualized scaled CPU time of 𝜏𝑖  with an 
operating frequency 𝑓 is 

𝑐𝑖
𝑎𝑠(𝑡1, 𝑡2) = 𝑐𝑖

𝑎(𝑡1, 𝑡2) ∙ 𝑟(𝑓) 

We in turn define the actualized scaled virtual runtime as 
follows: 

Definition 4. Actualized scaled virtual runtime (ASVR) of 𝜏𝑖 
is 

𝑣𝑖(𝑡1, 𝑡2) =
1

𝑤𝑖

∙ 𝑐𝑖
𝑎𝑠(𝑡1, 𝑡2) 

It is trivial that equalizing the ASVRs of tasks in the 
system achieves perfect memory-aware fairness for the target 
multicore system. 

Definition 5. A memory-aware perfectly fair scheduler for a 
multicore system is one for which 

𝑐𝑖
𝑎𝑠(0, 𝑡)

𝑐𝑗
𝑎𝑠(0, 𝑡)

=
𝑤𝑖

𝑤𝑗

 

holds for any tasks 𝜏𝑖 and 𝜏𝑗 for time interval [0, 𝑡]. 

B. PROBLEM STATEMENT 

The problem we address in this paper is to minimize ASVR 
difference between any pair of tasks from 𝑄 ∪ 𝐵. Let 𝑣𝑖,𝑗(𝑡) 

be the ASVR difference between two tasks 𝜏𝑖 and 𝜏𝑗 for time 

interval [0, 𝑡] . We define the maximum ASVR difference 
𝑣𝑚𝑎𝑥(𝑡) as below. 

𝑣𝑚𝑎𝑥(𝑡) = 𝑚𝑎𝑥
𝜏𝑖,𝜏𝑗∈𝑄∪𝐵

|𝑣𝑖,𝑗(𝑡)| 

 
FIGURE 4. Relative performance for each available frequency. 
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Obviously, the objective of our problem is to reduce 
𝑣𝑚𝑎𝑥(𝑡). 

VI. MEMORY-AWARE COMPLETELY FAIR 
SCHEDULING 

We propose to incorporate the memory-aware fairness into 
the Linux kernel to protect QoS tasks from the memory-
related interference of other co-running tasks. We aim to 
extend the CFS with minimal modifications possible and with 
only existing hardware support from the target processor. 

A. THE mCFS ARCHITECTURE 

We present the kernel-level architecture of mCFS. It consists 
of the CFS task scheduler, the ASVR updater and two 
supporting kernel components as depicted in Figure 5. We 
engineer the CFS task scheduler very carefully so that it 
remains untouched except the virtual runtime updater. The 
ASVR updater replaces the original virtual runtime updater. 
It is invoked at every scheduling tick of the Linux kernel. On 
each invocation, the five components inside it get executed in 
tandem and calculate the actualized scaled virtual runtime of 
the currently running task. In doing so, the ASVR updater 

refers to the CPUFreq governor to obtain the current 
operating frequency of the core and reads in some PMU 
counters via the PMU driver. 

Among the five components of the ASVR updater, the 
memory-related interference estimator deserves an in-depth 
explanation while others do not due to their self-explanatory 
definitions in the previous section. 

B. ESTIMATING MEMORY-RELATED INTERFERENCE 

Let 𝑇𝑠 be the scheduling tick interval size. On the occurrence 
of a scheduling tick at a time point 𝑡, the memory-related 
interference estimator calculates 𝑏𝑖

𝑚(𝑡 − 𝑇𝑠, 𝑡) according to 
Definition 1 re-written below. 

 𝑏𝑖
𝑚(𝑡 − 𝑇𝑠, 𝑡) = 𝑏𝑖(𝑡 − 𝑇𝑠, 𝑡) − 𝑏𝑖

∗(𝑡 − 𝑇𝑠, 𝑡) (1) 

To be practically feasible, the memory-related 
interference estimator must be able to obtain the values of 
𝑏𝑖(𝑡 − 𝑇𝑠, 𝑡)  and 𝑏𝑖

∗(𝑡 − 𝑇𝑠 , 𝑡)  with only existing PMU 
support. It can easily get 𝑏𝑖(𝑡 − 𝑇𝑠 , 𝑡)  by monitoring the 

STALL_BACKEND event of the PMU but cannot 

immediately obtain 𝑏𝑖
∗(𝑡 − 𝑇𝑠, 𝑡). Thus, we convert 𝑏𝑖

∗ into a 
combination of measurable entities. 

