

VOLUME XX, 2017

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Memory-Aware Fair-Share Scheduling for
Improved Performance Isolation in the Linux
Kernel

Jungho Kim1, Philkyue Shin2, Myungsun Kim3 and Seongsoo Hong1,2

1Department of Transdisciplinary Studies, Seoul National University, Seoul 08826, South Korea
2Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, South Korea
3Electrical Division of IT Convergence Engineering, Hansung University, Seoul 02864, South Korea

Corresponding author: Seongsoo Hong (sshong@redwood.snu.ac.kr)

This work is supported by the Samsung Electronics’ university R&D program.

ABSTRACT Performance interference between QoS and best-effort applications is getting more aggravated

as data-intensive applications are rapidly and widely spreading in recently emerging computing systems.

While the completely fair scheduler (CFS) of the Linux kernel has been extensively used to support

performance isolation in a multitasking environment, it falls short of addressing memory-related interference

due to memory access contention and insufficient cache coverage. Though quite a few memory-aware

performance isolation mechanisms have been proposed in the literature, many of them rely on hardware-

based solutions, inflexible resource management or ineffective execution throttling, which makes it difficult

for them to be used in widely deployed operating systems like Linux running on a COTS SoC platform. We

propose a memory-aware fair-share scheduling algorithm that can make QoS applications less susceptible to

memory-related interference from other co-running applications. Our algorithm carefully separates the

genuine memory-related stall from a running task’s CPU cycles and compensates the task for the memory-

related interference so that the task gets the desired share of CPU before it is too late. The proposed approach

is adaptive, effective and efficient in the sense that it does not rely on any static allocation or partitioning of

memory hardware resources and improves the performance of QoS applications with only a negligible

runtime overhead. Moreover, it is a software-only solution that can be easily integrated into the kernel

scheduler with only minimal modification to the kernel. We implement our algorithm into the CFS of Linux

and name the end result mCFS. We show the utility and effectiveness of the approach via extensive

experiments.

INDEX TERMS Memory-related interference, backend stall cycle, operating system, Linux, CFS

I. INTRODUCTION

Data-intensive applications, most noticeably deep learning-
based applications, are rapidly and widely spreading in
recently emerging computing systems. Services provided by
such applications are often human-perceivable and subject to
quality-of-service (QoS) requirements. As such, system
developers are tasked with ensuring sufficient computing
performance for their applications within limited cost, size,
weight and power budgets of the underlying system [1][2].

Between the QoS and best-effort applications, there exists
unavoidable performance interference since they share
various computing resources in the system. Such interference
to QoS applications is malicious since it can indefinitely
increase their response time and thus prevent them from

meeting the imposed QoS requirements. Diverse performance
isolation techniques have been proposed in the literature and
then widely used as a viable weapon against QoS applications’
performance degradation.

To address the need for performance isolation in extensive
use cases of industry, Linux has offered the completely fair
scheduler (CFS) since its 2.6.23 kernel release [3][4][5][6].
The CFS has been successfully exploited as a fair-share
scheduler in numerous Linux installations ranging from huge
datacenter servers to desktops and to small handheld devices
such as smartphones. Despite such a significant contribution
of CFS over a decade, the Linux kernel has started to show its
limitations in dealing with recently emerging application

VOLUME XX, 2017

workloads that generate massive memory traffic. Our
approach is motivated by such limitations of the Linux kernel.

While the CFS is capable of fairly distributing CPU cycles
among running tasks proportionally to the tasks’ weights, it
cannot take into account interference that the running tasks
experience due to memory contention and insufficient cache
coverage. This is because CFS assumes that absolute physical
performance achieved by a task is proportional to the number
of CPU cycles allocated to the task. It thus simply attempts to
equalize the weighted performance of runnable tasks in the
system. In the presence of memory access contention and
cache misses, however, the execution of a task may stall and
waste CPU cycles for nothing. Unless the kernel scheduler
takes into account such stall cycles, the underlying runtime
system cannot provide exact performance isolation for QoS
applications.

In this paper, we propose a memory-aware fair-share
scheduling algorithm that can make QoS applications less
susceptible to memory-related interference from other co-
running applications in the system. We also seamlessly
integrate the algorithm into CFS with minimal modification
to the Linux kernel. We name the end result memory-aware
CFS (mCFS).

Memory-aware performance isolation is a difficult
problem to formulate since modern microarchitecture has
become too complex to be fully analyzed. Moreover, it is
tricky to accurately measure the amount of genuine memory-
related stall that a given application experiences. Observe that
an application’s memory-related CPU stall is ascribed to not
only memory-related interference from other applications but
also the idiosyncrasy of the application’s code itself. For
instance, an application demonstrating a sequential data
access pattern may incur many cache misses during execution,
even without cache contention. In this case, it is fair to say
that the performance isolation mechanism should not
compensate the application for such intrinsic CPU stall. As
such, a performance isolation algorithm must be able to
distinguish between the genuine memory-related stall and the
intrinsic stall.

To compute the amount of the genuine memory-related
stall, mCFS uses a runtime formula we derive via qualitative
analysis of the underlying microarchitecture and quantitative
analysis of the execution of diverse applications. In this
formula, we model the genuine memory-related stall using
easily measurable entities such as stall cycles at the backend
of the pipeline of the underlying microarchitecture. We duly
note that the backend stall is caused by cache misses and
memory access contention as well as data dependencies and
internal resource contention between micro-operations inside
the pipeline. To single out the genuine memory-related stall
from the entire backend stall, the formula subtracts the
estimated intrinsic stall from the measured backend stall.

To estimate the amount of intrinsic memory-related stall,
we introduce the average intrinsic backend stall rate (IBSR)
of a given application. The average IBSR is a rate of the
backend stall cycles of an application over a long period of
time when the application is running alone in an isolated
manner. It is a characteristic value that represents the memory

access behavior of a given application. The average IBSR can
be computed offline on a per-application basis. A backend
stall cycle count can be easily measured via a performance
monitoring unit commonly provided by modern SoCs.

For a given time interval [𝑡1, 𝑡2] , the formula for
computing the genuine memory-related stall cycle count
𝑏𝑖

𝑚(𝑡1, 𝑡2) is given as follows where 𝑏𝑖(𝑡1, 𝑡2) is the backend
stall cycle count:

𝑏𝑖
𝑚(𝑡1, 𝑡2) = 𝑏𝑖(𝑡1, 𝑡2) − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝐼𝐵𝑆𝑅 ∙ (𝑡2 − 𝑡1)

We experimentally validate the formula in Sections IV and
VI.

The crux of mCFS lies in “memory-aware virtual runtime
calculation” for the task scheduler. The virtual runtime of a
task is defined as the task’s cumulative CPU time inversely
scaled by its weight. In CFS, tasks at the runqueue of a CPU
core compete for the core and eventually the task with the
smallest virtual runtime wins it. When computing the virtual
runtime of a running task, the original CFS considers the CPU
time that the task physically used, without considering the
CPU stall time. Since such a notion of virtual runtime cannot
capture the memory-related interference that a task receives,
we propose to redefine a task’s virtual runtime in a memory-
aware manner and apply the new notion to the CFS.

As the first step in memory-aware virtual runtime
calculation, mCFS performs a computation we name CPU
time actualization. In this step, the genuine memory-related
stall time of a task is deducted from the task’s physical CPU
time. Since a task is always given actualized CPU time no
greater than the original CPU time, the task is made to run
more frequently by mCFS until it receives a sufficient amount
of actualized CPU time.

In the next step, mCFS scales the actualized CPU time
according to the relative performance of the core hosting the
task. This step is needed to take into account the dynamic
voltage and frequency scaling (DVFS) of modern SoCs [7][8].
Since DVFS changes the operating frequencies of cores at
runtime, a task would demonstrate performance variability
without the performance scaling of this step.

In the final step, mCFS computes virtual runtime from the
actualized scaled CPU time derived in the previous steps. To
do so, mCFS divides a task’s actualized scaled CPU time by
the task’s weight.

The benefits of mCFS are three-fold. First, mCFS is
adaptive. Since it does not rely on static memory resource
allocation or partitioning for performance isolation, it can
adaptively react to changes in resource demands without
wasting valuable resources. Second, mCFS is effective. Our
experiment demonstrates that mCFS achieves less slowdown
or more performance improvement for the YOLO face
detection application by up to 67% than the conventional CFS,
depending on the mix of the co-running applications. It
yielded a similar performance enhancement with benchmark
programs as well. Third, mCFS is efficient since it does not
employ any costly runtime mechanisms such as CPU idling
or request throttling. It incurs only a negligible runtime
overhead of 0.091%.

