
Perfecting Preemption Threshold Scheduling
for Object-Oriented Real-Time System Design:

From the Perspective of Real-Time Synchronization

Saehwa Kim
School of Electrical Engineering and

Computer Science
 Seoul National University

Seoul 151-742, Korea
+82-2-880-8370

ksaehwa@redwood.snu.ac.kr

Seongsoo Hong
School of Electrical Engineering and

Computer Science
Seoul National University

Seoul 151-742, Korea
+82-2-880-8357

sshong@redwood.snu.ac.kr

Tae-Hyung Kim
Dept. of Computer Science and

Engineering
Hanyang University

Ansan, Kyunggi-Do 425-791, Korea
+82-31-400-5668

tkim@cse.hanyang.ac.kr

ABSTRACT
In spite of the proliferation of object-oriented design methodologies
in contemporary software development, their application to real-
time embedded systems has been limited because of the
practitioner’s conservative attitude toward handling timing
constraints. In fact, this conservative attitude is well-grounded
because traditional priority-based scheduling techniques cannot be
straightforwardly integrated into them. The automated
implementation from the object-oriented real-time designs usually
incurs a large number of tasks which, under traditional priority-
based scheduling techniques, does not scale well due to excessive
preemption overheads. Recently, preemption threshold scheduling
was introduced to reduce run-time multi-tasking overhead while
improving schedulability by exploiting non-preemptibility as much
as possible. Unfortunately, the preemption threshold scheduling
cannot be directly adopted into the object-oriented design methods
due to the lack of real-time synchronization.

In this paper, we present the essential basis of real-time
synchronization for preemption threshold scheduling. Specifically,
we integrate the priority inheritance protocol, the priority ceiling
protocol, and the immediate inheritance protocol into preemption
threshold scheduling. We also provide their schedulability analyses.
Consequently, the integrated scheme, which minimizes worst-case
context switches, is appropriate for the automated implementation of
real-time object-oriented design models

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management – scheduling.

General Terms
Theory

Keywords
Preemption threshold scheduling, real-time synchronization, priority
inheritance protocols, priority ceiling protocol, object-oriented real-
time system design.

1. INTRODUCTION
Developing a real-time embedded system is a sophisticated task. The
monolithic approach to developing large and/or complex computer
systems is coming to an end in the era of contemporary software
development. Nonetheless, intrinsic difficulties arising from timing
constraints in the real-time embedded applications still tie up
practitioners with a rather conservative approach to developing
embedded systems. Many early real-time system researchers have
attached importance to timing analysis at design time in order to
derive a set of feasible tasks [11, 13, 14]. This has been quite
successful and real-time programmers are able to safely and reliably
derive a feasible set of tasks in advance.

However, as real-time embedded systems get complex and
sophisticated to meet the increased degree of safety, reliability, and
performance requirements, it becomes inevitable for real-time
system designers to rely on systematic software design
methodologies during system development. Among a wide variety
of software design methodologies, object-oriented design
methodologies have become dominant and popular since they allow
for easy software maintenance, software reuse, and component-
based coding of complex real-time systems that may evolve over
time. A recent trend in embedded systems development even tries to
hit the lines of hardware by harnessing software to implement
physical layer functions in pursuit of its apparent advantages: re-
usability of hardware resources, ease of upgrades, flexibility to build
a dual- or multiple-standards implementation, and so on. Software
defined radio (SDR) is one of those representative approaches.

To cope with the additional complexity, the object-oriented design
methodology should be seamlessly integrated into traditional real-
time schedulability analysis techniques, so that embedded system
programmers can be equipped with systematic software design
methodologies and CASE tools as well. Traditional preemptive
fixed priority scheduling cannot be directly used in this integration
largely owing to its excessive run-time overhead. Preemption
threshold scheduling (PTS) improves both run-time overhead and
schedulability, but still cannot be directly used to this end either,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
LCTES’02–SCOPES’02, June 19-21, 2002, Berlin, Germany.
Copyright 2002 ACM 1-58113-527-0/02/0006…$5.00.

223

since real-time synchronization problems remain unsolved. In this
paper, we present an essential basis for their integration by
perfecting preemption threshold scheduling [1, 2, 12] for real-time
synchronization.

1.1 Background
Two primary thrusts in embedded systems research are how to
enhance schedulability by devising elaborate scheduling techniques
and how to integrate schedulability analysis techniques into modern
software engineering design and implementation methodologies.
Successfully applied scheduling techniques have been based on
preemptive fixed priority scheduling in most real-time systems
developments since Liu and Layland introduced it in their
pioneering paper [11]. However, dynamic priority schedulers can
achieve higher schedulability than fixed ones, and non-preemptive
schedulers incur less run-time overhead. This means that in fine-
grain or medium-grain thread-based processing, which is the case
especially in multi-threaded implementations from real-time object-
oriented designs, the context switching overhead may overshadow
the benefits of multi-threading and preemptive scheduling.

To alleviate the run-time overhead problem while improving
schedulability, Lamie at Express Logic, Inc. introduced the notion of
preemption threshold [12]. The preemption threshold regulates the
degree of “preemptiveness” in fixed-priority scheduling. If the
threshold of each task is the same as its original priority, then it is
equivalent to the preemptive fixed priority scheduling. If each task
has the highest threshold value in a system, then it becomes a non-
preemptive scheduling. As Wang and Saksena illustrated in [1, 2],
the schedulability of a task set under preemptive scheduling does not
imply that the task set is also schedulable under non-preemptive
scheduling and vice versa. Thus, the preemption threshold
scheduling is a good complement to preemptive fixed-priority
scheduling. It improves schedulability, withholds unnecessary
preemptions, reduces the number of tasks since a group of non-
preemptive tasks can be regarded as a unit, and eventually helps
allow for scalable real-time system design.