We start by defining the intrinsic backend stall rate (IBSR) 
of 𝜏𝑖 in [𝑡1, 𝑡2] under a given operating frequency 𝑓 ∈ 𝐹. A 
formal definition is given as follows. 

Definition 6. Under an operating frequency 𝑓 ∈ 𝐹 , the 
intrinsic backend stall rate for a running task 𝜏𝑖 in [𝑡1, 𝑡2] is 

 
𝛾𝑖(𝑓, 𝑡1, 𝑡2) =

𝑏𝑖
∗(𝑡1, 𝑡2)

𝑡2 − 𝑡1

 (2) 

Eq. (2) implies that we can compute 𝑏𝑖
∗(𝑡1, 𝑡2) simply by 

knowing 𝛾𝑖(𝑓, 𝑡1, 𝑡2) . However, it is not feasible to pre-
calculate all the values of 𝛾𝑖(𝑓, 𝑡1, 𝑡2) for any arbitrary time 
intervals [𝑡1, 𝑡2]. We thus propose to use the average IBSR as 
an approximation.  We define the average IBSR as follows. 

Definition 7. The average IBSR of 𝜏𝑖  is defined with 
sufficiently large 𝑇 as follows: 

 𝛾𝑖̅(𝑓) = 𝛾𝑖(𝑓, 0, 𝑇) (3) 

If we rewrite Eq. (2) for 𝑏𝑖
∗(𝑡1, 𝑡2)  and substitute 

𝛾𝑖(𝑓, 𝑡1, 𝑡2) with its approximation 𝛾𝑖̅(𝑓), we have 

 𝑏𝑖
∗(𝑡1, 𝑡2) ≈ 𝛾𝑖̅(𝑓) ∙ (𝑡2 − 𝑡1) (4) 

Therefore, the memory-related interference estimator 
ends up with calculating 𝑏𝑖

𝑚(𝑡 − 𝑇𝑠 , 𝑡) using the following 
equation at each scheduling tick occurring at time 𝑡. 

 𝑏𝑖
𝑚(𝑡 − 𝑇𝑠, 𝑡) = 𝑏𝑖(𝑡 − 𝑇𝑠, 𝑡) − 𝛾𝑖̅(𝑓) ∙ 𝑇𝑠 (5) 

As a task runs for tens of thousands of scheduling tick 
intervals, the memory-related interference estimator adds up 
the intrinsic backend stall cycle count 𝑏𝑖

∗(𝑡 − 𝑇𝑠, 𝑡) of each 
scheduling tick interval as many times. For 𝑘 scheduling ticks, 
the approximate value for the accumulated intrinsic backend 
stall cycle count simply becomes 𝑘 ∙ 𝛾𝑖̅(𝑓) ∙ 𝑇𝑠. We argue that 
𝑘 ∙ 𝛾𝑖̅(𝑓) ∙ 𝑇𝑠  gets sufficiently close to the actual intrinsic 
backend stall cycle count if 𝑘 is sufficiently large. We justify 
this argument. 

We first show via an experiment that for a sufficiently 
large time interval [𝑡1, 𝑡2], 𝛾𝑖̅(𝑓) gets closer to 𝛾𝑖(𝑓, 𝑡1, 𝑡2) 
with sufficiently large 𝑇 ≤ 𝑡2 − 𝑡1 as stated below: 

 𝛾𝑖(𝑓, 𝑡1, 𝑡2) ≈ 𝛾𝑖̅(𝑓) (6) 

In our experiment for supporting Eq. (6), we pinned one 

of our benchmarks, 619.lbm_s on core 7 and ran it alone 
without any memory-related interference. In this case, the 

