
Abstract

This paper presents a scenario-based implementation
architecture supporting a method capable of
automatically mapping real-time object-oriented models
into multi-threaded implementations. To implement the
synthesis tool supporting the method, we exploit existing
CASE tools that support the object-based implementation
architecture. Challenges in our approach are (1) how to
embed our implementation model into generated design-
model-dependent code and (2) how to implement the
model-independent run-time-system library.

In our approach, to map each scenario to a thread, we
make external messages starting scenarios delivered to
their mapped physical thread. The main operation of the
thread is (1) waiting for any external message to be
delivered and (2) executing a while loop where all
internal messages are sent and received. The state
transition of an active object is guarded by an object-
specific mutex to maintain the run-to-completion
semantics. The priority of a thread is dynamically set
according to the scheduling attributes of an external
message for the thread to process.

1. Introduction

Due to continuously increasing demands, real-time
embedded systems are getting extremely complicated.
Thus, it has become inevitable for real-time embedded
system developers to rely on systematic software design
methodologies. Among a wide variety of design
methodologies, an object-oriented technology has become
dominant since 1990’s. This is due to its prominent
benefits such as encapsulation, inheritance,
polymorphism, component-based coding, etc. These
allow for easy software reuse and maintenance.

� The work reported in this paper is supported in part by MOST under the
National Research Laboratory (NRL) grant 2000-N-NL-01-C-136 and by
the Korea Science and Engineering Foundation (KOSEF) grant R01-1999-
00206

However, in object-oriented design methodologies, it
is not very obvious how to translate a design model into
tasks that collectively form the real executable
implementation. Note that task derivation has a
significant effect on the real-time schedulability of the
resultant system. Existing object-oriented CASE tools
force designers to map objects to tasks in an ad-hoc
manner. This requires tedious manual tuning of design
models and task mapping.

We have proposed a systematic, schedulability-aware
method that maps real-time object-oriented models to
multi-threaded implementations in an automated manner
[1, 2]. The proposed method uses the notion of scenarios1
and preemption thresholds [3]. We define a scenario as
an end-to-end computation from an external input event
and possibly to an output event. It can be described as a
sequence of events triggered by an incoming external
event. The proposed method is a three-step process: (1)
deriving scenarios, (2) identifying logical threads, and (3)
identifying physical threads. The physical threads are the
final implementation-level tasks. The proposed method
maps mutually exclusive scenarios into logical threads,
and assigns each logical thread a priority and a possible
maximum preemption threshold, guaranteeing the
schedulability of the whole system. Then, the method
groups logical threads into mutually non-preemptive
groups [4], each of which is mapped into a physical
thread. This can significantly reduce the number of
threads.

In this paper, we present the scenario-based
implementation architecture supporting our proposed
mapping method. To implement the synthesis tool
supporting our method, we exploit an existing CASE tool
that supports the object-based implementation
architecture. The existing CASE tool (1) generates the
design-model-dependent code and (2) links it with the
model-independent run-time system library to build an
executable binary. Note that the design-model-dependent
code does not contain any implementation-model-
dependent information. The model is composed of (1) the

1 In our previous papers, we used the term transactions instead

of scenarios.

�

Scenario-Based Implementation Architecture
 for Real-Time Object-Oriented Models�

Saehwa Kim, Seongsoo Hong, and Naehyuck Chang
School of Electrical Engineering and Computer Science

Seoul National University, Seoul 151-742, Korea
{ksaehwa, sshong}@redwood.snu.ac.kr, naehyuck@snu.ac.kr

design model and (2) implementation model.
Programmers develop the design model and our method
derives the implementation model for a given design
model, which determines (1) how many threads are
created and (2) to which thread each message is mapped.

With this, our challenges are (1) how to embed the
implementation model into the generated design-model-
dependent code and (2) how to modify the model-
independent run-time-system library to make it fit to our
scenario-based implementation architecture. The
constraint is to guarantee that the resultant
implementation shows the same operational behavior as
that of the object-based mapping, including the run-to-
completion semantics. Our solution approach is
summarized as follows.

� To map each scenario to a thread, we make the first
external messages starting scenarios delivered to the
mapped thread.