VOLUME XX, 2017

We have implemented the proposed approach into Linux
kernel 4.9.108 on top of the NVIDIA Jetson AGX Xavier
platform. Since the Xavier series SoC is particularly designed
for performance-hogging, embedded deep learning-based
applications, performance isolation is one of the highly
desired features of the underlying runtime system. We show
the effectiveness of mCFS through extensive experiments and
measurements with SPEC 2017 benchmark suites. We make
the source code for the mCFS kernel patch, the workload
generators and the launcher command as well as running
scripts publicly available so that anybody can evaluate or use
mCFS freely [9].

The remainder of the paper is organized as follows.
Section II surveys existing approaches to memory-aware
performance isolation on multicore architecture and
compares the representative techniques with mCFS. Section
III provides the readers with the technical background of
mCFS to help them in understanding the proposed approach.
Section IV defines a measure to estimate the genuine
memory-related stall and validates its effectiveness. Section
V formally states our problem to solve and then defines the
notion of memory-aware fairness for multicore architecture.
Section VI explains the proposed solution approach along
with its kernel-level implementation. Section VII reports on
the experimental evaluation. Finally, Section VIII concludes
this paper.

II. RELATED WORK

The performance interference problem in a computing system
has been particularly pronounced for memory resources as
more and more data-intensive applications are running on a
heterogeneous multicore system possessing graphics
processing units (GPU) and neural processing units (NPUs)
[10][11]. Many studies have been conducted to improve the
performance of latency-sensitive applications and/or to
reduce their performance variability in the presence of
memory-related interference. The existing approaches can be
classified into spatial memory resource isolation and
temporal memory resource isolation, depending on how
memory resources are isolated.

Spatial memory resource isolation is a technique to
prevent performance interference among multiple co-running
applications by physically partitioning memory hardware
resources used by the applications. Application-aware
memory channel partitioning in [12] mitigates the problem of
memory access interference by mapping to different memory
channels the data of applications that are likely to severely
interfere with each other. Similarly, the approach in [13]
allocates a specific subset of DRAM banks to a core using a
bank-level partition mechanism based on page-coloring
supported by the underlying operating system. Cache
partitioning is one of the most representative techniques for
spatial performance isolation. Kpart in [14] is a hybrid cache
partitioning and sharing technique that offsets the
ineffectiveness of the well-known utility-based way-
partitioning.

Clearly, spatial memory resource isolation is a preventive
measure to lower memory-related interference in a predictive
manner but it tends to incur frequent resource over-

provisioning. Some memory resources may not be fully
utilized and even wasted if applications are not distributed
adaptively and fairly among the resource partitions. Besides,
memory resource contention cannot be completely removed
if a partition is assigned to multiple applications that have to
run concurrently.

Temporal memory resource isolation is a technique to
prevent interference by distinguishing the time when
applications use cache and memory hardware resources. This
technique can be further divided into prevention-based and
compensation-based, depending on whether to avoid or allow
memory-related interference in advance.

In prevention-based temporal memory resource isolation,
the cores that are expected to incur an unfair amount of
memory resource contention get restricted to run tasks. The
rate-based approach in [15] throttles down the processing rate
of a core if it is running a low-priority task and its execution
is interfering with a high priority task through memory
resource contention. It considers clock modulation and
frequency scaling as a rate throttling mechanism. MemGuard
[16] tries to make the average memory access latency of a
task no larger than when running on a dedicated memory
system that processes memory requests at a given service rate.
To do so, it assigns a specific memory access quota to each
core in every regulation period and restrains the core having
depleted its quota from running for the rest of the period. The
approach in [17] estimates the amount of memory access
interference that the critical task group is experiencing, by
using the number of outstanding requests in the request buffer
at the memory controller. Based on such estimation, it
throttles down or up memory requests generated by the
normal task group.

Like the spatial memory resource isolation, prevention-
based temporal memory resource isolation is a preventive
technique. Unless the unfairness is measured correctly and
updated adaptively, it can restrict tasks unnecessarily. Also, it
may deteriorate the overall system performance when
memory request throttling is used for the rate control.

In compensation-based temporal memory resource
isolation, the tasks that failed to make a desired amount of
progress get compensated for their tardiness. The source
throttling technique in [18] estimates unfairness in the shared
memory system using a task’s slowdown and throttles down
cores causing interference to the most slowed down core by
limiting the number of requests they can inject into the system
and the frequency at which they do. The fair-progress process
scheduling technique in [19] forces the equally weighted
tasks to have the same amount of slowdown when they run
concurrently. It uses the same measure for a task’s slowdown
as the source throttling technique [18] to monitor the progress
of all tasks at runtime. It allocates more CPU time to the task
that experienced a slowdown. The cache-fair algorithm in [20]
increases a task’s CPU time slice if the task executes fewer
instructions per cycle than it would under fair cache allocation.
The algorithm claims that two tasks are cache-friendly if they

VOLUME XX, 2017

experience similar miss rates when running together. It
estimates a task’s fair miss rate and derives its fair cache
allocation by fitting experimental data into a linear
approximation function. Dike [21] is a contention-aware
scheduler for heterogeneous multicore systems. It divides
execution time into fixed-length quanta. Dike measures the
memory access rate of every task during every quantum and
then predicts the potential effects of migrating tasks onto
different cores. Dike attempts to achieve fairness among the
tasks by moving them back and forth from the maximum
frequency core to the minimum frequency core.

Our approach belongs to compensation-based temporal
memory resource isolation. In designing mCFS, we ruled out
the other two techniques due to their drawbacks we analyzed
above. The approaches in [20] and [21] come closest to our
approach. The cache-fair scheduler [20] compensates a tardy
task by extending its time slice but the notion of cache-
fairness does not scale up for a system having performance-
asymmetric multicore architecture. Dike [21] makes use of
task migration between cores to balance tasks’ progress
whereas mCFS relies on task scheduling. Unfortunately, task
migration can be very costly when it incurs cache line refills.
Dike addresses the performance asymmetry of a multicore
system like mCFS but it works with only two frequency levels.

III. BACKGROUND

The approach proposed in this paper is designed for and
implemented into the Linux kernel running on top of the
NVIDIA Jetson AGX Xavier platform [22]. We explain the

architectural elements and performance monitoring unit of
the Xavier series SoC and the CFS of Linux.

A. NVIDIA JETSON AGX XAVIER PLATFORM

The NVIDIA Xavier series SoC includes a CPU complex and
a GPU as shown in Figure 1. The CPU complex and GPU
share only the main memory. The Xavier series SoC provides
performance monitoring units (PMU), which are classified
into per-core PMUs and uncore PMUs. Table I lists the
selected per-core PMU events [22][23]. Using them,
programmers can effectively measure valuable performance
metrics of the underlying SoC platform including the number
of instructions per cycle (IPC), the number of cache misses
and the frontend and the backend stall cycle count.

Our approach uses only the two events, CPU_CYCLES

and STALL_BACKEND among PMU events in Table I. Thus,
it can be easily implemented on any micro architectures
including various Arm-based SoCs and Intel processors that
provide the same or similar performance counters.

B. CLASSIFICATION OF CPU CYCLES

During the execution of a program, CPU often wastes a
nontrivial number of valuable CPU cycles without
performing any useful work [24]. Such a CPU cycle is
referred to as either a frontend stall cycle or a backend stall
cycle. They are named after the frontend and backend of the
pipeline in modern superscalar, out-of-order
microarchitecture such as the Arm v8.2 Carmel CPU core [22]
depicted in Figure 2.

The frontend consists of an instruction fetcher and an
instruction decoder. Obviously, the frontend fetches
instructions and decodes them into a series of micro-
operations to issue them to the backend. The frontend utilizes
the branch predictor, instruction cache (I-cache) and
instruction TLB (I-TLB) to expedite feeding micro-
operations to the backend.

The backend includes a micro-operation scheduler,
various execution units, register files, a data cache (D-cache)
and a data TLB (D-TLB). The backend schedules micro-
operations buffered at the issued micro-operation queue and
executes them in an order consistent with data and control

FIGURE 1. CPU complex and GPU of NVIDIA Jetson AGX Xavier platform.