 
FIGURE 5. The mCFS architecture. 
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backend stall becomes the intrinsic backend stall, i.e., 
𝑏𝑖(𝑡1, 𝑡2) = 𝑏𝑖

∗(𝑡1, 𝑡2). We ran the benchmark program for 
1,300s. We iteratively measured the backend stall cycle count 
for every 1ms while it was running. We then repeatedly 
calculated numerous IBSR values 𝛾𝑖(𝑓, 𝑡3, 𝑡3 + 𝑇)  by 
changing 𝑡3 and 𝑇. We also computed the IBSR for the entire 
running time, 𝛾𝑖(𝑓, 0, 1300) . To analyze how close 
𝛾𝑖(𝑓, 𝑡3, 𝑡3 + 𝑇) is to 𝛾𝑖(𝑓, 0, 1300), we compute the mean 
absolute percentage error between them. Figure 6 shows the 
result. As 𝑇  gets closer to the benchmark’s entire running 
time, the mean absolute percentage error gets reduced. When 
𝑇 is above 128s, the mean absolute percentage error becomes 
sufficiently small, below 0.1%. We observed the same 
behavior with the other eight benchmarks. 

In CFS, a task runs non-preemptively for every 
scheduling tick interval given to the task. We consider 𝑘 
scheduling tick intervals [𝑡𝑗, 𝑡𝑗 + 𝑇𝑠] for 1 ≤ 𝑗 ≤ 𝑘 for which 

a task 𝜏𝑖 has been running. If 𝑘 is sufficiently large such that 
𝑘 ∙ 𝑇𝑠 ≥ 𝑇, then the following holds true according to Eq. (4). 

 

∑ 𝑏𝑖
∗(𝑡𝑗, 𝑡𝑗 + 𝑇𝑠)

𝑘

𝑗=1

= 𝛾𝑖(𝑓, 0, 𝑘 ∙ 𝑇𝑠)  ∙ 𝑘 ∙ 𝑇𝑠  

 ≈ 𝛾𝑖̅(𝑓) ∙ 𝑘 ∙ 𝑇𝑠 (7) 

Thus, Eq. (7) proves our argument.  

We suggest a guideline for selecting 𝑇 for 𝛾𝑖̅(𝑓) using the 
mean absolute percentage error. Users are first asked to 
choose a threshold for the mean absolute percentage error. 
Then they can choose any 𝑇 that satisfies the threshold. In our 
experiment, we chose 1% as the threshold and we selected 
128s for 𝑇. As a rule of thumb, any value greater than 100s 
suffices. 

C. INTERFACING WITH USERS 

Since only QoS tasks are protected from memory-related 
interference via memory-aware fair-share scheduling, mCFS 
needs to differentiate QoS applications from best-effort 
applications. In our approach, we offer a dedicated launcher 
process that programmers use to let mCFS know about their 
QoS applications. The pseudo code for the launcher process 
is given in Figure 7. The launcher enabled us to incorporate 
mCFS into the Linux kernel without modifying any existing 
system call interfaces. 

The launcher accepts three arguments: the path name of a 
QoS application’s executable file, its parameters and a list of 

its average IBSR values. The launcher works in two steps. 
First, it stores the average IBSR values into the file named 

/proc/pid/ibsr via the write() system call where 

“pid” is the launcher’s process id. We associate with the 

write() system call a callback function that copies the 

average IBSR values into the task_struct instance of the 
launcher process. 

Second, the launcher forks and executes the QoS 

application. We slightly modified the fork() system call 
code so that the average IBSR values stored in the parent 

process are copied into the task_struct instance of the 
child process. Since a best-effort task has the default value of 
zero for the average IBSRs, mCFS can easily distinguish 
between a QoS task and a best-effort task. 

D. INTERACTING WITH KERNEL COMPONENTS 

As shown in Figure 5, mCFS closely interacts with two kernel 

components: the PMU driver and the CPUFreq governor. 
We explain such interactions in detail. 

mCFS accesses the core’s operating frequency that is 

independently maintained by the CPUFreq governor. 
Among the various governor types supported in Linux, we 

consider the schedutil governor for mCFS since it is the 

default CPUFreq governor that was newly added to Linux 
v4.7 [8]. Other governor types can be easily integrated into 
mCFS in a similar manner. 