� The main operation of the thread is (1) waiting for
any external message to be delivered and (2)
executing a while loop where all internal messages
are sent and received.

� The state transition of an active object is guarded by
the object-specific mutex for the run-to-completion
semantics.

� The priority of a thread is dynamically set according
to the scheduling attributes of an external message for
the thread to process.

The remainder of the paper is organized as follows. In
Section 2, we overview our implementation approach. In
Sections 3 and 4, we describe specific problems and
solutions for implementing the model dependent and
independent parts, respectively. Finally, we conclude the
paper in Section 5.

2. Implementation approach

We use UML-RT [5] as our source programming
language as in our previous work. We also use UML-RT
terminologies such as capsule, capsule instance and
capsule role. They respectively represent the template
(class) for an active object, the instantiated active object,
and the reference to the active object. To begin with, we
describe the requirements of our target platform. Then,
we present our implementation approach, which exploits
an existing CASE tool.

2.1. Assumption of the target platform

Our implementation requires that the scheduler of its
target platform support following functionalities.

� Dynamic configuration of priority
� Reasonable range of priorities.
� The immediate priority inheritance protocol.

We assume that our implementations are targeted to
such platforms.

2.2. Exploiting an existing CASE tool

To implement our mapping method, we exploit
RoseRT [6], which is a CASE tool supporting UML-RT.
Figure 1 shows our solution approach for this purpose.
Programmers develop their design models with the
RoseRT toolset. Then, they can generate the design-
model-dependent C++ source code via the RoseRT code
generator. Unless the programmers set some
implementation specific configuration explicitly within
the toolset, the generated code does not contain any
implementation-model dependent data. More precisely,
the default implementation model of the generated code
is a single threaded process where all messages are
mapped to a single thread.

With this generated code as input, our code converter
produces C++ code conforming to our method. Our code
converter is composed of (1) a model analyzer and (2) a

�

RoseRT toolset

Design modelDesign model

Design-model
specific

C++ code
Executable

binary

Executable
binary

Mapping
information
embedded
C++ code

Scenario-based
target

RTS library

Compile
& link

Model
analyzer

Code
modifier

Our code
converter

Capsule-based
target

RTS library

Code
generator

Modification
by hand

Modification
by hand

�
��
��
��
�

��������������������������������				����

��				����

�
��
�

code modifier. A model analyzer resolves the model and
finds a mapping according to our mapping method.
Using the results of the model analyzer, the code modifier
alters the generated code and adds implementation
specific code to it. The concrete modification will be
explained in Section 3.

The RoseRT toolset supports the target RTS (Run-
Time System) library, which forms the model-
independent implementation component. The target RTS
library is linked with the generated code to build the
executable binary. RoseRT provides the full source code
of the RTS library so that programmers can modify and
fit it to their specific target platform. We modify this
target RTS library to make it conform to our scenario-
based mapping strategy. We will describe this
modification concretely in Section 4. We compile and
link the converted generated code and modified target
RTS to generate the executable binary.

With this implementation approach, a problem at
hand is how to implement the bold-outlined diagrams in
Figure 1, which are (1) the code modifier and (2) the
scenario-based target RTS library. We explain the
detailed problems and solutions in the following sections.

3. Implementing the model dependent code

In this section, we describe how to implement the code
modifier that alters the design-model-specific code to
reflect our implementation model. Note that its input
implementation model is the output of our model
analyzer. The code modifier directly determines the
implementation architecture of the model dependent code.
Specific problems for implementing the code modifier are
summarized as follows.

� How to embed our scenario-to-thread mapping data
into the design-model-specific code.
− Where to embed the data structure representing

the scenario-to-thread mapping data.
− How to design the data structure representing the

scenario-to-thread mapping data.
� How to modify the model dependent code to guarantee

the run-to-completion semantics.
� How to embed the code for creating threads the

method derives.

We explain the solutions for each in the following
subsections.