CPU Complex

Arm Cluster 0

Carmel
Core 0

L1-I
128KB

L1-D
64KB

Carmel
Core 1

L1-I
128KB

L1-D
64KB

L2 Cache
2MB

Arm Cluster 1

Carmel
Core 2

L1-I
128KB

L1-D
64KB

Carmel
Core 3

L1-I
128KB

L1-D
64KB

L2 Cache
2MB

Arm Cluster 2

Carmel
Core 4

L1-I
128KB

L1-D
64KB

Carmel
Core 5

L1-I
128KB

L1-D
64KB

L2 Cache
2MB

Arm Cluster 3

Carmel
Core 6

L1-I
128KB

L1-D
64KB

Carmel
Core 7

L1-I
128KB

L1-D
64KB

L2 Cache
2MB

System Coherence Fabric

L3 Cache
4MB

Memory Controller

DRAM
16GB

GPU

L2 Cache
512KB

Copy
Engine

SM

64 CUDA
Cores

8 Tensor
Cores

L1 Cache
128KB

TABLE I

SELECTED PMUV3 PER-CORE PMU EVENTS
Event

Number
Event mnemonic Description

0x01 L1I_Cache_REFILL Level-1 instruction cache refill

0x03 L1D_Cache_REFILL Level-1 data cache refill

0x04 L1D_Cache Level-1 data cache access

0x08 INST_RETIRED Instruction architecturally executed

0x11 CPU_CYCLES CPU cycle

0x14 L1I_Cache Level-1 instruction cache access

0x23 STALL_FRONTEND No operation issued due to the

frontend

0x24 STALL_BACKEND No operation issued due to the

backend

VOLUME XX, 2017

dependencies derived from the original code. It finally writes
the results back to the register files and D-cache [24].

I-cache misses, I-TLB misses and branch misprediction
can make CPU stall at the beginning of the pipeline. This
phenomenon is called frontend stall. Similarly, lack of
required resources, such as execution units and memory
resources inside the pipeline prevents issued micro-
operations from retiring. This is referred to as backend stall.

Unlike the frontend and backend stall cycles, a running
task is spending useful cycles where micro-operations are
retired from the pipeline. Such a cycle is called a retired
instruction cycle. The frontend stall counts every CPU cycle
on which no micro-operation is issued since there are no
micro-operations available to issue from the frontend [23].
The backend stall counts each CPU cycle on which no micro-
operation is issued since the backend is unable to retire any
micro-operations [23].

C. CFS OF THE LINUX KERNEL

The CFS is the primary task scheduler of the Linux kernel

since its 2.6.23 release. CFS distinguishes itself from its

predecessors in that its objective is achieving fairness among

multiple runnable tasks. In Linux, the fairness of a task

scheduler is defined by the property that the physical

execution times of tasks should be proportional to their

weight values [3][4][25]. As such, the weight of a task is an

important task attribute for CFS. In order to allow users to

specify a weight value for each task in a way consistent with

conventional Linux kernels, CFS makes use of nice values. In

conventional Linux, nice values were used to denote task

priorities. In CFS, a nice value is mapped to a specific weight

value. Nice values range over [-20, 19] where a smaller value

corresponds to a larger weight.

As a measure of fairness among tasks, CFS introduces a

notion of virtual runtime. The virtual runtime of a task is

defined as the task’s cumulative runtime inversely scaled by

its weight. If virtual runtimes are the same among all the tasks

at a given point in time, then the tasks are given the exactly

fair amount of CPU time at that time. Clearly, CFS tries to

schedule runnable tasks such that they have virtual runtimes

only with small differences.

Let 𝑤0 be the weight value of nice value 0 and 𝑤𝑖 be the

weight value of task 𝜏𝑖. Suppose 𝑝𝑖(𝑡) denotes the amount of

the cumulative physical runtime of task 𝜏𝑖 at time t. In CFS,

the virtual runtime 𝑣𝑖(𝑡) of task 𝜏𝑖 at time t is defined as

bellow:

 𝑣𝑖(𝑡) =
𝑤0

𝑤𝑖
× 𝑝𝑖(𝑡) 

The smaller a task’s virtual runtime is, the more the task needs
to be scheduled.

In order to enforce fair-share scheduling at a reasonable

run-time cost, CFS also makes use of the notion of a time slice.

A time slice is associated with a task and defined as a time

interval for which the task is allowed to run without being

preempted. In CFS, the length of a task’s time slice is

proportional to its weight. The time slice 𝑠𝑖 of a task 𝜏𝑖 is

computed by

𝑠𝑖 =
𝑤0

∑ 𝑤𝑗𝜏𝑗∈𝑅
× 𝑃 

where 𝑅 is the set of runnable tasks, 𝑤𝑖 is the weight of 𝜏𝑖

and 𝑃 is the constant for a given workload. In Linux, 𝑃 is

given as below:

𝑃 = {
𝑠𝑦𝑠𝑐𝑡𝑙_𝑠𝑐ℎ𝑒𝑑_𝑙𝑎𝑡𝑒𝑛𝑐𝑦
𝑚𝑖𝑛_𝑔𝑟𝑎𝑛𝑢𝑙𝑎𝑟𝑖𝑡𝑦 × 𝑛

if 𝑛 < 𝑛𝑟_𝑙𝑎𝑡𝑒𝑛𝑐𝑦,

otherwise
 

where n is the number of tasks and 𝑠𝑦𝑠𝑐𝑡𝑙_𝑠𝑐ℎ𝑒𝑑_𝑙𝑎𝑡𝑒𝑛𝑐𝑦,

𝑛𝑟_𝑙𝑎𝑡𝑒𝑛𝑐𝑦 and 𝑚𝑖𝑛_𝑔𝑟𝑎𝑛𝑢𝑙𝑎𝑟𝑖𝑡𝑦 are system-wide

constants whose values are 6, 8 and 0.75, respectively, in the

current Linux implementation.

CFS is a symmetric multiprocessor scheduling algorithm

with a distributed runqueue structure. The Linux kernel

maintains a dedicated runqueue for each core and lets a CFS

instance of a core make scheduling decisions independently

of each other. A runqueue for a core keeps a list of its runnable

tasks. These tasks are sorted according to the non-decreasing

order of their virtual runtimes. When the currently running

task runs out of it time slice, CFS selects the first task in the

runqueue and dispatches it for execution.

IV. DEFINING AND VALIDATING A MEASURE FOR
MEMORY-RELATED INTERFERENCE

It is a challenging mission to come up with a memory-aware
fair-share scheduling framework that is practically
implementable in a kernel. In fact, it is often tricky to quantify
an accurate measure for memory-related interference,
particularly in a multitasking environment on a complex
multicore processor. Even if we have a well-defined measure,
it is sometimes infeasible to instrument it due to the limited
performance monitoring capabilities of an underlying SoC.

FIGURE 2. Frontend and backend of the pipeline in the Carmel core.

Carmel Core

Processor Arbitration

Instruction
Cache

Instruction
TLB

L2 TLB
Data
TLB

Data
Cache

Branch
Prediction

Instruction
Fetch

Decode Scheduler

Integer
Register

File

FP
Register

File

Integer
Execute

FP
Execute

Load/Store

Writeback

Frontend Part Backend Part

VOLUME XX, 2017

To overcome these hurdles in our approach, we define a
measure that is calculable with only existing PMU hardware
at a low runtime cost. To come up with the measure, we
qualitatively analyze backend stall cycles appearing in the
modern CPU architecture, particularly in the Xavier series
SoC. We then justify the proposed measure in a quantitative
manner via experiments.

A. CLASSIFYING BACKEND STALL CYCLES AND
DEFINING THE MEASURE

As described in the previous section, the backend of a pipeline
in the modern SoC architecture executes arithmetic micro-
operations with either the integer execute unit or the FP
execute unit. It also processes memory micro-operations
using the load/store unit that exploits the memory hierarchy
consisting of the L1, L2, L3 cache and memory. The situation
where the backend has to wait for nothing can be divided into
four cases depending on the reason:

1) The backend has to wait for the arithmetic unit required

by the current micro-operation to be released if the unit

is being occupied by another micro-operation. A long

latency divide micro-operation tends to cause such

serialization. Stall in this case usually lasts only for a

couple of CPU cycles [24].

2) It has to wait until operands stored in registers become

available in the presence of data dependency. Stall in this

case is short in time as well, only for a few CPU cycles

[24].

3) It has to wait for D-cache misses to be dealt with even if

the task is running alone in the system. Stall in this case

lasts for a nontrivial number of CPU cycles due to a huge

gap between CPU cycle time and memory access time

[24].