In the meantime, there have been several research activities to
integrate schedulability analysis techniques into object-oriented
design methodologies [15, 16] based on the ROOM (Real-time
Object Oriented Modeling) methodology [18]. The integration is to
provide many other advantages of object-oriented design methods
and software engineering tools for the automated implementation of
real-time embedded control systems from ROOM-based design
models. The most difficult part of this integration is how to
automatically produce a thread-based implementation from a real-
time object model with timing constraints. Saksena, et al. initiate
such a method using one-to-one mapping between objects and tasks
for schedulability [15] and improve the performance using
preemption threshold scheduling to reduce the adverse effects of
context switching in an automated implementation [2].

1.2 Approaches and Contributions
A real-time system can be viewed as a collection of concurrent
objects that cooperate with each other. Each object may participate
in multiple system functions, and as a result, is subject to multiple
timing constraints. In this sense, there are two extremes in mapping
between objects and tasks. One is to map all objects into a single

task as in RoseRT for UML-RT [19] and ObjecTime for ROOM
[18]. Although this is a practical approach to reduce blocking time
due to priority inversion, the system cannot be analyzed by the
fixed-priority scheduling theory. The alternative is to map each
object into a single task in order to perform timing analysis within
the object-oriented design techniques as in [15]. Since multi-tasking
in this multi-threaded implementation is expensive, the preemption
threshold scheduling is adopted in [1].

In our previous work, we presented a systematic schedulability-
aware method that can generate a multi-threaded implementation
from a given real-time object-oriented design model [3, 4]. Unlike
the above mentioned approaches, the mapping relationship between
objects and tasks is not biased to many-to-one or one-to-one in our
approach. Tasks are rather automatically identified from a set of
objects. Our method is a three-step process: (1) deriving scenarios
(end-to-end computation units), (2) identifying logical threads, and
then (3) deriving physical threads. Logical threads are mapped from
mutually exclusive scenarios and assigned priorities and preemption
thresholds that guarantee schedulability. To reduce the number of
tasks, those logical threads are partitioned into a mutually exclusive
group of non-preemptive ones. A group of non-preemptive logical
threads is in fact a physical thread.

Since our approach is primarily based upon real-time
synchronization under the preemption threshold scheduling, it needs
to be addressed in a comprehensive manner. Note that an object-
oriented design produces a number of object locks for consistency of
object states and for maintenance of the run-to-completion
semantics of a finite state machine inside each object. Unfortunately,
real-time synchronization under the preemption threshold
scheduling has not been considered yet. In this paper, we consider
the problem of integrating three real-time synchronization schemes
into the preemption threshold scheduling: they are the basic priority
inheritance protocol (BPI) [5], the priority ceiling protocol (PCP)
[5], and the immediate priority inheritance protocol (IIP) [9]. In
doing so, we introduce the notion of effective priority inheritance
and define priority ceiling and preemption threshold ceiling for
reducing run-time overhead. We also investigate their schedulability
analyses.

The remainder of the paper is organized as follows. Section 2
describes the task model with proper definitions for the discussion.
In Section 3, we identify the priority inversion problem under PTS
and present the revised BPI protocol under PTS. In Sections 4 and 5,
we present the properties of PCP and IIP under PTS, and the
schedulability analyses of the proposed protocols, respectively. We
conclude this paper in Section 6.

2. TASK MODEL
The task model used here is very similar to that used in [1, 2, 5]. We
assume a uniprocessor environment and allow only properly nested
mutexes. We further assume a system with a fixed set of tasks, each
of which has a fixed period, known worst-case execution time, fixed
priority, and preemption threshold. We denote a higher priority with
a larger value since this befits the intuitive meaning of being a
higher threshold. The notations and their descriptions used
throughout the paper are summarized in Table 1.

224

Table 1. Summary of notations for the task model.

Notation Description
τi A task
Ti The period of task τi
Ci The worst-case execution time of task τi
πi The fixed-priority of task τi
γi The preemption threshold of task τi
pi The effective priority of task τi
Mi A mutex (binary semaphore)

P(Mi),
V(Mi)

Indivisible lock and unlock operation of mutex Mi

ϕ(Mi) The ceiling of mutex Mi
Ψi The set of tasks that may use mutex Mi
Φi The set of mutexes that task τi may use
ξi The set of mutexes that are currently locked by task τi

zi,k
The duration of critical section of task τi guarded by
mutex Mk

βi The blocking time of task τi due to synchronization

Bi The PTS blocking time of task τi

Si The start time of task τi

Fi The finish time of task τi

Ri The response time of task τi

Under PTS, each task has a preemption threshold in addition to its
regular priority. Note that it is meaningful to assign a task a
preemption threshold that is no less than its regular priority since a
preemption threshold is used as an effective run-time priority to
control unnecessary preemptions. Since the effective priority of a
task is changed at run-time due to priority inheritance and task
dispatching under PTS, it is desirable to precisely define it.
Conceptually, the effective priority of a task is the priority that is
used by the kernel scheduler for selecting a task to be dispatched.
Under PTS, effective priorities vary according to task states. We
define it in an operational manner as below.

y Effective priority pi of τi =
πi if τi is released in its period and not yet dispatched;
otherwise, max(γi,, p1, p2, …, pj) such that τ1, τ2, …, τj are tasks
blocked by τi.

