

Abstract— Autonomous machines have begun to be widely

used in various application domains due to recent remarkable

advances in machine intelligence. As these autonomous machines

are equipped with diverse sensors, multicore processors and

distributed computing nodes, their software architecture has

become more and more complex. This leads to a demand for a

new programming framework that has an easy-to-use

programming abstraction. In addition, such framework requires

support for genuine end-to-end timing constraints and run-time

detection of their violation. In this paper, we present a graphical

programming framework named Splash that explicitly addresses

the programming challenges that arise during the development of

an autonomous machine. We set four design goals to solve these

challenges. First, Splash must provide an effective programming

abstraction that supports the stream processing of an

autonomous machine. Second, it must enable programmers to

specify genuine, end-to-end timing constraints and monitor the

violation of such constraints. Third, it must support exception

handling, mode change and sensor fusion. Finally, it must

support performance optimization and tuning during system

implementation. We present the syntax and semantics of the key

language constructs of Splash and show how we achieve our

design goals. To show the utility of our programming framework,

we have written an adaptive cruise control (ACC) application in

Splash as an example. We also present the findings that we have

obtained during the development process of the ACC application

using Splash.

I. INTRODUCTION

With recent remarkable advances in machine intelligence,
autonomous machines have been actively developed and
begun to be widely used in various application domains.
Representative examples of such machines include drones,
robots and self-driving cars. Often times, they are equipped
with diverse sensors for perception, localization and
positioning [1]. They also include high performance multicore
processors for intelligence and microcontrollers for real-time
control [2].

These hardware components are interconnected via
onboard networks inside autonomous machines [3]. Due to the

This research was supported by Samsung Electronics Co., Ltd., Korea (No.

0115-20180001) and Institute for Information & communications

Technology Promotion (IITP) grant funded by the Korea government (MSIT)

(No. R7117-16-0164, Development of wide area driving environment

awareness and cooperative driving technology which are based on V2X

wireless communication).

Soonhyun Noh is with the Electrical and Computer Engineering

Department, Seoul National University, Seoul, Korea (e-mail:

shnoh@redwood.snu.ac.kr).

Seongsoo Hong is with the Electrical and Computer Engineering

Department, Seoul National University, Seoul, Korea. (corresponding author

to provide phone: 82-2-880-8357; fax: 82-2-871-5974; e-mail:

sshong@redwood.snu.ac.kr).

heterogeneous, distributed and multicore nature of the
underlying computing platform, the software architecture of an
autonomous machine has become more and more complex. Its
complexity has reached a point where programmers must
resort to a versatile programming framework that has an
easy-to-use programming abstraction that can hide
implementation details, and supports a model-based code
generation capability. Additionally, such a framework needs to
support genuine, end-to-end timing constraints such as a
freshness, correlation and rate constraint, which means that it
must support the detection of the aforementioned timing
constraints as well as handling of its exceptions.

Quite a few graphical programming frameworks have been
widely used in practice, particularly for automatic control and
signal processing domains. Such frameworks include Simulink
and RTMaps [4][5]. Also, several academic programming
frameworks such as Ptolemy II exist for research purposes [6].
Except for RTMaps, most of the existing frameworks were
designed and developed for a broad range of reactive
embedded systems.

Simulink is one of the most representative commercial
programming frameworks. It can support both time-driven and
event-driven data processing. Unfortunately, it does not fulfil
our design goals; it does not support end-to-end timing
constraints that must be considered when implementing an
autonomous machine; it does not offer language constructs for
exception handling and sensor fusion; and it provides little or
no support for the performance optimization and tuning of a
resultant system to run on a distributed multicore computing
platform.