4) It has to wait for the handling of additional D-cache

misses that arise since the running task is sharing the

cache with other co-running tasks in the system. When

severe memory access contention among the cores is

coupled with excessive D-cache misses, stall in this case

can be significantly increased.

Backend stall belonging to the first three cases results
from intra-task attributes such as the data dependencies and
intrinsic cache behavior of the task’s code. We refer to such
backend stall as intrinsic backend stall. Backend stall
belonging to the last case occurs due to memory-related
interference among multiple co-running tasks in the system.
We call such backend stall genuine memory-related backend
stall.

By definition, the whole backend stall is the sum of
intrinsic and genuine memory-related backend stall. We
formally define them as follows:

Definition 1. Let 𝑏𝑖
∗(𝑡1, 𝑡2) and 𝑏𝑖

𝑚(𝑡1, 𝑡2) be the intrinsic
and genuine memory-related backend stall cycle counts of a
task 𝜏𝑖 in a time interval [𝑡1, 𝑡2], respectively. By definition,
the total backend stall cycle count of 𝜏𝑖 in [𝑡1, 𝑡2] is as
follows:

𝑏𝑖(𝑡1, 𝑡2) = 𝑏𝑖
∗(𝑡1, 𝑡2) + 𝑏𝑖

𝑚(𝑡1, 𝑡2)

In our approach, we propose to use 𝑏𝑖
𝑚(𝑡1, 𝑡2) as a

measure of the memory-related interference of 𝜏𝑖 in [𝑡1, 𝑡2].
In what follows, we show that 𝑏𝑖

𝑚(𝑡1, 𝑡2) serves correctly in
our memory-aware fair-share scheduling.

B. EXPERIMENTAL VALIDATION OF THE MEASURE

We validate the effectiveness of the proposed measure
through experiments with highly memory-intensive
benchmark programs selected from the 43 benchmarks of

SPEC CPU2017 [26][27]. They are 619.lbm_s,

620.omnetpp_s and 623.xalancbmk_s. We ran the
benchmarks on the NVIDIA Jetson AGX Xavier platform.
Table II gives the detailed specification of the hardware and
the system software that constitute the experimental platform.
During the experiments, we cautiously controlled factors that
might affect the memory access patterns. For instance, we
fixed the operating frequencies of the CPU, GPU and EMC
(external memory controller) throughout the experiments.

The test variable of the experiments was the amount of
memory-related interference and the evaluation metric was
the genuine memory-related backend stall cycle count during
the entire execution of each benchmark. The amount of
memory-related interference is affected by the number of
cache misses and the memory access time in handling each
cache miss. As such, the memory-related interference was
generated by the workload consisting of a cache contention
generator and a memory access contention generator.

The cache contention generator is a simple C program that
is designed to incur cache line refill for each load/store
instruction. We controlled the amount of cache contention by
stuffing the different number of arithmetic instructions
between two consecutive bundles of load/store instructions.
We made five test instances: no cache contention generator
running and four cache contention generator instances with
ratios of load/store instructions and arithmetic instructions
being 1:15, 1:10, 1:5 and 1:1, respectively.

The memory access contention generator is a
multithreaded CUDA program. Each CUDA thread
repeatedly performed memory reads of 8MB and memory
writes of 4MB in turn. We varied the number of memory
requests by changing the number of CUDA threads.

To create a discrete value space for the test variable that
ranges over various amounts of memory-related interference,

TABLE II

SPECIFICATION OF NVIDIA JETSON AGX XAVIER

Classification Description

HW

CPU 8-core ARM v8.2 Carmel 64-bit CPU,

8MB L2, 4MB L3 cache

GPU 512-core Volta GPU with Tensor cores

Memory 16GB 256-Bit LPDDR4x, 137GB/s

Storage 32GB eMMC 5.1

SW

Kernel Linux 4.9.108

OS Ubuntu 18.04.1 LTS

SW package JetPack 4.1.1

C library GNU C library 2.27

GPGPU library CUDA 10.0

C compiler GNU Arm compiler 7.4.0

GPGPU compiler CUDA v10.0.117

VOLUME XX, 2017

we made two memory access contention cases for each cache
contention instance: no memory access contention via zero
CUDA thread and the maximum memory access contention
via 64 CUDA threads. More than 64 CUDA threads did not
make a noticeable increase in memory access contention due
to memory bandwidth saturation. As a result, our test variable
has ten unique combinations.

For each experimental run, we pinned a benchmark
program on core 7 and allocated an instance of the cache
contention generator onto each core so that they could cover
L1, L2 and L3 cache contention altogether. We ran the
memory access contention generator on the GPU. Among
per-core PMU events shown in Table I, we counted the

STALL_BACKEND event in each experimental run.

Our experiments were conducted in two steps. We first
measured the intrinsic backend stall of each benchmark
program by running it alone until termination and then
counting the backend stall cycles. By definition, this count
was the amount of the intrinsic backend stall of the
benchmark. Next, we ran each benchmark to completion
while imposing different amounts of memory-related
interference as stated above. We then counted backend stall
cycles in each experimental run.

Figure 3 shows the experimental results. The horizontal
axis denotes the amount of memory interference expressed by
the test variable space. The vertical axis is the number of
backend stall cycles, which is decomposed into an intrinsic
backend stall cycle count below and a genuine memory-
related backend stall cycle count above. The experimental
results clearly show that the genuine memory-related backend
stall cycle count increases with memory-related interference.
Also, it is observed that cache contention has a greater impact
on memory-related interference than memory access
contention, which is consistent with our intuition.

V. PROBLM FORMULATION

In this section, we model our target system and define the
notion of memory-aware fairness. We then formulate the
problem at hand. We summarize frequently used notations in
Table III.

A. TARGET SYSTEM AND TASK MODEL

Our target system is a symmetric multicore processor that

consists of a set 𝑃 of identical cores. The target system

employs dynamic voltage and frequency scaling (DVFS) for

reducing power consumption. To work under DVFS, mCFS

TABLE III

NOTATIONS

Symbol Definition

𝑃 Set of cores

𝐹 Set of allowable operating frequency of a core

𝑟(𝑓) Relative performance of frequency 𝑓 ∈ 𝐹

𝑄 Set of QoS tasks

𝐵 Set of best-effort tasks

𝜏𝑖 Task in 𝑄 ∪ 𝐵

𝑤𝑖 Weight of task 𝜏𝑖

𝑐𝑖(𝑡1, 𝑡2) Measured CPU time of task 𝜏𝑖 in [𝑡1, 𝑡2]

𝑐𝑖
𝑎(𝑡1, 𝑡2) Actualized CPU time of task 𝜏𝑖 in [𝑡1, 𝑡2]

𝑐𝑖
𝑎𝑠(𝑡1, 𝑡2) Actualized scaled CPU time of task 𝜏𝑖 in [𝑡1, 𝑡2]

𝑛𝑖(𝑡1, 𝑡2) Measured CPU cycles of task 𝜏𝑖 in [𝑡1, 𝑡2]

𝑏𝑖(𝑡1, 𝑡2) Measured backend stall cycles of task 𝜏𝑖 in [𝑡1, 𝑡2]

𝑏𝑖
∗(𝑡1, 𝑡2) Intrinsic backend stall cycles of task 𝜏𝑖 in [𝑡1, 𝑡2]

𝑏𝑖
𝑚(𝑡1, 𝑡2) Genuine memory-related backend stall cycles of task 𝜏𝑖 in [𝑡1, 𝑡2]

𝑣𝑖(𝑡1, 𝑡2) Actualized scaled virtual runtime (ASVR) of task 𝜏𝑖 in [𝑡1, 𝑡2]

|𝑣𝑖,𝑗(𝑡)| ASVR difference between 𝜏𝑖 and 𝜏𝑗 in [0, 𝑡]

𝑣𝑚𝑎𝑥(𝑡) The biggest |𝑣𝑖,𝑗(𝑡)| in [0, 𝑡]

𝛾𝑖(𝑓, 𝑡1, 𝑡2) IBSR of task 𝜏𝑖 in [𝑡1, 𝑡2] uner a given operating frequency 𝑓 ∈ 𝐹

𝛾𝑖̅(𝑓) Average IBSR of task 𝜏𝑖 uner a given operating frequency 𝑓 ∈ 𝐹

FIGURE 3. Relationship between memory-related interference and backend stall cycle count.