In traditional priority-based preemptive scheduling, tasks may
experience blocking due to synchronization. Under PTS, tasks may
encounter another type of blocking which we name PTS blocking.
Task τi is said to be in PTS blocking if it is blocked by a lower
priority task whose preemption threshold is higher than πi. We
denote the duration of PTS blocking by Bi while the duration of
other types of blocking by βi.

3. PREVENTING THE PRIORITY
INVERSION PROBLEM
Without using priority inheritance protocols, catastrophic priority
inversion problems cannot be rectified in a real-time system that
uses synchronization primitives. The basic priority inheritance
protocol (BPI) prevents preemptions that eventually cause priority
inversion. In this section, we identify the priority inversion problem
under PTS, formulate the BPI protocol under PTS, and then
describe its properties.

3.1 Priority Inversion Problem under PTS
The priority inversion problem in traditional priority-based
scheduling occurs when a medium priority task preempts a lower
priority task that blocks a higher priority task. Under PTS, we
reformulate the original problem into the effective priority inversion
problem by substituting a priority of a task with its effective priority.
The rationale behind this formulation is obvious since an effective
priority takes the place of a priority under PTS. In this formulation,
given that task τi is blocked by τL, priority inversion occurs (1) when
a medium priority task τM with γL < πM < πi preempts τL; or (2) when
another task τH with πi < πH ≤ γi preempts τL. These cases are
illustrated in Figure 1 (a) and (b), respectively.

τL

τi

lock M1

preempt τL

t0 t1 t2 t3 t4

preempt τL

ττττM

(attempt to lock M1)
blocked by τL uncontrolled

priority inversion

(a) Case 1.

uncontrolled
priority inversion

τL

τi
lock M1

preempt τL

t0 t1 t2 t3 t4

ττττH

preempt τL

(attempt to lock M1)
blocked by τL

(b) Case 2.

τi = {..., P(M1), ..., V(M1), ...}
τL = {..., P(M1) , ..., V(M1), ...}

γL < ππππM < πi

τi = {..., P(M1), ..., V(M1), ...}
τL = {..., P(M1) , ..., V(M1), ...}

γL < ππππM < πi

τi = {..., P(M1), ..., V(M1), ...}
τL = {..., P(M1) , ..., V(M1), ...}

γL < πi < ππππH ≤ γi

τi = {..., P(M1), ..., V(M1), ...}
τL = {..., P(M1) , ..., V(M1), ...}

γL < πi < ππππH ≤ γi

Figure 1. Priority inversion problem under PTS.

225

τL

ττττM

τi

lock M1

t0 t1 t2 t3 t4 t5

ττττH

t6

unlock M1

lock M1

arrive

arrive

preempt τL

(attempt to lock M1)
blocked by τL

direct blocking

inherit γi

push-through
blocking

push-through
blocking

τi = {..., P(M1), ..., V(M1), ...}
τL = {..., P(M1) , ..., V(M1), ...}

γL < ππππM < πi < ππππH ≤ γi

τi = {..., P(M1), ..., V(M1), ...}
τL = {..., P(M1) , ..., V(M1), ...}

γL < ππππM < πi < ππππH ≤γi

Figure 2. Prevention of priority inversion by BPI under PTS.

3.2 BPI under PTS
We define the BPI protocol under PTS using effective priorities as
below.

Protocol 1: BPI under PTS.

y Inheritance of effective priorities.
When task τH is blocked by task τL with πH > γL, task τL inherits
pH from task τH.
y Recovery of effective priorities.

When task τL exits from a critical section, task τL recovers pL that
it had before entering that critical section.

We can easily see that this definition of BPI prevents preemptions
that eventually cause priority inversion. Figure 2 shows an example
that follows Protocol 1. Since neither does τM nor τH preempt τi,
priority inversion is avoided.

3.3 Properties of BPI under PTS
BPI under PTS bears similar properties with the original BPI in [5].
In the original protocol, a task can be blocked in one of three forms
of blocking: (1) direct blocking, (2) push-through blocking, and (3)
transitive blocking. In our protocol, a task can be blocked
additionally in PTS blocking. Direct blocking occurs when a higher
priority task attempts to lock a mutex locked by a lower priority
task. It is to ensure the consistency of a non-preemptible shared
resource. Push-through blocking occurs under PTS when a medium
priority task attempts to preempt a lower priority task that is
blocking a higher priority task, as described below.

y Push-through blocking under PTS.

Consider three tasks τL, τM, τH with γL < πM, γL < πH, and πM ≤
γH. If task τM is blocked by task τL that already blocked τH, this
situation is referred to as push-through blocking under PTS.

In the above definition, task τM falls into push-through blocking
since the effective priority of task τL is greater than that of τM due to
effective priority inheritance. Push-through blocking is introduced
to prevent preemptions that cause priority inversion. In Figure 2,
tasks τM and τH are blocked in push-through blocking during the
period of (t4, t5) and (t5, t6), respectively.

Finally, transitive blocking occurs when task τH is blocked by τM
which, in turn, is blocked by another task τL. Figure 3 (a) shows an
example for transitive blocking. During the period of (t6, t7), τM is
blocked by τL while blocking τH. Therefore, τH is indirectly blocked
by τL in a transitive manner. As such, transitive blocking occurs
when mutexes are accessed in a nested fashion.

Additionally, a task can encounter chained blocking. Chained
blocking (or a chain of blocking) is said to occur if a task is
repeatedly blocked when it enters its critical sections. An example
for chained blocking is illustrated in Figure 4 (a) where task τH is
blocked during the period of (t6, t7) and blocked again during (t9,
t10). Note that chained blocking is not a form of blocking, but refers
to a situation where a task is blocked more than once.