RTMaps is well suited for the development of a system that
has to deal with multiple sensors and actuators like an
autonomous machine. It has many features in common with
our approach. RTMaps supports time as a first-class entity and
records a timestamp on each data item. As result, it can offer a
method for specifying and handling freshness and correlation
constraints. It allows programmers to write applications in
both data and time-driven programming styles. However, it
has several limitations that makes it unfit for our design goals.
First, RTMaps does not consider a rate constraint in an explicit
manner. Thus, programmers must independently develop their
own rate control mechanism, creating spaces for error. Second,
it does not support concurrency models explicitly, leaving
programmers with the responsibility of thread creation and
synchronization. Third, RTMaps does not offer a language
construct for asynchronous event notification and handling.
Finally, RTMaps lacks support for imperative programming
such as mode change and exception handling.

Splash: A Graphical Programming Framework for an Autonomous

Machine

Soonhyun Noh and Seongsoo Hong

Ptolemy II is an academic programming framework
capable of supporting a wide variety of process network
models. Thus, programmers can write an application utilizing
several different models at the same time. Ptolemy II offers
rich support for imperative programing such as mode change
and exception handling. However, Ptolemy II lacks support for
real-time stream processing except Ptide. It is an experimental
model and allows a freshness constraint to be specified on a
sensor value [7]. But it does not support a rate constraint or a
correlation constraint. Like RTMaps, Ptolemy II lacks a
concurrency model or a thread-to-core allocation mechanism
inside a process. Simply, it maps each process to a Java thread
and delegates thread scheduling to the underlying operating
system.

In this paper, we present a graphical programming
framework named Splash to explicitly address such
programming challenges that arise during the development of
an autonomous machine. For Splash, we have the following
design goals in mind. First, Splash must provide an effective
programming abstraction that supports the stream processing
of an autonomous machine. Second, it must be able to specify
genuine, end-to-end timing constraints and monitor the
violation of such constraints. Third, it must support exception
handling, mode change and sensor fusion that make the most
critical engineering features of an autonomous machine. Lastly,
Splash must support performance optimization and tuning
during system implementation.

We present the syntax and semantics of the key language
constructs of Splash and show how we achieve our goals. To
do so, we organize this paper as follows. In Section II, we
present the underlying timing semantics of Splash and three
end-to-end timing constraints. In Section III, we explain in
detail the core language constructs of Splash. Section IV
shows an example program written in Splash to show the
utility of the Splash language constructs, along with lessons
learned. Section V concludes this paper.

II. TIMING SEMANTICS AND END-TO-END TIMING

CONSTRAINTS

Time is a first-class entity in Splash. Reading the time in a
Splash program is supported by an abstract global clock that is
possibly implemented via distributed local clock
synchronization [8]. In Splash, a data item that flows through

the system carries the timestamps of noticeable event
occurrences associated with it. The primary timestamp
required for a data item is its own creation time. Often, this
time stamp is created through a sensor. We call this the
birthmark of a data item.

In Splash, every live data item is assigned with its own
birthmark. The birthmark can also be inherited from its oldest
ancestor if the data item is generated by an intermediate
process. Enforcing time constraints involves comparing the
birthmark of a data item with the current time.

Splash supports three types of genuine, end-to-end timing
constraints [9].

(1) A freshness constraint on a single sensor value: It
bounds the time it takes for a sensor value to flow
through the system. A sensor value will become
useless if it exceeds the freshness constraint since a
sensor value gets stale with time.

(2) A correlation constraint on multiple sensor values: It
limits the maximum time difference among a group of
distinct sensor values used for sensor fusion.

(3) A rate constraint on an output port of a process: It
defines the number of output data items produced per
second. A rate constraint is a soft real-time constraint
in a sense that the Splash runtime tries its best to
minimize the jitter between consecutive data items on
a channel, but cannot guarantee that the stream output
port is jitter-free.

Developers are allowed to explicitly annotate these three
types of timing constraints via language constructs in a Splash
program. The Splash runtime will raise an exception if it
detects the violation of an annotated timing constraint at
runtime.

The Splash programming framework is designed to
support real-time stream processing on a distributed, and
possibly multicore computing platform for an autonomous
machine. The timing semantics explained in this section
clearly lays foundation for the semantics of the language
constructs of Splash. In the next section, we elaborate upon
them.