3.1. Embedding the scenario-to-thread mapping
data into the design model specific code

Where to embed the data structure representing the
scenario-to-thread mapping data: Our solution is to use
additional arguments of functions that register external
messages to occur. The naïve solution is to embed it into
all messages that can be sent. However, our mapping
method groups all scenarios sharing an external input
message into the same logical thread, thus to the same
physical thread. Since implementation-level scenarios
can be safely characterized with their external input
messages, we embed scenario-to-thread mapping data
only into external messages. Specifically, our code
modifier embeds the mapping data into the functions that
register external messages − such as timeout − to occur as
their additional arguments.

How to design the data structure representing the
scenario-to-thread mapping data: Our solution is to keep
the attributes of each logical thread in the data structure.
This is because scheduling attributes such as a priority
and preemption threshold is assigned to a logical thread,
and the implementation-level physical thread is just a
group of logical threads. We define data structure
LogicalThread for a logical thread as in Figure 2 (a),
where Controller is the class type for a physical
thread.

With these solutions, our code modifier adds argument
LogicalThread, whose value is obtained from the output
of the model analyzer, to each function that registers any
external message to occur. Of course, our run-time

class LogicalThread {

Controller* targetThread;

int priority;

int preemptionThreashold;

}

(a)

class Capsule {

Mutex mtxCapsule;;
StructDef structureDef;

void fsmBehavior();

}

(b)

Design-model
specific

C++ code

Code modifier

timer.informEvery(RTTimespec(1, 0));

Mapping
information
embedded
C++ code

timer.informEvery(RTTimespec(1, 0),

LogicalThread (&Controller003, 20, 25));

Our
code
converter

Model analyzer targetThread = Controller003

priority = 20

preemptionThreshold = 25

��������������������������������				����

��

��				����

��������������������������������				��				

�
��
�

system library provides these overloaded functions with
an additional argument, as will be explained in the
Section 4. Figure 3 shows an example code conversion
that our code converter does. The model analyzer
scrutinizes the design model from the RoseRT-generated
C++ code and derives scenario-to-thread mapping data
for each external message. The selected code in this
example registers a 1 sec periodic timer. The code
modifier adds the LogicalThread argument, whose value
is initialized with the output from the model analyzer, to
the corresponding function.

3.2. Modifying the design model to guarantee the
run-to-completion semantics

To maintain the run-to-completion semantics of the
real-time object-oriented model, state transitions in a
capsule instance should be synchronized. In the object-
based thread-mapping implementation, this semantics is
naturally maintained because all state transitions in an
object always occur within one thread. However, in our
scenario-based mapping implementation, state transitions
in an object may occur in more than one thread.

Using capsule specific mutex: Figure 2 (b) shows
pseudo code for each capsule. The RoseRT code
generator forms a class for each capsule in the given
design model. As shown, we use a capsule specific mutex
to synchronize state transitions of capsule instances.

Adoption of immediate priority inheritance protocol:
To reasonably bound the run-to-completion blocking time,

we adopt the IIP, or immediate priority inheritance
protocol [7]. The reason that we adopt this protocol is
because all threads always try to lock mutexes whenever
they execute. The adoption of IIP in the context of
preemption threshold scheduling is beyond the scope of
this paper, so we do not further discuss about the protocol
itself. With this adoption, a thread executing a scenario
may be blocked only once before it starts its execution,
either by the IIP blocking or by preemption threshold
blocking. Our code modifier adds a code section that
initializes this mutex for each capsule instance.

3.3. Creating threads the method derives

Our code modifier synthesizes the body of
initUpdateThreads() of the RTMain class so that
it creates all the derived physical threads. The RoseRT
run-time system calls this function once during
initialization.

4. Implementing the model independent run-
time system library

This section describes how the model independent
target RTS library is modified to support our scenario-
based mapping implementation model. The concrete
problems for implementing the run-time system are as
follows.