VOLUME XX, 2017

must take into account the changing performance of each core

when computing the virtual runtime of a task running on that

core. To aid in this process, we use a frequency-to-relative

performance mapping 𝑟: 𝐹 → 𝑅 where 𝐹 is a set of allowable

frequencies of the target system and 𝑅 is a set of relative

performance values. The relative performance 𝑟(𝑓) is simply

the speedup factor against the base performance 𝑟(𝑓𝑚𝑖𝑛)

where 𝑓𝑚𝑖𝑛 is the minimum frequency in 𝐹 . We statically

build the mapping table containing an entry 𝑟(𝑓) for each

𝑓 ∈ 𝐹, as explained in [5][6]. Figure 4 shows such a mapping

table in graph form.

We present the application model. An application is a

multithreaded Linux process. In Linux, a user-level thread

becomes a task that is a kernel-level entity scheduled by the

kernel. An application can be either a QoS application or a

best-effort application, based on the programmer’s decision.

By definition, all threads belonging to a QoS application

become QoS tasks. A dedicated launcher process is used to

fork a process from a QoS application’s executable code,

which will be explained in the next section. A best-effort

application is an ordinary Linux application and does not

require any special treatment in mCFS.

We define the task model. The target system runs a set of
𝑛 tasks 𝑄 ∪ 𝐵 = {𝜏1, 𝜏2, … , 𝜏𝑛} where 𝑄 is a set of QoS tasks
and 𝐵 is a set of best-effort tasks. The system developer
classifies a task as stated above. QoS tasks are processed by
mCFS while best-effort tasks are handled by the conventional
CFS. The rationale behind this decision is that QoS tasks must
be compensated for genuine memory-related interference at
the cost of the degraded performance of best-effort tasks.
CPU bandwidth allocation among tasks is a zero-sum game
anyway and it is semantically correct that best-effort tasks
become victims.

A task 𝜏𝑖 in 𝑄 ∪ 𝐵 is associated with a fixed weight value
denoted by 𝑤𝑖 . Recall that the virtual runtime of a task is
defined as the task’s cumulative runtime inversely scaled by
its weight in CFS. CFS uses virtual runtime as a measure of
fairness.

In order to incorporate memory-aware fairness into CFS,
we extend our previous work on scaled virtual runtime in
[5][6]. Specifically, we define actualized scaled virtual
runtime (ASVR). To do so, we first introduce the notion of

actualized CPU time of a task 𝜏𝑖 for a given time interval
[𝑡1, 𝑡2]. We then scale the actualized CPU time according to
the operating frequency in that time interval. Finally, we
compute the virtual runtime by dividing the actualized scaled
CPU time by its weight. Using the virtual runtime, we finally
define the memory-aware fairness and formulate the problem
at hand.

We let 𝑐𝑖(𝑡1, 𝑡2) and 𝑛𝑖(𝑡1, 𝑡2) denote the CPU time and
the CPU cycle count of 𝜏𝑖 in [𝑡1, 𝑡2], respectively.

Definition 2. Actualized CPU time of a task 𝜏𝑖 at the end of
a time interval [𝑡1, 𝑡2] is

𝑐𝑖
𝑎(𝑡1, 𝑡2) = {

𝑐𝑖(𝑡1, 𝑡2) ∙ (1 −
𝑏𝑖

𝑚(𝑡1, 𝑡2)

𝑛𝑖(𝑡1, 𝑡2)
) 𝑖𝑓 𝜏𝑖 ∈ 𝑄

 𝑐𝑖(𝑡1, 𝑡2) 𝑖𝑓 𝜏𝑖 ∈ 𝐵

The actualized CPU time of a best-effort task is the same
as the CPU time since best-effort tasks are not compensated
for any memory-related interference. The actualized CPU
time of a QoS task is defined as the CPU time deducted by
the stall time due to genuine memory-related interference.
Recall that 𝑏𝑖

𝑚(𝑡1, 𝑡2) is the genuine memory-related
backend stall cycle count in [𝑡1, 𝑡2].

We now scale the actualized CPU time according to the
operating frequency as follows:

Definition 3. Actualized scaled CPU time of 𝜏𝑖 with an
operating frequency 𝑓 is

𝑐𝑖
𝑎𝑠(𝑡1, 𝑡2) = 𝑐𝑖

𝑎(𝑡1, 𝑡2) ∙ 𝑟(𝑓)

We in turn define the actualized scaled virtual runtime as
follows:

Definition 4. Actualized scaled virtual runtime (ASVR) of 𝜏𝑖
is

𝑣𝑖(𝑡1, 𝑡2) =
1

𝑤𝑖

∙ 𝑐𝑖
𝑎𝑠(𝑡1, 𝑡2)

It is trivial that equalizing the ASVRs of tasks in the
system achieves perfect memory-aware fairness for the target
multicore system.

Definition 5. A memory-aware perfectly fair scheduler for a
multicore system is one for which

𝑐𝑖
𝑎𝑠(0, 𝑡)

𝑐𝑗
𝑎𝑠(0, 𝑡)

=
𝑤𝑖

𝑤𝑗

holds for any tasks 𝜏𝑖 and 𝜏𝑗 for time interval [0, 𝑡].

B. PROBLEM STATEMENT

The problem we address in this paper is to minimize ASVR
difference between any pair of tasks from 𝑄 ∪ 𝐵. Let 𝑣𝑖,𝑗(𝑡)

be the ASVR difference between two tasks 𝜏𝑖 and 𝜏𝑗 for time

interval [0, 𝑡] . We define the maximum ASVR difference
𝑣𝑚𝑎𝑥(𝑡) as below.

𝑣𝑚𝑎𝑥(𝑡) = 𝑚𝑎𝑥
𝜏𝑖,𝜏𝑗∈𝑄∪𝐵

|𝑣𝑖,𝑗(𝑡)|

FIGURE 4. Relative performance for each available frequency.

VOLUME XX, 2017

Obviously, the objective of our problem is to reduce
𝑣𝑚𝑎𝑥(𝑡).

VI. MEMORY-AWARE COMPLETELY FAIR
SCHEDULING

We propose to incorporate the memory-aware fairness into
the Linux kernel to protect QoS tasks from the memory-
related interference of other co-running tasks. We aim to
extend the CFS with minimal modifications possible and with
only existing hardware support from the target processor.

A. THE mCFS ARCHITECTURE

We present the kernel-level architecture of mCFS. It consists
of the CFS task scheduler, the ASVR updater and two
supporting kernel components as depicted in Figure 5. We
engineer the CFS task scheduler very carefully so that it
remains untouched except the virtual runtime updater. The
ASVR updater replaces the original virtual runtime updater.
It is invoked at every scheduling tick of the Linux kernel. On
each invocation, the five components inside it get executed in
tandem and calculate the actualized scaled virtual runtime of
the currently running task. In doing so, the ASVR updater

refers to the CPUFreq governor to obtain the current
operating frequency of the core and reads in some PMU
counters via the PMU driver.

Among the five components of the ASVR updater, the
memory-related interference estimator deserves an in-depth
explanation while others do not due to their self-explanatory
definitions in the previous section.

B. ESTIMATING MEMORY-RELATED INTERFERENCE

Let 𝑇𝑠 be the scheduling tick interval size. On the occurrence
of a scheduling tick at a time point 𝑡, the memory-related
interference estimator calculates 𝑏𝑖

𝑚(𝑡 − 𝑇𝑠, 𝑡) according to
Definition 1 re-written below.

 𝑏𝑖
𝑚(𝑡 − 𝑇𝑠, 𝑡) = 𝑏𝑖(𝑡 − 𝑇𝑠, 𝑡) − 𝑏𝑖

∗(𝑡 − 𝑇𝑠, 𝑡) (1)

To be practically feasible, the memory-related
interference estimator must be able to obtain the values of
𝑏𝑖(𝑡 − 𝑇𝑠, 𝑡) and 𝑏𝑖

∗(𝑡 − 𝑇𝑠 , 𝑡) with only existing PMU
support. It can easily get 𝑏𝑖(𝑡 − 𝑇𝑠 , 𝑡) by monitoring the

STALL_BACKEND event of the PMU but cannot

immediately obtain 𝑏𝑖
∗(𝑡 − 𝑇𝑠, 𝑡). Thus, we convert 𝑏𝑖

∗ into a
combination of measurable entities.

We start by defining the intrinsic backend stall rate (IBSR)
of 𝜏𝑖 in [𝑡1, 𝑡2] under a given operating frequency 𝑓 ∈ 𝐹. A
formal definition is given as follows.

