
Analytical Evaluation of Linux CFS Scheduler under Extreme Workload

Sungju Huh1), Jonghun Yoo3) and Seongsoo Hong1), 2), 3)
1) Department of Intelligent Convergence Systems,

Graduate School of Convergence Science and Technology
2) Advanced Institutes of Convergence Science and Technology

3) School of Electrical Engineering and Computer Science
Seoul National University, Republic of Korea

{sjhuh, jhyoo, sshong}@redwood.snu.ac.kr

Abstract

The CFS scheduler is extensively used in numerous

Linux installations but its behavior has not been well
analyzed. It is even observed that CFS demonstrates
unacceptable task starvation when it is used under
extreme workload. We analytically and critically
examine CFS to identify the source of the starvation
problem. Based on our analysis, we suggest priority-
based preemption to extend CFS.

Keywords: Linux CFS scheduler, task starvation, fair
share scheduling, priority-based scheduling

1. Introduction

The CFS (complete fair scheduling) scheduler [1] has
been the primary task scheduler of the mainline Linux
kernel since its 2.6.23 release. The goal of the
scheduler is to distribute among tasks CPU time
proportionally to task weights. As it demonstrated the
improved interactivity and fairness of tasks under usual
workload, it has been employed in a wide range of
computing systems from mobile devices to large cloud
servers.

Unfortunately, the CFS scheduler becomes
problematic when a system scales up to an extreme
degree. In [2], it is reported that tasks scheduled by
CFS were starved seriously in a system servicing a
trillion requests a day. Despite the extensive use of
CFS in numerous Linux installations, there are few
analytical and critical evaluations of CFS. Thus,
existing research results on CFS cannot successfully
explain the ill behavior of CFS under extreme
workload [3, 4].

In this paper, we formally analyze the CFS
scheduler to show that task response time grows
linearly as the number of tasks increases. Our analysis
result explains why the response time of a task may

grow unacceptably when thousands of tasks are
concurrently running in a server, as observed in large
data centers [2]. Based on our analysis, we suggest that
the CFS be extended to incorporate priority-based
preemption.

2. Understanding CFS

CFS attempts to achieve fairness using the notion of
task weights. To help programmers specify task
weights in a way consistent with older Linux, CFS uses
nice values. In conventional Linux, nice values used to
denote task priorities. In CFS, a nice value denotes a
specific weight value. Nice values range over [-20, 19]
and a smaller nice value corresponds to a larger weight.

CFS is a symmetric multiprocessor (SMP)
scheduling algorithm. It maintains a run-queue of tasks
in each core. It assigns each task in a run-queue virtual
run-time which is later used in sorting tasks in the run-
queue. The virtual run-time of a task is the task’s
cumulative execution time inversely scaled by its
weight. Specifically, let  be the weight of nice value
0 and  be the weight of task . Let ( , ) be the
cumulative physical run-time of task  at time t. In
CFS, the virtual run-time of task  at time t is defined
as below. ( , ) =  × ( , )	

CFS assigns each task a time slice which is defined
as a time interval for which the task is allowed to run
without being preempted. In CFS, the length of a task’s
time slice is proportional to its weight. The time slice
of task  is computed by   	  = ∑ ∈ × 

where φ is the set of runnable tasks,  the weight of  and P the constant for given workload. P is defined
as

 = { _ ℎ _ 	 	 > _ ,  _ ×  ℎ

where n is the number of tasks. sysctl_sched_latency, nr_latency and min_granularity are system-wide
constants and their values are 6, 8 and 0.75,
respectively, in current Linux implementations.

When a task runs out of its time slice, the
NEED_RESCHED flag is set. In every scheduling tick,
CFS updates the virtual run-time of the currently
running task and checks the NEED_RESCHED flag. If
it is set, CFS schedules a task with the smallest virtual
run-time in the run-queue.

3. Analysis of CFS

To analyze CFS under extreme workload, we first
introduce task starvation time as a metric. It is defined
as a time interval for which a task must wait in the run-
queue. A scheduling algorithm is said to achieve good
interactivity if the task starvation time is bounded
below by a small constant. Long starvation time
devastates the responsiveness of interactive tasks.

Figure 1 depicts an execution scenario where task 
exhibits its maximum starvation time under CFS. At
time t2,  receives a user input which requires δ CPU
time. Since only a small amount of time, ε is left in the
current time slice, the response is sent back to the user
in time t3, which is t1+P+δ-ε.

In CFS, once a task runs out of its time slice, it can
be rescheduled only after all other tasks in the run-
queue completely consume their time slices. Thus,
maximum starvation time   is computed by  = ∑  −  ∑ ∈ × 

where   is the minimum weight of runnable tasks.
As defined in Section 2, P is a linear function of the

number of tasks. Therefore,   is bounded by O(n).
Clearly, CFS demonstrates poor interactivity in huge
data center servers where the number of tasks is
extremely large.

4. Implication of the Analysis

CFS was designed to overcome several problems of the
classical priority-based O(1) scheduler of older Linux.

Unfortunately, our analysis shows that CFS introduces
a different type of problem. Two key factors behind
this problem are (1) the lack of priorities and (2) non-
preemptive execution during a give time slice. Thus,
we suggest that priority-based preemption be
introduced to CFS. Particularly to deal with an
interactive task, we define an interactive priority which
is higher than those of other fair scheduling tasks.
When a task receives a user input, its priority is
temporarily raised to the interactive priority so that it
can preempt other tasks and continue to execute even
though it has used up its time slice.

Figure 2 illustrates an execution scenario of the
suggested approach. At time t1, task  receives a user
input which takes δ time to be serviced. Its priority is
boosted to the interactive priority. Task  now
preempts other tasks and executes for ω more time
where ω is a heuristically obtained value to service the
user input. The user can receive the response for the
input at desirable time t1+δ. The maximum starvation
time is bounded by constant ω. To guarantee fairness,
next time slice of  is compensated to time	slicei	–	ω.

5. Conclusion

We have formally analyzed the behavior of CFS under
extreme workload to precisely characterize its task
starvation problem. Based on our analysis, we have
suggested that the CFS be extended to incorporate
priority-based preemption.

References

[1] I. Molnar. The Completely Fair Scheduler,

http://people.redhat.com/mingo/cfs-scheduler/.
[2] http://www.mattheaton.com/?p=222.
[3] L. A. Torrey, J. Coleman, and B. Miller, “A comparison
of interactivity in the Linux 2.6 scheduler and an MLFQ
scheduler” Software: Practice and Experience, vol. 37(4), pp.
347~364, 2007.
[4] S. Wang, Y. Chen, W. Jiang, P. Li, T. Dai, and Y. Cui,
“Fairness and Interactivity of Three CPU Schedulers in
Linux” Proceeding of RTCSA, pp. 172~177, August, 2009.

Figure 2. Improved execution scenario.

Time

τi τi+1 τN-1 τN
… … τi

ε

ω

P + ω

User input

t1

Response

τi

δ

time slicei - ω

τi+1

P

Time

Normal
priority

Interactive
priority

Figure 1. Execution scenario with maximum

starvation time.

Time

τi τi+1 τN-1 τNτN
… … τi

ε
δ δ-ε

P

User input

t1 t2

Response

t3