The schedutil governor collects a core’s utilization 
statistics periodically at each scheduling tick. Additionally, it 
gathers the same information upon the occurrences of the 
sporadic events that can affect CPU utilization, such as task 
creation and termination. 

 According to Definition 3, the actualized scaled virtual 
runtime of a task 𝜏𝑖 is defined over a time interval [𝑡1, 𝑡2] and 
computed at the end of that interval. This requires that the 
frequency of the core hosting 𝜏𝑖be constant throughout the 
interval. In the mCFS implementation, [𝑡1, 𝑡2]  exactly 

corresponds to a scheduling tick interval. The schedutil 
governor assures this requirement since the governor adjusts 
a core’s frequency mostly at tick boundaries. The effect of 
sporadic adjustments is negligible since they occur very 
rarely compared to the periodic adjustments. 

  

 
FIGURE 6. Relationship between 𝑻 and accuracy of average IBSR. 

int main(int argc, void *argv[]) { 

// Pass the list of IBSRs to kernel 

fd = fopen("/proc/pid/ibsr", "w+"); 

fwrite(argv[2], 1, strlen(argv[2]), fd); 

fclose(fd); 

// Construct a command to run the QoS app 

// Run the command 

system(app_cmd); 

} 

FIGURE 7. Pseudo code for the launcher process. 
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VII. EXPERIMENTAL EVALUATION 

In this section, we report on the experiments that we 
performed to demonstrate the effectiveness of mCFS. We 
first describe the experimental setup and then show the 
experimental results along with our analysis. 

A. EXPERIMENTAL SETUP 

We used the same experimental setup as in Section IV. As 
QoS applications, we used five benchmark programs from 
SPEC CPU2017 as well as the YOLO face detection program 

[28]. The five benchmark programs are 619.lbm_s, 

623.xalancbmk_s, 602.gcc_s, 

600.perlbench_s and 648.exchange2_s. Table IV 
shows one of the important characteristics of the benchmark 
programs: the degree of memory intensiveness of each 
benchmark, with the most memory intensive at the top.  

Each benchmark program ran to completion three times 
with three different configurations, respectively: (1) running 
with no memory-related interference, (2) running under the 
conventional CFS with memory-related interference and (3) 
running under mCFS with memory-related interference. We 
measured their response times. 

 We used two test variables for these experiments. First, 
we varied the ratio of the QoS applications and the best-effort 
applications in the workloads, from 1:1 to 1:5. Second, we 
varied the QoS applications while running the same best-
effort application. 

We used two performance metrics to analyze the gain and 
the cost incurred by mCFS. We measured the percentile 
performance improvement of a QoS application on mCFS 
over on CFS. Similarly, we measured the percentile 
performance degradation of a best-effort application on 
mCFS over on CFS. 

In our experiments, we pinned the QoS applications and 
best-effort applications on core 7 so that all of them became 
subject to per-core fair-share scheduling. To generate 
memory-related interference, we ran the cache contention 
generators on the remaining cores and the memory contention 
generator on the GPU. 

B. EXPERIMENTAL RESULTS 

We conducted three experiments to observe and analyze the 
performance improvement of the QoS applications under 
mCFS. We first ran the five benchmark programs one by one 
as a QoS application with the best-effort application 

commonly being 648.exchange2_s. The experimental 
result is given in Figure 8. The performance improvement of 
mCFS over CFS ranges from 10% to 43% and increases with 
the memory intensiveness of the QoS applications. This result 
states that mCFS adaptively improves performance as needed. 
The more memory traffic, the greater the performance 
improvement.  

In the second experiment, we varied the ratio of the QoS 
applications and the best-effort applications from 1:1 to 1:5. 