Definition 6. Under an operating frequency 𝑓 ∈ 𝐹 , the
intrinsic backend stall rate for a running task 𝜏𝑖 in [𝑡1, 𝑡2] is

𝛾𝑖(𝑓, 𝑡1, 𝑡2) =

𝑏𝑖
∗(𝑡1, 𝑡2)

𝑡2 − 𝑡1

 (2)

Eq. (2) implies that we can compute 𝑏𝑖
∗(𝑡1, 𝑡2) simply by

knowing 𝛾𝑖(𝑓, 𝑡1, 𝑡2) . However, it is not feasible to pre-
calculate all the values of 𝛾𝑖(𝑓, 𝑡1, 𝑡2) for any arbitrary time
intervals [𝑡1, 𝑡2]. We thus propose to use the average IBSR as
an approximation. We define the average IBSR as follows.

Definition 7. The average IBSR of 𝜏𝑖 is defined with
sufficiently large 𝑇 as follows:

 𝛾𝑖̅(𝑓) = 𝛾𝑖(𝑓, 0, 𝑇) (3)

If we rewrite Eq. (2) for 𝑏𝑖
∗(𝑡1, 𝑡2) and substitute

𝛾𝑖(𝑓, 𝑡1, 𝑡2) with its approximation 𝛾𝑖̅(𝑓), we have

 𝑏𝑖
∗(𝑡1, 𝑡2) ≈ 𝛾𝑖̅(𝑓) ∙ (𝑡2 − 𝑡1) (4)

Therefore, the memory-related interference estimator
ends up with calculating 𝑏𝑖

𝑚(𝑡 − 𝑇𝑠 , 𝑡) using the following
equation at each scheduling tick occurring at time 𝑡.

 𝑏𝑖
𝑚(𝑡 − 𝑇𝑠, 𝑡) = 𝑏𝑖(𝑡 − 𝑇𝑠, 𝑡) − 𝛾𝑖̅(𝑓) ∙ 𝑇𝑠 (5)

As a task runs for tens of thousands of scheduling tick
intervals, the memory-related interference estimator adds up
the intrinsic backend stall cycle count 𝑏𝑖

∗(𝑡 − 𝑇𝑠, 𝑡) of each
scheduling tick interval as many times. For 𝑘 scheduling ticks,
the approximate value for the accumulated intrinsic backend
stall cycle count simply becomes 𝑘 ∙ 𝛾𝑖̅(𝑓) ∙ 𝑇𝑠. We argue that
𝑘 ∙ 𝛾𝑖̅(𝑓) ∙ 𝑇𝑠 gets sufficiently close to the actual intrinsic
backend stall cycle count if 𝑘 is sufficiently large. We justify
this argument.

We first show via an experiment that for a sufficiently
large time interval [𝑡1, 𝑡2], 𝛾𝑖̅(𝑓) gets closer to 𝛾𝑖(𝑓, 𝑡1, 𝑡2)
with sufficiently large 𝑇 ≤ 𝑡2 − 𝑡1 as stated below:

 𝛾𝑖(𝑓, 𝑡1, 𝑡2) ≈ 𝛾𝑖̅(𝑓) (6)

In our experiment for supporting Eq. (6), we pinned one

of our benchmarks, 619.lbm_s on core 7 and ran it alone
without any memory-related interference. In this case, the

FIGURE 5. The mCFS architecture.

Hardware

Linux
Kernel

ASVR Updater

Multicore Processor

CPUFreq Governor

CPUFreq Driver

Core

P
M

U

Core

P
M

U

Core

P
M

U

…

PMU Driver

Memory-related
Interference
Estimator

Relative
Performance
Estimator

Actualized Scaled
CPU Time
Calculator

Actualized
CPU Time
Calculator

Operating Frequency
𝑓

Genuine Memory-related
Backend Stall
Cycle Count

𝑏𝑖
𝑚 (𝑡1 , 𝑡2)

Relative
Performance

𝑟(𝑓)

Actualized
CPU Time
𝑐𝑖

𝑎 (𝑡1 , 𝑡2)

Backend Stall
Cycle Count

𝑏𝑖(𝑡1, 𝑡2)

Actualized Scaled
Virtual Runtime

Calculator

Actualized Scaled
CPU Time
𝑐𝑖

𝑎𝑠 (𝑡1, 𝑡2)

CPU Cycle Count
𝑛𝑖(𝑡1 , 𝑡2)

CFS Task Scheduler

VOLUME XX, 2017

backend stall becomes the intrinsic backend stall, i.e.,
𝑏𝑖(𝑡1, 𝑡2) = 𝑏𝑖

∗(𝑡1, 𝑡2). We ran the benchmark program for
1,300s. We iteratively measured the backend stall cycle count
for every 1ms while it was running. We then repeatedly
calculated numerous IBSR values 𝛾𝑖(𝑓, 𝑡3, 𝑡3 + 𝑇) by
changing 𝑡3 and 𝑇. We also computed the IBSR for the entire
running time, 𝛾𝑖(𝑓, 0, 1300) . To analyze how close
𝛾𝑖(𝑓, 𝑡3, 𝑡3 + 𝑇) is to 𝛾𝑖(𝑓, 0, 1300), we compute the mean
absolute percentage error between them. Figure 6 shows the
result. As 𝑇 gets closer to the benchmark’s entire running
time, the mean absolute percentage error gets reduced. When
𝑇 is above 128s, the mean absolute percentage error becomes
sufficiently small, below 0.1%. We observed the same
behavior with the other eight benchmarks.

In CFS, a task runs non-preemptively for every
scheduling tick interval given to the task. We consider 𝑘
scheduling tick intervals [𝑡𝑗, 𝑡𝑗 + 𝑇𝑠] for 1 ≤ 𝑗 ≤ 𝑘 for which

a task 𝜏𝑖 has been running. If 𝑘 is sufficiently large such that
𝑘 ∙ 𝑇𝑠 ≥ 𝑇, then the following holds true according to Eq. (4).

∑ 𝑏𝑖
∗(𝑡𝑗, 𝑡𝑗 + 𝑇𝑠)

𝑘

𝑗=1

= 𝛾𝑖(𝑓, 0, 𝑘 ∙ 𝑇𝑠) ∙ 𝑘 ∙ 𝑇𝑠

 ≈ 𝛾𝑖̅(𝑓) ∙ 𝑘 ∙ 𝑇𝑠 (7)

Thus, Eq. (7) proves our argument.

We suggest a guideline for selecting 𝑇 for 𝛾𝑖̅(𝑓) using the
mean absolute percentage error. Users are first asked to
choose a threshold for the mean absolute percentage error.
Then they can choose any 𝑇 that satisfies the threshold. In our
experiment, we chose 1% as the threshold and we selected
128s for 𝑇. As a rule of thumb, any value greater than 100s
suffices.

C. INTERFACING WITH USERS

Since only QoS tasks are protected from memory-related
interference via memory-aware fair-share scheduling, mCFS
needs to differentiate QoS applications from best-effort
applications. In our approach, we offer a dedicated launcher
process that programmers use to let mCFS know about their
QoS applications. The pseudo code for the launcher process
is given in Figure 7. The launcher enabled us to incorporate
mCFS into the Linux kernel without modifying any existing
system call interfaces.

The launcher accepts three arguments: the path name of a
QoS application’s executable file, its parameters and a list of

its average IBSR values. The launcher works in two steps.
First, it stores the average IBSR values into the file named

/proc/pid/ibsr via the write() system call where

“pid” is the launcher’s process id. We associate with the

write() system call a callback function that copies the

average IBSR values into the task_struct instance of the
launcher process.

Second, the launcher forks and executes the QoS

application. We slightly modified the fork() system call
code so that the average IBSR values stored in the parent

process are copied into the task_struct instance of the
child process. Since a best-effort task has the default value of
zero for the average IBSRs, mCFS can easily distinguish
between a QoS task and a best-effort task.

D. INTERACTING WITH KERNEL COMPONENTS

As shown in Figure 5, mCFS closely interacts with two kernel

components: the PMU driver and the CPUFreq governor.
We explain such interactions in detail.

mCFS accesses the core’s operating frequency that is

independently maintained by the CPUFreq governor.
Among the various governor types supported in Linux, we

consider the schedutil governor for mCFS since it is the

default CPUFreq governor that was newly added to Linux
v4.7 [8]. Other governor types can be easily integrated into
mCFS in a similar manner.

The schedutil governor collects a core’s utilization
statistics periodically at each scheduling tick. Additionally, it
gathers the same information upon the occurrences of the
sporadic events that can affect CPU utilization, such as task
creation and termination.