� How to implement the operation of threads

class Controller {
MsgQueue externalMsgQ;
MsgQueue internalMsgQ;
pthread_t* threadId;
void mainloop();

}

(a)

class Message {

Message * next;

CapsuleRole toCapsuleRole;

Port fromPort;

short signal;

/* only for external messages */
int priority;

int preemptionThreadhold;

void* data;

}

1 Controller::mainloop(){

2 while(1) {

3 waitForExternalEvents();

4 while(externalMsgQ is not empty){

5 foreach(extMsg with the highest priority) {

6 dispatch(extMsg);

7 while(internalMsgQ is not empty){

8 foreach(Message intMsg)

9 dispatch(intMsg);

10 }

11 threadSetPrio(max(priorities of

external messages in externalMsgQ));

12 }

13 }

14 }

15}

1 Controller::dispatch (Message msg){

/* if msg is an external message */
2 if (msg.priority is not null)

3 threadSetPrio(extMsg.preemptionThreshold);

4 msg.toCapsuleRole->mtxCapsule.enter();

5 msg.toCapsuleRole->fsmBehavior(

msg.signal, msg.fromPort);

6 msg.toCapsuleRole->mtxCapsule.leave();

7 free msg;

8 }

(b)

(a)

��������������������������������				����

��

��				����

��������������������������������				����

�� ��

��				

� How to implement the external message registration
� How to implement the external message delivery

We describe solutions for each of them in the

following subsections.

4.1. Implementing the operation of threads

Figure 4 (a) shows the class type for the (physical)
thread, whose name is Controller. As shown, each
thread has its own message queues. The data structure of
the message is shown in Figure 4 (b), where
toCapsuleRole is its target capsule role, and
fromPort and signal are used as the input for the
finite-state-machine behavior of the target capsule role.

Figure 5 (a) shows the basic code structure of each
thread. As shown, the main operation of the thread is (1)
waiting for any external message to be delivered and (2)
executing a while loop where all internal messages are
sent and received. An iteration of the body within the
while loop from line 5 to line 12 corresponds to the
execution of a scenario. Each message to be dispatched in
line 9 corresponds to a message composing the message
sequence of a scenario. When a thread finishes
processing an external message and thus a scenario, it
changes dynamically its priority to the highest priority of
pending messages in its external message queue (in line
11).

Figure 5 (b) shows pseudo code for the message-
dispatching operation. If a dispatched message is an
external message (in line 2), the priority of a thread is
dynamically set to the preemption threshold of the logical
thread, to which the scenario for the thread to process is
mapped (in line 3). The fsmBehavior() of a capsule
in line 5 describes the finite-state-machine behavior of its
owning capsule. It executes the appropriate action and

transits the state of its capsule according to its behavioral
definition. As explained in Section 3.2, this state
transition is guarded by the capsule-specific mutex to
meet the run-to-completion semantics (in lines 4 and 6).
Note that the allocated message is freed in line 7 because
the data structure is no longer needed.

4.2. Implementing the registration and delivery of
external messages

Implementing the external message registration: As
mentioned in Section 3.1, our run-time system library
provides overloaded functions with an additional
argument LogicalThread, for the functions that
register external messages to occur. In RoseRT RTS, such
built-in functions are timer services informIn() and
informEvery() which are respectively for one shot
and periodic timer registration.

Figure 7 (a) shows pseudo code for our informIn()
function. It first allocates a memory chunk for a message
that will be delivered as an external message (in line 2).
It is allocated from the message pool of the target thread,
to which the external message will be delivered. The
allocated message is initialized as the target capsule role
that calls this informIn() function, and external-
message-type dependent port and signal, which are, in
this case, a timing service port and timeout signal. The
message is also initialized as the priority and preemption
threshold of the target logical thread.

After that, in line 3, a timer node is allocated and
initialized. The timer node is the data structure for the
entry of the timer callout queue, whose pseudo code is
shown in Figure 6. As shown, we make it contain a
reference to the target thread. The timer node also has a
reference to the external message to be delivered. The
allocated timer node tnode is initialized with the

�

class TimerNode {

TimerNode* next;

Message* msg;

RTTimespec timeout;

Controller* targetThread;

}

1 Timing::informIn(RTTimespec timeout, LogicalThread lt){

2 Message msg = lt.targetThread->newMsg(

capsule role calling this function, timer port, timeout signal,

lt.priority, lt.preemptionThreadhold);

3 TimerNode tnode = newTimerNode (&msg, timeout, lt.targetThread);

4 insert tnode to the timeout callout queue;

5 }

1 RTTimerActor::sendTimeouts(void) {

2 dequeue all expired timer nodes from timeout callout queue;

3 foreach (TimerNode tnode) {

4 enqueue tnode.msg to tnode.targetThread->externalMsgQ;

5 tnode.targetThread->threadSetPrio(

max(current priority, tnode.msg->priority));

6 free tnode;

7 }

8 }

(a)

(b)

��������������������������������				����

������������������������������������

��				����

��������������������������������				����

��

�� ��				

�
��
�

pointer to the message built in line 2 and the input
arguments of the informIn() function, which are
timeout value and target thread.