τH = {..., P(M2), ..., V(M2), ...}
τM = {..., P(M2), ..., P(M1), ..., V(M1), ..., V(M2), ...}
τL = {..., P(M1) , ..., V(M1), ...}

γL < πM ≤ γM < πH

τH = {..., P(M2), ..., V(M2), ...}
τM = {..., P(M2), ..., P(M1), ..., V(M1), ..., V(M2), ...}
τL = {..., P(M1) , ..., V(M1), ...}

γL < πM ≤ γM < πH

preempt τL

(attempt to lock M2)
blocked by τM

unlock
M1lock

M2

lock
M1

lock M1

transitive
blocking

τL

τM

τH

t0 t1 t2 t3 t4 t5 t6 t7 t8

unlock M1

(attempt to lock M1)
blocked by τL

lock M1

unlock
M2

direct blocking

t8

lock M2

preempt τL

complete

unlock M2

unlock M1lock M1

lock M2

unlock M1

(attempt to lock M2)
blocked by ττττM

lock M1

unlock M2

preempt τM

complete

complete

τL

τM

τH

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13

ceiling blocking

(a) (b)
Figure 3. (a) Transitive blocking in BPI, (b) transitive blocking prevention in PCP.

226

Note that the BPI protocol alone does not prevent deadlock.
Deadlock may occur when multiple tasks try to access nested
mutexes in a circular manner. Figure 5 shows an example for
deadlock. In this example, both tasks τH and τL need to acquire two
mutexes M1 and M2. As shown, τL waits for τH to release M2, and τH
waits for τL to release M1 simultaneously, while τL and τH are
holding M1 and M2, respectively. Therefore, a deadlock occurs at
time t5.

4. PREVENTING DEADLOCK,
TRANSITIVE BLOCKING, AND CHAINED
BLOCKING
Although BPI prevents priority inversion by means of push-through
blocking, it may incur deadlock and excessively long blocking delay
due to transitive and chained blocking, as discussed in Section 3.3.

The priority ceiling protocol (PCP) was introduced to solve these
problems [5]. In this section, we define two versions of PCP under
PTS: one with priority ceilings and the other with preemption
threshold ceilings. We refer to the former as PC-PCP and the latter
as PTC-PCP. Then we investigate their properties, compare them,
and present schedulability analysis.

4.1 PCP under PTS with Priority Ceilings
The underlying idea of the original PCP algorithm is to allow a task
to lock a mutex only if it can make sure that all mutexes that the task
and its higher priority tasks may use are not locked by lower priority
tasks. If not, it forces the task to wait for those mutexes to be
unlocked. To realize this idea, Rajkumar et al. introduced the notion
of a priority ceiling and associated it with each mutex [5].

We define PCP under PTS with priority ceilings by combining an

τH = {..., P(M1), ..., V(M1), ..., P(M2), ..., V(M2), ...}
τM = {..., P(M2) , ..., V(M2), ...}
τL = {..., P(M1) , ..., V(M1), ...}

γL < πM ≤ γM < πH

τH = {..., P(M1), ..., V(M1), ..., P(M2), ..., V(M2), ...}
τM = {..., P(M2) , ..., V(M2), ...}
τL = {..., P(M1) , ..., V(M1), ...}

γL < πM ≤ γM < πH

preempt τL

(attempt to lock M1)
blocked by τL

(attempt to lock M2)
blocked by τM

unlock
M1

unlock
M2

unlock
M2

lock
M2

lock
M1

lock
M1

lock
M2

τL

τM

τH

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

unlock M1

preempt τL

(attempt to lock M1)
blocked by τL complete

unlock
M1

unlock M2
lock
M1

lock
M1

lock
M2

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13

complete

(attempt to lock M2)
blocked by ττττL

lock
M2

τL

τM

τH unlock
M2

unlock
M1

complete

ceiling blocking

(a) (b)
Figure 4. (a) Chained blocking in BPI, (b) chained blocking prevention in PCP.

τH = {..., P(M2), ..., P(M1), ..., V(M1), ..., V(M2), ...}
τL = {..., P(M1), …, P(M2), ..., V(M2), ..., V(M1), ...}

γL < πH

τH = {..., P(M2), ..., P(M1), ..., V(M1), ..., V(M2), ...}
τL = {..., P(M1), …, P(M2), ..., V(M2), ..., V(M1), ...}

γL < πH

(a) (b)

lock M1

preempt τL lock
M2

(attempt to lock M1)
blocked by τL

(attempt to lock M2)
blocked by τH

deadlock

t0 t1 t2 t3 t5

τL

τH

t4

τL

τH

t0 t1 t2 t3 t5 t6 t7 t8 t9 t10 t11

lock M1

preempt τL
(try to lock M2)
blocked by τL

completelock M2
unlock

M2
unlock

M1

completelock M2

lock M1
unlock

M1

unlock
M2

ceiling blocking

t4

Figure 5. (a) Deadlock in BPI, (b) deadlock prevention in PCP.

227

offline ceiling protocol and an online locking protocol in a similar
manner as in [6].

Protocol 2: PC-PCP.

y Offline ceiling protocol
CP. Each mutex Mi is assigned a priority ceiling whose value is

given by ϕ(Mi) = max{πj|τj ∈ Ψi}, where Ψi is a set of
tasks that may use mutex Mi.

y Online locking protocol
LP1. A system ceiling, which is a system-wide scheduling

attribute, is dynamically set to the maximum of priority
ceilings of all mutexes being locked in the system.

LP2. In order for task τi to enter its critical section, πi should be
higher than the system ceiling.

LP3. Inheriting effective priorities
If high priority task τH is blocked by low priority task τL
with πH > γL, task τL inherits pH from task τH as its
effective priority.