 According to Definition 3, the actualized scaled virtual
runtime of a task 𝜏𝑖 is defined over a time interval [𝑡1, 𝑡2] and
computed at the end of that interval. This requires that the
frequency of the core hosting 𝜏𝑖be constant throughout the
interval. In the mCFS implementation, [𝑡1, 𝑡2] exactly

corresponds to a scheduling tick interval. The schedutil
governor assures this requirement since the governor adjusts
a core’s frequency mostly at tick boundaries. The effect of
sporadic adjustments is negligible since they occur very
rarely compared to the periodic adjustments.

FIGURE 6. Relationship between 𝑻 and accuracy of average IBSR.

int main(int argc, void *argv[]) {

// Pass the list of IBSRs to kernel

fd = fopen("/proc/pid/ibsr", "w+");

fwrite(argv[2], 1, strlen(argv[2]), fd);

fclose(fd);

// Construct a command to run the QoS app

// Run the command

system(app_cmd);

}

FIGURE 7. Pseudo code for the launcher process.

VOLUME XX, 2017

VII. EXPERIMENTAL EVALUATION

In this section, we report on the experiments that we
performed to demonstrate the effectiveness of mCFS. We
first describe the experimental setup and then show the
experimental results along with our analysis.

A. EXPERIMENTAL SETUP

We used the same experimental setup as in Section IV. As
QoS applications, we used five benchmark programs from
SPEC CPU2017 as well as the YOLO face detection program

[28]. The five benchmark programs are 619.lbm_s,

623.xalancbmk_s, 602.gcc_s,

600.perlbench_s and 648.exchange2_s. Table IV
shows one of the important characteristics of the benchmark
programs: the degree of memory intensiveness of each
benchmark, with the most memory intensive at the top.

Each benchmark program ran to completion three times
with three different configurations, respectively: (1) running
with no memory-related interference, (2) running under the
conventional CFS with memory-related interference and (3)
running under mCFS with memory-related interference. We
measured their response times.

 We used two test variables for these experiments. First,
we varied the ratio of the QoS applications and the best-effort
applications in the workloads, from 1:1 to 1:5. Second, we
varied the QoS applications while running the same best-
effort application.

We used two performance metrics to analyze the gain and
the cost incurred by mCFS. We measured the percentile
performance improvement of a QoS application on mCFS
over on CFS. Similarly, we measured the percentile
performance degradation of a best-effort application on
mCFS over on CFS.

In our experiments, we pinned the QoS applications and
best-effort applications on core 7 so that all of them became
subject to per-core fair-share scheduling. To generate
memory-related interference, we ran the cache contention
generators on the remaining cores and the memory contention
generator on the GPU.

B. EXPERIMENTAL RESULTS

We conducted three experiments to observe and analyze the
performance improvement of the QoS applications under
mCFS. We first ran the five benchmark programs one by one
as a QoS application with the best-effort application

commonly being 648.exchange2_s. The experimental
result is given in Figure 8. The performance improvement of
mCFS over CFS ranges from 10% to 43% and increases with
the memory intensiveness of the QoS applications. This result
states that mCFS adaptively improves performance as needed.
The more memory traffic, the greater the performance
improvement.

In the second experiment, we varied the ratio of the QoS
applications and the best-effort applications from 1:1 to 1:5.

We used 623.xalancbmk_s and 648.exchange2_s
as the QoS application and best-effort application,
respectively. We ran multiple instances of

648.exchange2_s to increase the proportion of the best-

effort application. Figure 9 (a) shows the result. As the
amount of the best-effort workload increases, mCFS yields
greater performance improvement for the QoS application. It
shows the resilience of mCFS in the sense that mCFS works
more aggressively as the best-effort workload increases. We
repeated the same experiment with the YOLO face detection

 (a) 623.xalancbmk_s as QoS applications (b) YOLO face detection as QoS applications

FIGURE 9. Performance improvement of QoS applications on mCFS according to the ratio of QoS applications and best-effort applications.

FIGURE 8. Performance improvement of QoS applications on mCFS

according to memory intensiveness of QoS applications.

TABLE IV

MEMORY INTENSIVENESS OF BENCHMARKS

Benchmark
Percentage of Memory Access Cycle Count

Compared to Total CPU Cycle Count

619.lbm_s 11.831%

623.xalancbmk_s 5.645%

602.gcc_s 3.303%

600.perlbench_s 0.455%

648.exchange2_s 0.014%

VOLUME XX, 2017

program. The result given in Figure 9 (b) is consistent with
that in Figure 9 (a).

We performed two additional experiments to assess the
performance degradation that mCFS caused to the best-effort
applications. The first experiment is dual to the experiment of
Figure 8. We ran the five benchmark programs one by one as

a QoS application while running 648.exchange2_s as a
best-effort application. We measured the performance
degradation of the best-effort application. Figure 10 shows
that the performance degradation ranges from 5% to 38% and
increases with the memory intensiveness of the QoS
applications. This result is consistent with that of Figure 8.

 The next experiment is dual to the experiment of Figure
9 (a). We varied the ratio of the QoS applications and the best-
effort applications from 1:1 to 1:5. We measured the
performance degradation of the best-effort application. The
result is given in Figure 11. As the amount of the best-effort
workload increases, the performance degradation of each
application decreases. This is because multiple best-effort
applications share the burden.

C. EVALUATING RUN-TIME OVERHEAD

From the architecture of mCFS, it is obvious that only the
ASVR updater incurs an extra runtime overhead to the kernel
scheduler. We thus measured the execution time of the ASVR

updater while running the benchmark 619.lbm_s. As a
result of the measurement, we obtained 3,624ns. Since the
ASVR updater is invoked every 4ms by the scheduling tick
handler, the extra runtime overhead is only 0.091%.

VIII. CONCLUSION

We presented a memory-aware fair-share scheduling
algorithm that makes QoS applications less susceptible to
memory-related interference from other co-running
applications. Our algorithm dynamically separates the
genuine memory-related stall from a running task’s backend
stall cycles and compensates the task for the memory-related
interference so that the task gets the desired share of CPU
before it is too late.

 To compute the genuine memory-related stall amount of
a task, our algorithm first defines the average intrinsic
backend stall rate of a task. It estimates the amount of the
task’s intrinsic backend stall using the IBSR and deducts it
from the task’s entire backend stall amount. Our algorithm
actualizes the CPU time of a task by decreasing the task’s

physical CPU time according to the estimated memory-
related interference. To take into account performance
asymmetry among cores caused by inevitable DVFS, our
algorithm scales the actualized CPU time according to the
relative performance of the core hosting the task. The
algorithm finally computes the virtual runtime so that the task
becomes schedulable by CFS.

Our algorithm is a compensation-based temporal memory
resource isolation technique. As a result, it does not rely on
either inflexible resource management, ineffective execution
throttling or potentially wasteful execution restriction.
Moreover, it seamlessly supports the performance asymmetry
of multicore architecture.

Since our algorithm is a software-only solution, we could
implement it into the CFS of the Linux kernel, with minimal
modifications to the kernel. We named the end result mCFS.
We have also conducted extensive experiments to validate the
effectiveness of mCFS. The experimental results assert that
mCFS is effective in protecting QoS applications from
memory-related interference as well as it is adaptive, resilient
and efficient. We make the source code for mCFS freely

available through the github [9].

REFERENCES
[1] N. Otterness, M. Yang, S. Rust, E. Park, J. H. Anderson, F. D. Smith,

A. Berg and S. Wang, “An evaluation of the NVIDIA TX1 for
supporting real-time computer-vision workloads,” in proc. 23rd IEEE
Real-Time and Embedded Technology and Applications Symposium
(RTAS), Pittsburgh, PA, 2017, pp. 353-364.

[2] A. Gupta and R. K. Jha, “A survey of 5G network: Architecture and
emerging technologies,” IEEE Access, vol. 3, pp. 1206-1232, 2015.

[3] S. Huh, J. Yoo and S. Hong, “Improving interactivity via VT-CFS and
framework-assisted task characterization for Linux/Android
Smartphones,” in proc. IEEE Int. Conf. Embedded and Real-Time
Computing Systems and Applications (RTCSA), Seoul, 2012, pp. 250-
259.

[4] S. Huh, J. Yoo and S. Hong, “Cross-layer resource control and
scheduling for improving interactivity in Android,” International
Journal of Software: Practice and Experience, vol. 45, issue. 11, pp.
1549-1570, Nov. 2015.