Component +component

0..*

AtomicComponent Factory

SinkComponentSourceComponentProcessingComponent FusionOperator

Figure 1. Hierarchy of Splash components.

III. LANGUAGE CONSTRUCTS OF SPLASH

A Splash program consists of processing nodes and edges
between two processing nodes. In the Splash terminology, a
node and an edge are called a component and a channel,
respectively. A component in a Splash program is either an
atomic component or a composite component. A composite
component is also called a factory. Atomic components are
further classified into four different types: (1) a processing
component, (2) a source component, (3) a sink component, and
(4) a fusion operator. Figure 1 shows the hierarchical
relationships among the diverse Splash components in the
UML diagram format.

A component has stream input ports and stream output
ports with the exception of the source and the sink component.
The stream output port of an upstream component is connected
to the stream input port of a downstream component and such
connection creates a channel. Figure 2 shows a sample Splash
program that consists of various components, channels and
ports.

A. Processing Component

The most essential language construct in Splash is a
processing component since it actually performs computation
on input data items and produces output data items. Surely, a
processing component serves as a building block for
constructing a Splash program. Figure 3 shows the graphical
representation of a processing component with two stream
input ports and two stream output ports.

In order to exploit parallelism explicitly from the
underlying operating system and computing platform, Splash
offers a multithreaded process model. It also provides a
container model to aid developers in performing
thread-to-processor allocation. In the multithreaded process
model, a processing component consists of a group of Splash
threads we call sthreads. An sthread is a logical entity of
independent execution inside a processing component. Figure

4 shows a processing component example where a dedicated
sthread is attached to each port and internal sthreads serve as
worker threads as in the concurrent server design pattern [10].

As a sthread is an abstract entity, it needs to be mapped to a
thread of an underlying operating system during the system
implementation process. Since the thread is an execution entity,
it must eventually run on a specific core of a specific processor
on a specific computing node. Such mapping involves
thread-to-core allocation. To facilitate this process, Splash
offers an allocation entity called a container.

B. Port

Splash supports three types of ports: (1) stream
input/output ports for sending and receiving stream data, (2)
event input/output ports for delivering events and (3) mode
change input/output port for passing mode change signals.
Each port type has a unique graphical symbol as shown
TABLE I.

A stream output port is connected to a stream input port via
a channel. We differentiate from a channel a connection
between event ports or a connection between mode change
ports. Such connections carry control signals or discrete data
items, instead of a data stream. We refer to them as control
links or clinks for short.

Input and output port types are the subtypes of the port type
as described in Figure 5. Each port type is associated with one
of three port interfaces: stream, event and mode change port
interfaces. Clearly, an output port and an input port connected
by a channel or a clink must share the same port interface.
Figure 6 shows the three port interfaces. As in the figure, each

2D Object Detection

Detect

Objects

Interpolate

Objects

Track

Objects

Camera

Image Labeled

Objects

Figure 2. Sample Splash program: 2D object detection.

Figure 3. Graphical representation of a precessing component.

Sthreads

Internal

Sthreads

Dedicated

Sthread

Dispatch Internal

Sthreads

Dedicated

Sthread

Dispatch

Mapped to the

First Input Port

Mapped to the

Second Input Port

Figure 4. Process and its sthreads.

TABLE I. GRAPHICAL SYMBOLS FOR PORTS

Port Type Input Output

Stream

Port

Event

Port

Mode Change

Port

port interface has a data type for data items it sends or receives.
A data type can be a primitive data type or a composite data
type. Splash supports five primitive data types: (1) a Boolean
type, (2) an integer type, (3) a real type, (4) a character type
and (5) a string type. Splash supports two composite data
types: (1) arrays and (2) records.