Implementing the external message delivery: Figure 7
(b) shows the pseudo code for the sendTimeouts()
function of RTTimerActor, which is called whenever
any registered timeout expires. First, it dequeues all
expired timer nodes from the timeout callout queue. Then,
for each dequeued timer node, it (1) enqueues the
corresponding external message to the target thread (in
line 4) and (2) adjusts the priority of the target thread, as
the maximum of the current priority of the target thread
and the priority of the message being enqueued (in line 5).
After that, the allocated timer node is freed (in line 6).

As such, the priority of a thread is determined by the
scenario, which the thread deals with. Whenever a thread
is assigned to start a new scenario (in line 4), its priority
is dynamically set (in line 5), according to the logical
thread to which the scenario is mapped.

5. Conclusions

We have presented the scenario-based implementation
architecture for real-time object-oriented models. The
proposed implementation architecture aimed at
supporting our previously proposed software-synthesis
method, which automatically maps a given design model
to multi-threaded implementations in a schedulability-
aware manner.

To implement the synthesis tool supporting our
method, we exploited RoseRT, a CASE tool for UML-RT.
We provided (1) the code converter that consists of the
model analyzer and code modifier and (2) modified run-
time system library that fits to our scenario-based
implementation architecture. The code modifier (1)
embeds the logical-thread data-structure into external-
message-registering functions as their arguments, (2)
initializes the capsule-specific mutexes, and (3)
synthesizes the body of the thread-initialization function
to create threads that our method derives. The modified
run-time system library has following features: (1) while
there is no thread-specific mutex, the message
dispatching operation is guarded by the capsule specific
mutex. (2) There is no inter-thread message passing
except the delivery of external messages such as a
timeout signal. (3) The priority of a thread is dynamically
set according to the scheduling attributes of an external
message for the thread to process.

The main contributions of the paper are three folds.
First, we have proposed the scenario-based
implementation architecture, which is different from the
object-based one supported by the current CASE tools.
Second, we have described how our previously proposed

method can be implemented exploiting existing CASE
tools. Finally, we have presented how the preemption
threshold scheduling is integrated into the scenario-based
implementation architecture for real-time object-oriented
models.

We are currently developing some performance
metrics and testable object-oriented design models so that
we can provide some experimental results, which
compare our approach with others.

References

[1] S. Kim, S. Cho, and S. Hong, “Schedulability-Aware
Mapping of Real-Time Object-Oriented Models to Multi-
Threaded Implementations,” Proceedings of IEEE Real-
Time Computing Systems and Applications Symposium,
pages 7-14, 2000.

[2] S. Kim, S. Cho, and S. Hong, “Automatic Implementation of
Real-Time Object-Oriented Models and Schedulability
Issues,” Proceedings of IEEE Workshop on Object-Oriented
Real-Time Dependable Systems, pages 149-153, 2001.

[3] Y. Wang and M. Saksena, “Scheduling Fixed Priority Tasks
with Preemption Threshold,” Proceedings of IEEE Real-
Time Computing Systems and Applications Symposium,
pages 328-335, 1999.

[4] M. Saksena and Y. Wang, “Scalable Real-Time System
Design Using Preemption Thresholds,” Proceedings of
IEEE Real-Time Systems Symposium, pages 25-34, 2000.

[5] Object Management Group, OMG Unified Modeling
Language Specification Version 1.3, 1999.

[6] Rational Software, http://www.rational.com.
[7] Institute for Electrical and Electronic Engineers, IEEE Std.

1003.1c-1995 POSIX Part 1: System Application Program
Interface−Amendment 2: Threads Extension, 1995.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