[5] M. Kim, S. Noh, S. Huh and S. Hong, “Fair-share scheduling for
performance-asymmetric multicore architecture via scaled virtual
runtime,” in proc. IEEE 21st Int. Conf. Embedded and Real-Time
Computing Systems and Applications (RTCSA), Hong Kong, 2015, pp.
60-69.

[6] M. Kim, S. Noh, J. Hyeon and S. Hong, “Fair-share scheduling in
single-ISA asymmetric multicore architecture via scaled virtual

FIGURE 10. Performance degradation of best-effort applications on

mCFS according to memory intensiveness of QoS applications.

FIGURE 11. Performance degradation of best-effort applications on

mCFS according to the ratio of QoS applications and best-effort

applications.

VOLUME XX, 2017

runtime and load redistribution,” Journal of Parallel and Distributed
Computing (JPDC), vol. 111, pp. 174-186, Jan. 2018.

[7] D. Brodowski, “CPUFreq governors,” [online] Available:
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt,
2013

[8] N. Brown, “Improvements in CPU frequency management,” [online]
Available: https://lwn.net/Articles/682391/, 2016.

[9] mCFS implementation code, cache contention generator code,
memory access contention code and QoS task launcher code, [online]
Available: https://github.com/yearnotw/mCFS.git.

[10] R. Cavicchioli, N. Capodieci and M. Bertogna, “Memory interference
characterization between CPU cores and integrated GPUs in mixed-
criticality platforms,” in proc. 22nd IEEE Int. Conf. Emerging
Technologies and Factory Automation (ETFA), Limassol, 2017, pp. 1-
10.

[11] H. Wen and Z. Wei, “Interference evaluation in CPU-GPU
heterogeneous computing”, in proc. IEEE High Performance Extreme
Computing Conference (HPEC), Waltham, MA, 2017

[12] S. P. Muralidhara, L. Subramanian, O. Mutlu, M. Kandemir and T.
Moscibroda, “Reducing memory interference in multicore systems via
application-aware memory channel partitioning,” in proc. 44th Annual
IEEE/ACM Int. Symposium on Microarchitecture (MICRO), Porto
Alegre, 2011, pp. 374-385.

[13] Lei Liu, Z. Cui, Mingjie Xing, Y. Bao, M. Chen and Chengyong Wu,
“A software memory partition approach for eliminating bank-level
interference in multicore systems,” in proc. 21st Int. Conf. Parallel
Architectures and Compilation Techniques (PACT), Minneapolis, MN,
2012, pp. 367-375.

[14] N. El-Sayed, A. Mukkara, P. Tsai, H. Kasture, X. Ma and D. Sanchez,
“KPart: A hybrid cache partitioning-sharing technique for commodity
multicores,” in proc. IEEE Int. Symposium on High Performance
Computer Architecture (HPCA), Vienna, 2018, pp. 104-117.

[15] A. Herdrich, R. Illikkal, R. Iyer, D. Newell, V. Chadha and J. Moses,
“Rate-based QoS techniques for cache/memory in CMP platforms,” in
proc. 23rd ACM Int. Conf. Supercomputing, Yorktown Heights, NY,
2009, pp. 479-488.

[16] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo and L. Sha, “MemGuard:
Memory bandwidth reservation system for efficient performance
isolation in multi-core platforms,” in proc. IEEE 19th Real-Time and
Embedded Technology and Applications Symposium (RTAS),
Philadelphia, PA, 2013, pp. 55-64.

[17] J. Kim, P. Shin, S. Noh, D. Ham and S. Hong, “Reducing memory
interference latency of safety-critical applications via memory request
throttling and Linux cgroup,” in proc. 31st IEEE Int. System-on-Chip
Conference (SOCC), Washington DC, 2018, pp. 215-220.

[18] E. Ebrahimi, C. J. Lee, O. Mutlu, Y. N. Patt, “Fairness via source
throttling: A configurable and high-performance fairness substrate for
multi-core memory systems”, ACM SIGPLAN Notices, vol. 45, no. 3,
pp. 335-346, Mar. 2010.

[19] D. Xu, C. Wu, P. Yew, J. Li, and Z. Wang, “Providing fairness on
shared-memory multiprocessors via process scheduling,”
SIGMETRICS Perform. Eval. Rev., vol. 40, no. 1, pp. 295-306, Jun.
2012.

[20] A. Fedorova, M. Seltzer and M. D. Smith, “Improving performance
isolation on chip multiprocessors via an operating system scheduler,”
in proc. 16th Int. Conf. Parallel Architecture and Compilation
Techniques (PACT), Brasov, 2007, pp. 25-38.

[21] S. Barati and H. Hoffmann, “Providing fairness in heterogeneous
multicores with a predictive, adaptive scheduler,” in proc. IEEE Int.
Parallel and Distributed Processing Symposium Workshops
(IPDPSW), Chicago, IL, 2016, pp. 38-49.

[22] Xavier series SoC technical reference manual, NVIDIA Co., Santa
Clara, CA, USA, 2019.

[23] ARMv8 architecture reference manual, ARM Ltd., Cambridge, UK,
2017.

[24] A. Yasin, “A top-down method for performance analysis and counters
architecture,” in proc. IEEE Int. Symposium on Performance Analysis
of Systems and Software (ISPASS), Monterey, CA, 2014, pp. 35-44.

[25] C. S. Pabla, “Completely fair scheduler,” Linux Journal, 2009.

[26] SPEC, “SPEC CPU®2017 Utilities,” [online] Available:
https://www.spec.org/cpu2017/Docs/utility.html.

[27] R. Hebbar S R and A. Milenković, “SPEC CPU2017: Performance,
event, and energy characterization on the Core i7-8700K,” in proc.
ACM/SPEC Int. Conf. Performance Engineering (ICPE), New York,
NY, 2019, pp. 111-118.

[28] YOLOFace, [online] Available: https://github.com/sthanhng/yoloface

Jungho Kim earned his B.S. degree in the
Department of Electronic and Electrical

Engineering and the Department of Computer

Science and Engineering from Pohang University
of Science and Technology, Korea, in 2010. He

earned his M.S. degree in the Department of

Electrical and Computer Engineering from Seoul
National University, Korea, in 2013. He is

currently a Ph.D. candidate in the Department of

Transdisciplinary Studies, Graduate School of
Convergence Science and Technology, Seoul National University, Korea.

He is also a member of Real-Time Operating System Laboratory at Seoul

National University. His current research interests include software
architecture for embedded systems, Linux kernel techniques for resource

management.

Philkyue Shin earned his B.S. degrees in the

Department of Electrical and Computer

Engineering from Seoul National University,
Korea, in 2017. He is currently a Ph.D. candidate

in the Department of Electrical and Computer

Engineering at Seoul National University, Korea.
He is also a member of Real-Time Operating

System Laboratory at Seoul National University.

His current research interests include Linux
kernel techniques for active resource

management.

Myungsun Kim is currently an assistant professor

of Division of IT Convergence Engineering at

Hansung University. He had worked in the R&D

center of Samsung Electronics from 2002 to 2018.

His fields of research in Samsung R&D were
processor architecture for DNN, heterogeneous

core computing, Linux kernel internal, Android

framework and SoC simulators. He earned his BS
and MS degrees in Electrical Engineering from

Chung-Ang University, in 1998 and 2000,

respectively. He received his PhD degree in the
Department of Electrical and Computer Engineering at Seoul National

University, in 2016. His current research interests include DNN computing,

embedded and real-time systems design, HW/SW cross-layer optimization.

Seongsoo Hong earned his B.S. and M.S. degrees

in computer engineering from Seoul National
University, Korea, in 1986 and 1988, respectively.

He received his Ph.D. degree in computer science

from the University of Maryland, College Park, in
1994. He is currently a professor in the

Department of Electrical and Computer

Engineering at Seoul National University. His
current research interests include embedded and

real-time systems design, real-time operating

systems, software architecture for embedded and real-time systems and
cross-layer optimization of complex multi-layered software systems. He is

the steering committee of IEEE RTCSA. He served as a general co-chair of

IEEE RTCSA 2006 and CASES 2006 and as a program committee co-chair
of IEEE RTAS 2005, RTCSA 2003, IEEE ISORC 2002 and ACM LCTES

2001. He has served on numerous program committees, including IEEE

RTSS and ACM OOPSLA. He is a member of the National Academy of
Engineering of Korea. He is currently a senior member of the IEEE and a

senior member of the ACM.