Splash developers can annotate a rate constraint on a
stream output port. As mentioned in Section II, a rate
constraint is regarded as a soft real-time constraint; the Splash
runtime tries its best to minimize the jitter between consecutive
data items on a channel, but cannot guarantee that the stream
output port is jitter-free.

C. Channel

A channel is a delivery path for steam data. It is

represented by a solid line from a stream output port to a
stream input port. Figure 7 (A) shows the graphical
representation of a channel.

In order to store data items on a channel until they are
consumed by a downstream component, a FIFO queue is used.
In Splash, a FIFO queue is considered to be on the stream input
port of the downstream component instead of the stream
output port of the upstream component. The fan-in of a
channel is restricted to one but the fan-out of a channel can be
greater than one. Where a channel is connected to multiple
input ports, all data items generated from an output port are
replicated and enqueued into each of the FIFO queues on the
input ports of downstream components.

D. Clink

A clink is a delivery path for events and mode change
signals. It is represented by a dotted line from an output port to
an input port. Figure 7 (B) shows the graphical representation
of a clink between event ports and a clink between mode
change ports.

Like a channel, a clink uses a FIFO queue to store events or
mode change signals. This queue is considered to be on an
event input port or a mode change input port. Unlike a channel,
both the fan-in and fan-out of a clink are restricted to one.

E. Fusion Operator

A fusion operator is a component that merges multiple
stream data into a single stream data. It has multiple stream
input ports and one stream output port. The graphical
representation of a fusion operator is shown in Figure 8.

A fusion operator can be effectively used for sensor fusion
in an autonomous machine. Programmers can annotate a
correlation constraint on a fusion operator. When the fusion
operator is triggered, it extracts a data item from each stream
input port and build an output tuple in such a way that the
correlation constraint is satisfied. If a fusion operator can

Port+port

1..*

InputPort OutputPort

PortInterface

+inputInterface +outputInterface1 1

Component

Figure 5. Input and output ports as subtype of port.

PortInterface

StreamInterface ModeChangeInterfaceEventInterface

1..*+dataItem

DataType

1..* 1..*+mode+event

Figure 6. Hierarch of port interfaces.

(A) (B)

Figure 7. Channel and clinks.

Figure 8. Fusion operator.

(A) (B)

Figure 9. Source and sink component.

generate multiple output tuples, it actually produces a tuple
with the oldest data items. If such an output tuple cannot be
created, the Splash runtime raises an exception.

F. Source Component

A source component is an atomic component that produces
stream data items from a sensor. It has a single stream output
port. Figure 9 (A) shows the graphical representation of a
source component.

All data items produced from a source component must
have its own birthmarks. The programmer of a source
component is responsible for recording a birthmark. An
exception is raised whenever a data item without a birthmark is
found at runtime.

Programmers can annotate a freshness constraint on a
source component. Such freshness constraint is automatically
recorded on all data items generated by the source component.
The Splash runtime checks whether a data item violates its
freshness constraint each time it is enqueued into or dequeued
from a FIFO queue on a channel. If a freshness constraint is
violated, the data item is discarded immediately. Programmers
may regard it as an exception and execute a handler.

G. Sink Component

A sink component is an atomic component that consumes
stream data items and delivers each of them to an actuator. It

has a single stream input port and no stream output port. The
graphical representation of a sink component is shown in
Figure 9 (B).

H. Factory

A factory is the largest building block of a Splash program.
It contains a piece of a Splash program that serves as a
subprogram in a procedural language. Splash distinguishes the
stream port of a factory from the stream port of an atomic
component by using a different symbol.

In Splash, a factory may have multiple modes of operations.
In such case, a factory consists of as many alternative factories
as the mode. Each alternative factory corresponds to a certain
mode. Figure 10 shows a factory with two operation modes.
Mode change is triggered by a mode change signal that arrives
on the mode change input port of a factory. On each mode
change, the Splash runtime processes all the current data items
and empties all the FIFO queues inside the factory while
blocking incoming data items and then starts a new mode.