LP4. Recovering effective priorities
When task τL exits from a critical section, task τL recovers
pL that it had before entering that critical section.

In this definition of PCP under PTS, effective priorities are used for
priority inheritance (as specified in LP3 and LP4), while regular
priorities are used for ceilings of mutexes (as specified in CP and
LP2). It is quite straightforward to use effective priorities for
priority inheritance since it is a mere adoption of BPI to solve the
priority inversion problemWe now show that PC-PCP prevents
deadlock, transitive blocking, and chained blocking. To begin with,
we introduce a locking rule that can guarantee the avoidance of
deadlock, transitive blocking, and chained blocking. Then, we show
our PCP definition satisfies this rule.

Locking Rule 1. Task τi is allowed to lock a mutex only if all
mutexes that τH may use are not locked by lower priority tasks,
where πH ≥ π i .

Theorem 1. Conforming to Locking Rule 1 guarantees the
prevention of deadlock, transitive blocking, and chained blocking.

Proof.
Conforming to Locking Rule 1 ensures that a task cannot enter its
critical section until all mutexes it may use are unlocked. Therefore,
circular waiting cannot occur, and thus deadlock is prevented.

To show that conforming to Locking Rule 1 guarantees the
prevention of transitive and chained blocking, we show that a task is
blocked at most once by at most one task under the Locking Rule 1.
Suppose that task τi attempts to lock a mutex, while there is
preempted task τL that has locked mutexes that may be used by
higher priority or preemption threshold task τH where πH ≥ πi. Then,
the Locking Rule 1 forces task τi to get blocked first and wait for τL
to unlock those mutexes. Consequently, there is always ‘at most
only one’ such task that locks mutexes that may be used by τH where
πH ≥ πi. Accordingly, whenever a task arrives, it sees at most one
(lower priority) task that has acquired mutexes it may use.
Therefore, it is guaranteed that a task is blocked (to acquire its
mutexes) ‘at most once’ (when it first tries to lock any mutex) and
by ‘at most one’ lower priority task. Therefore, transitive and
chained blocking cannot happen.

Theorem 2. PC-PCP conforms to Locking Rule 1.

Proof.
Suppose that the PC-PCP does not conform to Locking Rule 1.
Then, task τi may lock a mutex when there is a locked mutex MH
that may be used by task τH where πH ≥ πi. However, according to
CP of Protocol 2, the priority ceiling of MH, ϕ(MH), is equal to πH.
When task τi attempts to lock any mutex, the system ceiling equals
ϕ(MH) = πH by LP1. Therefore, τi should be blocked, since πi is not
higher than πH by LP2. This is a contradiction.

Figure 3 (b), Figure 4 (b), and Figure 5 (b) illustrate how PCP
prevents transitive blocking, chained blocking, and deadlock,
respectively.

We have seen that in PCP, a task can be blocked only when it tries
to enter its critical section for the first time: once a task successfully
acquires any of its mutexes, it will never get blocked again. This
obviously implies that a task can be blocked at most once by at most
one lower priority task.

τH = {..., P(MH), ..., V(MH), ...}
τM = {..., P(MM), ..., V(MM), ...}
τL = {..., P(MM) , ..., V(MM), ...}

γL < πM < πH, γM =γH

τH = {..., P(MH), ..., V(MH), ...}
τM = {..., P(MM), ..., V(MM), ...}
τL = {..., P(MM) , ..., V(MM), ...}

γL < πM < πH, γM =γH

lock MM

arrive
lock MH

unlock MM

complete

complete

t0 t1 t2 t3 t4 t5 t6 t7

unlock MH

(a) (b)

lock MM

arrive

unlock MM complete

t0 t1 t2 t3 t4 t5 t6 t7

complete

unnecessary blocking

(attempt to lock Mc)
blocked by ττττL

τL

τM

τH

τL

τM

τH

Figure 6. Examples: PCP under PTS using (a) priority ceilings, and (b) preemption threshold ceilings.

228

In PCP under PTS, a task can encounter one of four forms of
blocking: (1) direct blocking, (2) push-through blocking, (3) ceiling
blocking [5], and (4) PTS blocking. A task encounters ceiling
blocking when it attempts to enter a critical section with its priority
not greater than the system ceiling. Figure 3 (b), Figure 4 (b), and
Figure 5 (b) show examples of ceiling blocking in PTS. This helps
prevent deadlock, transitive blocking, and chained blocking.

4.2 PCP under PTS with Preemption
Threshold Ceilings
It is not obvious why we used regular priorities to define ceilings of
mutexes instead of preemption threshold ceiling in Section 4.1. In
fact, we can use preemption threshold ceilings for that purpose and
define another version of PCP under PTS, accordingly. The result is
PTC-PCP. It is the same as PC-PCP of Protocol 2 except that the
priorities of CP1 and LP2 of Protocol 2 are replaced with
preemption thresholds.

Locking Rule 2. Task τi is allowed to lock a mutex only if all
mutexes that τH may use are not locked by lower priority tasks,
where γH ≥ γ i.

Theorem 3. Conforming to Locking Rule 2 guarantees the
prevention of deadlock, transitive blocking, and chained blocking.

Proof.
This can be proved in a manner similar to Theorem 1 by substituting
priorities with preemption thresholds.

Theorem 4. PTC-PCP conforms to Locking Rule 2.

Proof.
This can be proved in a manner similar to Theorem 2 by substituting
priority ceilings of Theorem 2 with preemption threshold ceilings
and Locking Rule 1 with Locking Rule 2.