We used 623.xalancbmk_s and 648.exchange2_s 
as the QoS application and best-effort application, 
respectively. We ran multiple instances of 

648.exchange2_s to increase the proportion of the best-

effort application. Figure 9 (a) shows the result. As the 
amount of the best-effort workload increases, mCFS yields 
greater performance improvement for the QoS application. It 
shows the resilience of mCFS in the sense that mCFS works 
more aggressively as the best-effort workload increases. We 
repeated the same experiment with the YOLO face detection 

             
          (a) 623.xalancbmk_s as QoS applications                                                   (b) YOLO face detection as QoS applications 

FIGURE 9. Performance improvement of QoS applications on mCFS according to the ratio of QoS applications and best-effort applications. 

 
FIGURE 8. Performance improvement of QoS applications on mCFS 

according to memory intensiveness of QoS applications. 

TABLE IV 

MEMORY INTENSIVENESS OF BENCHMARKS 

Benchmark 
Percentage of Memory Access Cycle Count 

Compared to Total CPU Cycle Count 

619.lbm_s 11.831% 

623.xalancbmk_s 5.645% 

602.gcc_s 3.303% 

600.perlbench_s 0.455% 

648.exchange2_s 0.014% 

 



 

VOLUME XX, 2017  

program. The result given in Figure 9 (b) is consistent with 
that in Figure 9 (a). 

We performed two additional experiments to assess the 
performance degradation that mCFS caused to the best-effort 
applications. The first experiment is dual to the experiment of 
Figure 8. We ran the five benchmark programs one by one as 

a QoS application while running 648.exchange2_s as a 
best-effort application. We measured the performance 
degradation of the best-effort application. Figure 10 shows 
that the performance degradation ranges from 5% to 38% and 
increases with the memory intensiveness of the QoS 
applications. This result is consistent with that of Figure 8. 

 The next experiment is dual to the experiment of Figure 
9 (a). We varied the ratio of the QoS applications and the best-
effort applications from 1:1 to 1:5. We measured the 
performance degradation of the best-effort application. The 
result is given in Figure 11. As the amount of the best-effort 
workload increases, the performance degradation of each 
application decreases. This is because multiple best-effort 
applications share the burden. 

C. EVALUATING RUN-TIME OVERHEAD 

From the architecture of mCFS, it is obvious that only the 
ASVR updater incurs an extra runtime overhead to the kernel 
scheduler. We thus measured the execution time of the ASVR 

updater while running the benchmark 619.lbm_s. As a 
result of the measurement, we obtained 3,624ns. Since the 
ASVR updater is invoked every 4ms by the scheduling tick 
handler, the extra runtime overhead is only 0.091%. 

VIII. CONCLUSION 

We presented a memory-aware fair-share scheduling 
algorithm that makes QoS applications less susceptible to 
memory-related interference from other co-running 
applications. Our algorithm dynamically separates the 
genuine memory-related stall from a running task’s backend 
stall cycles and compensates the task for the memory-related 
interference so that the task gets the desired share of CPU 
before it is too late. 

 To compute the genuine memory-related stall amount of 
a task, our algorithm first defines the average intrinsic 
backend stall rate of a task. It estimates the amount of the 
task’s intrinsic backend stall using the IBSR and deducts it 
from the task’s entire backend stall amount. Our algorithm 
actualizes the CPU time of a task by decreasing the task’s 

physical CPU time according to the estimated memory-
related interference. To take into account performance 
asymmetry among cores caused by inevitable DVFS, our 
algorithm scales the actualized CPU time according to the 
relative performance of the core hosting the task. The 
algorithm finally computes the virtual runtime so that the task 
becomes schedulable by CFS. 

Our algorithm is a compensation-based temporal memory 
resource isolation technique. As a result, it does not rely on 
either inflexible resource management, ineffective execution 
throttling or potentially wasteful execution restriction. 
Moreover, it seamlessly supports the performance asymmetry 
of multicore architecture.  

Since our algorithm is a software-only solution, we could 
implement it into the CFS of the Linux kernel, with minimal 
modifications to the kernel. We named the end result mCFS. 
We have also conducted extensive experiments to validate the 
effectiveness of mCFS. The experimental results assert that 
mCFS is effective in protecting QoS applications from 
memory-related interference as well as it is adaptive, resilient 
and efficient. We make the source code for mCFS freely 

available through the github [9]. 
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