IV. EXAMPLE PROGRAM IN SPLASH

To better illustrate the utility of Splash, we have written an
adaptive cruise control (ACC) application in Splash. This
application automatically adjusts the vehicle speed to maintain
a safe distance from a front vehicle. We explain its overall
application logic along with its timing constraints annotation.

A. Application Logic

Figure 11 shows the top-level factory of the application,
labeled as ACC. Its inputs include a 2D image stream from a

camera sensor, a set of 3D points from a LiDAR sensor and the
current steering angle and speed of the ego vehicle. Its output
is the target acceleration of the vehicle. The top-level factory
consists of two sub-factories: (1) 3D object detection

and (2) vehicle speed adjustment.

The 3D object detection factory is shown in

Figure 12. We design this factory based on the algorithm in

 Mode BMode A

Figure 10. Factory.

ACC

Vehicle Speed Adjustment3D Object Detection

Target
Acceleration

2D Image

3D Points

Current
Steering Angle

Source Component Attribute

Freshness Constraint 150ms

Current Speed

Source Component Attribute

Freshness Constraint 150ms

Source Component Attribute

Freshness Constraint 150ms

Source Component Attribute

Freshness Constraint 150ms

Output Port Attribute

Rate Constraint 10Hz

Figure 11. ACC factory.

[11]. The primary task of the factory is to detect all objects
surrounding the ego vehicle, such as other vehicles,
pedestrians and traffic lights. In doing so, it uses the 2D image
stream and the 3D point cloud. As an output, it generates a set
of surrounding objects with associated meta-data: class,
position and velocity.

The vehicle speed adjustment factory is shown in

Figure 13. It merges a group of surrounding objects with the
current steering angle using a fusion operator. It then derives
obstacles in front of the ego vehicle using the processing
component labeled as “Select front obstacles.” The

factory goes on merging the front obstacles with the current
vehicle speed. Finally, it generates the target speed and the
target acceleration.

3D Object Detection

Cluster
Point Cloud

Calculate
Coordinates
of Objects

Select
Obstacles

Project
Points

Estimate
Distance

of Objects

2D Object Detection

Track
Obstacles

Fusion Operator Attribute

Correlation Constraint 20ms

Fusion Operator Attribute

Correlation Constraint 20ms

Figure 12. 3D object detection factory.

Vehicle Speed Adjustment

Select Front
Obstacles Calculate

Target Speed
Calculate
Target

Acceleration

Fusion Operator Attribute

Correlation Constraint 40ms

Fusion Operator Attribute

Correlation Constraint 40ms

Figure 13. Vehicle speed adjustment factory.

B. Timing Constraints Annotation

We annotate three types of timing constraints in the ACC
program. First, we set freshness constraints to the same value
of 150ms for the four source components since freshness
constraints must consider the maximum vehicle speed. Second,
we set a rate constraint to 10Hz for the stream output port of
the ACC factory. In Splash, freshness and rate constraints are

specified as meta-data for related language constructs, as
depicted in Figure 11. Finally, we annotate correlation
constraints with the fusion operators as specified in Figure 12
and Figure 13. The correlation constraints of two fusion
operators in the 3D object detection factory are set to

20ms. Those of the two fusion operators in the vehicle

speed adjustment factory are set to 40ms.

C. Lessons Learned

We discuss the lessons that we have learned from writing
the ACC application with the Splash programming language.

 Among the various language constructs offered by
Splash, what we have benefited the most is surely the
fusion operator. We were able to write cleaner code
with Splash since we could avoid manually handling
time synchronization that arises in specifying sensor
fusion. Without the fusion operator, a programmer
would have to insert temporal correlation code into the
logic of the corresponding processing component.
This could easily lead to hard-to-understand and
hard-to-maintain code.

 From the perspective of language semantics, we took
the greatest advantage of its timing semantics that
provides a global time base, the birthmark of a live
data item and end-to-end timing constraints. We could
validate, both statically and dynamically, the code
produced by the Splash code generator, with respect to
end-to-end timing constraints. This is because all
timing constraints were made explicit in our program
and were monitored for their violation at runtime.