4.3 Comparison between PC-PCP and PTC-
PCP
Now we will show that PC-PCP performs better than PTC-PCP
with respect to run-time costs and the average response time of a
task set. The latter may (1) incur unnecessary context switches and
(2) lead to longer response times due to unnecessary blockings.

In most cases of practical interest, a task has a preemption threshold
that is no less than its fixed priority so as to avoid unnecessary
context switches. In [1], a task is even assigned the maximum
possible preemption threshold. This is indeed a desirable heuristic to
reduce unnecessary preemptions in preemptive fixed-priority
scheduling.

However, this heuristic may not work well in PTC-PCP. In PTC-
PCP, with this heuristics, the system ends up with a large number of
tasks assigned the maximum preemption threshold, which often
forces high priority tasks to seriously suffer from ceiling blocking.
Figure 6 demonstrates the situation. Suppose there are three tasks τL,
τM, and τH with γL < πM < πH and γM =γH. At t1, task τL acquires MM,
and then task τH arrives and preempts task τL at t2. At t3, it attempts
to acquire MH. At that point in time, the system ceiling is equal to
ϕ(MM).

If we adopt priority ceilings (PC-PCP) as depicted in Figure 6 (a),
the system ceiling at t3 is πM. Since πH > πM, task τH acquires MH

and continues to run at t3. On the other hand, if we adopt preemption
threshold ceilings (PTC-PCP) as depicted in Figure 6 (b), the system
ceiling at t3 is γM. Since γH is not greater than γM, task τH gets
blocked at t3 and resumes at t4. Thus, two extra context switches
occur at t3 and t4. Moreover, the response time of task τH becomes
longer in Figure 6 (b) than in Figure 6 (a) due to unnecessary
blocking at t3.

When running task τi tries to enter its critical section in PTS, there is
a case where τH is blocked unnecessarily only in PTC-PCP: when
the preempted task τL with γL < πH has acquired mutex Ml, which
may be requested by τl with πl < γH and γl ≥ γH. This type of ceiling
blocking does not contribute to preventing deadlock, transitive
blocking or chained blocking since this blocking is for mutexes that
may be requested by lower priority tasks. For every such case, there
are two additional context switches in PTC-PCP as compared to PC-
PCP. Note that such cases tend to be very frequent due to maximum
preemption threshold assignment policy in PTS.

From this observation, we recommend PC-PCP for obvious reasons:
to avoid unnecessary context switches and to reduce the response
times of higher priority tasks.

4.4 Schedulability Analysis of PC-PCP
For the schedulability analysis of PC-PCP, we adopt the worst-case
response time analysis in [10]. Under PTS, the sets of interfering
higher priority tasks before and after a task gets the CPU, are
different. Therefore, for each task τi, we should analyze its start time
Si and finish time Fi separately. The equations for the response time
analysis of PCP under PTS for task τi are as follows.

{ } otherwise
Φif

Mz
i

ikkjj
i

ij

φ
πϕβ

πγ

=







≥=
<∀

)(::max
0

,,

(1)

{ } LiLijjji CCB
jij

ββ
ππγ

+≡+=
>≥∀ ,

max
(2)

{ } j
j j

n
i

ii
n
i C

T
S

BS
ij

⋅





















++= ∑

>∀

+

ππ
β

,

1 1,max
(3)

otherwise
orBif Lii

i

00
1
0 ≠=





=
β

δ (4)

iij
j j

i

j

n
i

ii
n

i C
T
S

T
F

CSF
ij

δβ
γπ

⋅+⋅

































+−












++= ∑

>∀

+

,

1 1

(5)

ii FR = (6)

In PCP, a task may be blocked once in one of three forms of
blocking: push-through, direct, and ceiling blocking. The worst case
blocking duration for these types of blocking for task τi (βi) is
formulated in Equation (1) where zj,k is the duration of the critical
section of task τj guarded by mutex Mk. Note that if the set of
mutexes that task τi may use is empty (Φi =0), the blocking time
under PCP is zero. Additionally, in PTS, a task can experience PTS
blocking. The worst-case duration of PTS blocking for task τi, is
formulated in Equation (2).

229

The start time of task τi (Si) is formulated in Equation (3): a task may
be blocked once in either PTS blocking or push-through blocking
before its execution since (1) both blockings are caused by the same
running task when the task arrives and (2) the sets of tasks that can
cause PTS blocking and push-through blockings are mutually
exclusive, as shown in Equations (1) and (2).

The finish time of task τi (Fi) is formulated in Equation (5) where δi
is calculated from Equation (4): task τi can be blocked once again
during its execution, in either direct or ceiling blocking. As shown
in Equation (4), this type of blocking (βi·δi) becomes zero (1) if PTS
blocking cannot occur (Bi = 0) or (2) if the PCP blocking time of the
task causing the PTS blocking is not zero (βLi ≠ 0). Note that if task
τi has encountered push-through blocking, or the task that caused
PTS blocking (τLi) has encountered PCP blocking (βLi ≠ 0), direct or
ceiling blocking cannot occur.

5. MINIMIZING CONTEXT SWITCHES
In PCP, a task can be blocked once when it attempts to enter a
critical section. Alternatively, if we give a task a chance to be
blocked when it is released for the first time in its period, it will
never be blocked again during its execution. If we choose to use this
approach, we can reduce two context switches associated with each
blocking of a task in PCP. This alternative, which is already widely
used in practice, is called the immediate inheritance protocol (IIP) or
the PCP emulation protocol with flag
_POSIX_THREAD_PRIO_PROTECT in IEEE POSIX 1003.1c [9]. In this
section, we define two versions of IIP under PTS: one with priority
ceilings and the other with preemption threshold ceilings. We refer
to the former as PC-IIP and the latter as PTC-IIP. Then we
investigate their properties, compare them, and present
schedulability analysis.