 As of writing this paper, Splash is currently evolving.
It surely has room for improvement. Programmers
would benefit even more if Splash could handle traffic
shaping on the stream output ports of a processing
component. Programmers must gracefully manage
bursty data traffic caused by the variability of
communication delay and execution time inside an
autonomous machine. If the Splash code generator can
automatically attach a traffic shaper to the stream
output port, programmers will be free from
uncontrolled jitter and queue overflow.

V. CONCLUSION

In this paper, we proposed the Splash framework for
programming an autonomous machine. We first presented our
goals we had in mind during the design of Splash and its
underlying timing semantics. We then explained in detail the
core language constructs of Splash. We have verified that our
programming framework achieves our design goals: (1) it
provides an effective programming abstraction that supports
the stream processing of an autonomous machine; (2) it

enables programmers to specify genuine, end-to-end timing
constraints and monitor the violation of such constraints; (3) it
supports exception handling, mode change and sensor fusion;
and (4) it supports performance optimization and tuning
during system implementation. To better illustrate the utility of
Splash, we developed an adaptive cruise control (ACC)
application using Splash.

There are several future research directions along which
our programming framework can be extended. First, we are
planning to include traffic shaping mechanisms on Splash to
better control jitter and bound the size of FIFO queues. Second,
we plan on adding triggering rules that can specify various
triggering conditions for processing components having
multiple stream input ports. Finally, we will attempt to
evaluate the performance and run-time overhead of realistic
Splash programs with extensive experiments. The result looks
promising.

REFERENCES

[1] W. Shi, M. B. Alawieha, X. Li and H. Yu, "Algorithm and hardware

implementation for visual perception system in autonomous vehicle: A

survey," Integration, the VLSI Journal, no. 59, pp. 148-156, 2017.

[2] NVIDIA, "Jetson AGX Xavier Developer Kit," [Online]. Available:

https://developer.nvidia.com/embedded/buy/jetson-agx-xavier-devkit.

[Accessed 29 1 2019].

[3] L. Reger, "The EE architecture for autonomous driving: a domain-based

approach," ATZelektronik worldwide, 2017.

[4] "Simulink," [Online]. Available:

https://www.mathworks.com/help/simulink/index.html.

[5] N. d. Lac, C. Delaunay and G. Michel, "RTMaps: real time, multisensor,

advanced prototyping software," in First National Workshop on Control

Architectures of Robots, 2008.

[6] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S.

Neuendorffer, S. Sachs and Y. Xiong, "Taming heterogeneity - the

Ptolemy approach," Proceedings of the IEEE, vol. 91, no. 1, pp. 127 -

144, 2003.

[7] P. Derler, T. H. Feng, E. A. Lee, S. Matic, H. D. Patel, Y. Zhao and J.

Zou, "PTIDES: a programming model for distributed real-time

embedded systems," Technical Report No. UCB/EECS-2008-72, 2008.

[8] H. Kopetz and G. Grunsteidl, "TTP - A time-triggered protocol for

fault-tolerant real-time systems," in The Twenty-Third International

Symposium on Fault-Tolerant Computing, 1993.

[9] R. Gerber, S. Hong and M. Saksena, "Guaranteeing real-time

requirements with resource-based calibration of periodic processes,"

IEEE Transactions on Software Engineering, vol. 21, no. 7, pp. 579-592,

1995.

[10] C. Breshears, The art of concurrency, O'Reilly, 2009.

[11] S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M. Hirabayashi, Y.

Kitsukawa, A. Monrroy, T. Ando, Y. Fujii and T. Azumi, "Autoware on

board: enabling autonomous vehicles with embedded systems," in 2018

ACM/IEEE 9th International Conference on Cyber-Physical Systems

(ICCPS), 2018.