5.1 IIP under PTS with Priority Ceilings
The underlying idea of the original IIP algorithm is to allow a task to
start its execution only if it can make sure that all mutexes that the
task and its higher priority tasks may use are not locked by lower
priority tasks. If not, it forces the task to wait for those mutexes to be
unlocked.

IIP bears many similarities and benefits with PCP. It can prevent
priority inversion, deadlock, transitive blocking, and chained
blocking. Moreover, it can reduce the number of context switches
without sacrificing the worst-case response time.

As in PCP, we can define two versions of IIP: PC-IIP and PTC-IIP.
PC-IIP uses effective priorities for priority inheritance and regular
priorities for priority ceilings of mutexes. Its offline ceiling protocol
and online locking protocol are presented below.

Protocol 3: PC-IIP.

y Offline ceiling protocol
CP. Each mutex Mi is assigned a priority ceiling given by

ϕ(Mi) = max{ππππj|τj ∈ Ψi} where Ψi is a set of tasks
that may use mutex Mi.

y Online locking protocol
LP1. Inheriting ceiling

If task τc acquires a mutex, its effective priority is set
to pc = max{pc , ϕ(Mi) | Mi ∈ ξc} where ξc is a set of
mutexes that are currently locked by τc.

LP2. Recovering effective priorities

When task τc exits from a critical section, task τc
recovers pc that it had before entering that critical
section.

While the offline ceiling protocol (CP) is the same as that of PC-
PCP, the locking protocol (LP1 and LP2) is much more simplified.
This is because IIP forces priority inheritance whenever a task locks
a mutex while PCP does so only when a task blocks a higher priority
task. It is obvious that our PC-IIP definition prevents priority
inversion, deadlock, transitive blocking, and chained blocking since
IIP is merely a special case of PCP. Later, we compare IIP with PCP
and discuss the advantages of IIP over PCP.

τH = {..., P(MH), ..., V(MH), ...}
τM = {..., P(MM), ..., V(MM), ...}
τL = {..., P(MM) , ..., V(MM), ...}

γL < πM < πH , γM =γH

τH = {..., P(MH), ..., V(MH), ...}
τM = {..., P(MM), ..., V(MM), ...}
τL = {..., P(MM) , ..., V(MM), ...}

γL < πM < πH , γM =γH

lock MM

arrive
blocked by ττττL

unlock MM complete

t0 t1 t2 t3 t4 t5 t6 t7

τL

τM

τH

complete
lock MH unlock MH

unnecessary blocking

Figure 7. Example: IIP under PTS with preemption threshold
ceiling.

5.2 IIP under PTS with Preemption Threshold
Ceilings
As mentioned above, the IIP under PTS can be defined with either
priority ceilings (PC-IIP) or preemption threshold ceilings (PTC-
IIP). We compare these two versions of IIP definitions using the
same example task set shown in Section 4.3. Figure 6 (a) can be
reused to illustrate IIP with priority ceilings. Figure 7 shows an
example of PTC-IIP. As in PCP under PTS, PTC-IIP yields extra
blockings, thus makes the response times of higher priority tasks
longer. On the other hand, note that the context-switching overhead
remains the same in the two versions since blocking in IIP does not
accompany context switches. As in PCP, we recommend PC-IIP
over PTC-IIP.

5.3 IIP vs. PCP
The most striking difference between IIP and PCP is that a task in
IIP can encounter only ceiling blocking: there is neither direct
blocking nor push-through blocking in IIP. The number of context
switches incurred by IIP can be as low as a half of the number
incurred by PCP. The best efficiency under IIP occurs when every
task in the system enters at least one critical section. On the other
hand, if quite a few tasks do not enter a critical section at all, IIP
may yield extra blockings.

230

In either case, the number of context switches in IIP is always lower
than in PCP. This is because blocking in IIP does not accompany
context switches since it always occurs before a task starts
execution. However, it is also true that the extra blockings
encountered by high priority tasks increase their average response
times in IIP.

5.4 Schedulability Analysis of PC-IIP
We provide the schedulability analysis for PC-IIP. In IIP under
PTS, a task can be blocked only once before its start time. Since a
task can be blocked even if it does not enter any critical section
before its start time, the equation for blocking time βi in IIP is
formulated as Equation (7). On the other hand, since a task is not
blocked during its execution, the PTS blocking in IIP under PTS is
formulated as Equation (8) and the finish time is formulated as
Equation (9). Without these, the formulations for Si and Ri in
Equations (4) and (6) in Section 4.3 are adopted as they are.

{ }ikkjji Mz
ij

πϕβ
πγ

≥=
<∀

)(::max ,,

(7)

{ }jji CB
jij ππγ >≥∀

=
,
max

(8)

j
j j

i

j

n
i

ii
n

i C
T
S

T
FCSF

ij

⋅

































+−












++= ∑

>∀

+

γπ,

1 1

(9)

6. CONCLUSIONS
In spite of the proliferation of object-oriented design methodologies
in contemporary software development, their application to real-
time embedded systems has been limited for the lack of proper real-
time scheduling theory that can be seamlessly integrated into these
methods. Specifically, popular preemptive fixed priority scheduling
cannot be directly used in real-time object-oriented design
methodologies largely owing to its excessive run-time overhead.
The preemption threshold scheduling has been recently suggested to
this end since it improves both run-time overhead and
schedulability. Unfortunately, it lacks real-time synchronization
capabilities. To solve this problem, in this paper, we have adopted
three well-known real-time synchronization protocols and integrated
them into the preemption threshold scheduling. They are the basic
priority inheritance protocol (BPI), the priority ceiling protocol
(PCP), and the immediate inheritance protocol (IIP). We have also
presented their schedulability analyses.

Since each task under PTS has two scheduling attributes, it is not
intuitive during the integration which scheduling attribute should be
used for priority inheritance and for priority ceilings of mutexes. To
clarify this problem, we have introduced the notion of the effective
priority, which is conceptually a task priority that is used by the
kernel scheduler for selecting a task to be dispatched. With this, we
have identified the priority inversion problem under PTS and
presented the BPI protocol under PTS that avoids such priority
inversion.

Since BPI alone cannot prevent deadlock, we have also presented
PCP and IIP under PTS. In these protocols, we used effective
priorities for priority inheritance and regular priorities for priority
ceilings of mutexes. We have shown that two protocols with priority

ceilings yield the smaller number of context switches and shorter
response times for higher priority tasks than those with preemption
threshold ceilings. We have also shown that IIP further reduces the
number context switches compared to PCP.

Currently, we are implementing a RoseRT-based CASE tool that is
capable of deriving tasks from an object-oriented design model. We
are integrating into the CASE tool the preemption threshold
scheduling and the IIP algorithm proposed in this paper. We are also
conducting extensive experiments to show the viability of our
approach. The results look promising.

7. ACKNOWLEDGEMENTS
The authors would like to thank Jamison Allen Masse for his fruitful
comments on drafts of this article. The comments from the
anonymous reviewers further improved the quality. The work
reported in this paper is supported in part by MOST under the
National Research Laboratory (NRL) grant 2000-N-NL-01-C-136,
by Automation and Systems Research Institute (ASRI), and by
Automatic Control Research Center (ACRC).

8. REFERENCES
[1] M. Saksena and Y. Wang. Scalable real-time system design

using preemption thresholds, In Proceedings of IEEE Real-
Time Systems Symposium, pp. 25 -34, 2000.

[2] Y. Wang and M. Saksena. Scheduling fixed priority tasks with
preemption threshold. In Proceedings of IEEE Real-Time
Computing Systems and Applications Symposium, pp. 328-
335, 1999.

[3] S. Kim, S. Cho, and S. Hong. Schedulability-aware mapping of
real-time object-oriented models to multi-threaded
implementations. In Proceedings of International Conference
on Real-Time Computing Systems and Applications, pp. 7-14,
2000.

[4] S. Kim, S. Hong, and N. Chang, Scenario-based
implementation architecture for real-time object-oriented
models, In Proceedings of IEEE International Workshop on
Object-oriented Real-time Dependable Systems, 2002.

[5] R. Rajkumar, L. Sha and J. Lehoczky. Priority inheritance
protocols: an approach to real-time synchronization. In IEEE
Transactions on Software Engineering, vol. 39, pp. 1175-1185,
1990.

[6] M. Chen and K. Lin. Dynamic priority ceilings: A
concurrencly control protocol for real-time systems. In Real-
Time Systems Journal, vol. 2, pp. 325-346, 1990.

[7] T. P. Baker. A stack-based resource allocation policy for real-
time processes. In Proceedings of IEEE Real-Time Systems
Symposium, pp. 191-200, 1990.

[8] T. P. Baker. Stack-based scheduling of real-time processes. In
Real-Time Systems Journal, vol. 3, num. 1, pp. 67-99,1991.

[9] Institute for Electrical and Electronic Engineers. In IEEE Std.
1003.1c-1995 POSIX Part 1: System application program
interface - amendment 2:threads extension, 1995.

[10] K. Tindell, A. Burns, and A. Wellings. An extendible approach
for analyzing fixed priority hard real-time tasks. In Real-Time
Systems Journal, vol. 6, pp. 133-151, 1994.

231

[11] C. Liu and J. Layland, Scheduling algorithm for
multiprogramming in a hard real-time environment. In Journal
of the ACM, vol. 20(1), pp. 46-61, Jan. 1973.

[12] W. Lamie, Preemption-Threshold, White Paper, Express Logic
Inc., Available at http://www.threadx.com/wppreemption.html

[13] M. Harbour, M. Klein, and J. Lehoczky, Fixed Priority
Scheduling of Periodic Tasks with Varying Execution Priority,
In Proceedings of IEEE Real-Time Systems Symposium, pp.
116-128, Dec. 1991.

[14] J. Lehoczky, L. Sha, and Y. Ding, The Rate Monotonic
Scheduling Algorithm: Exact Characterization and Average
Case Behavior. In Proceedings of IEEE Real-Time Systems
Symposium, pp. 166-171, Dec. 1989.

[15] M. Saksena, P. Freeman, and P. Rodziewicz, Guidelines for
Automated Implementation of Executable Object Oriented
Models for Real-Time Embedded Control Systems, In
Proceedings of IEEE Real-Time Systems Symposium, pp. 240-
251, Dec. 1997.

[16] M. Saksena, A. Ptak, P. Freeman, and P. Rodziewicz,
Schedulability Analysis for Automated Implementations of
Real-Time Object-Oriented Models, In Proceedings of IEEE
Real-Time Systems Symposium, pp. 92-102, Dec. 1998.

[17] H. Gomma, Software Design Methods for Concurrent and
Real-Time Systems, Addison-Wesley, 1993.

[18] B. Selic, G. Gullekson, and P. T. Ward, Real-Time Object-
Oriented Modeling. John Wesley and Sons, 1994.

[19] Rational Software, http://www.rational.com.
�

232

