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Abstract 

 
The CFS scheduler is extensively used in numerous 

Linux installations but its behavior has not been well 
analyzed. It is even observed that CFS demonstrates 
unacceptable task starvation when it is used under 
extreme workload. We analytically and critically 
examine CFS to identify the source of the starvation 
problem. Based on our analysis, we suggest priority-
based preemption to extend CFS. 
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1. Introduction 
 
The CFS (complete fair scheduling) scheduler [1] has 
been the primary task scheduler of the mainline Linux 
kernel since its 2.6.23 release. The goal of the 
scheduler is to distribute among tasks CPU time 
proportionally to task weights. As it demonstrated the 
improved interactivity and fairness of tasks under usual 
workload, it has been employed in a wide range of 
computing systems from mobile devices to large cloud 
servers. 

Unfortunately, the CFS scheduler becomes 
problematic when a system scales up to an extreme 
degree. In [2], it is reported that tasks scheduled by 
CFS were starved seriously in a system servicing a 
trillion requests a day. Despite the extensive use of 
CFS in numerous Linux installations, there are few 
analytical and critical evaluations of CFS. Thus, 
existing research results on CFS cannot successfully 
explain the ill behavior of CFS under extreme 
workload [3, 4]. 

In this paper, we formally analyze the CFS 
scheduler to show that task response time grows 
linearly as the number of tasks increases. Our analysis 
result explains why the response time of a task may 

grow unacceptably when thousands of tasks are 
concurrently running in a server, as observed in large 
data centers [2]. Based on our analysis, we suggest that 
the CFS be extended to incorporate priority-based 
preemption. 
 
2. Understanding CFS 
 
CFS attempts to achieve fairness using the notion of 
task weights. To help programmers specify task 
weights in a way consistent with older Linux, CFS uses 
nice values. In conventional Linux, nice values used to 
denote task priorities. In CFS, a nice value denotes a 
specific weight value. Nice values range over [-20, 19] 
and a smaller nice value corresponds to a larger weight. 

CFS is a symmetric multiprocessor (SMP) 
scheduling algorithm. It maintains a run-queue of tasks 
in each core. It assigns each task in a run-queue virtual 
run-time which is later used in sorting tasks in the run-
queue. The virtual run-time of a task is the task’s 
cumulative execution time inversely scaled by its 
weight. Specifically, let  be the weight of nice value 
0 and  be the weight of task . Let ( , ) be the 
cumulative physical run-time of task   at time t. In 
CFS, the virtual run-time of task  at time t is defined 
as below. ( , ) =  × ( , )	

CFS assigns each task a time slice which is defined 
as a time interval for which the task is allowed to run 
without being preempted. In CFS, the length of a task’s 
time slice is proportional to its weight. The time slice 
of task  is computed by   	  = ∑ ∈ ×  

where φ is the set of runnable tasks,  the weight of  and P the constant for given workload. P is defined 
as 



 = { _ ℎ _ 	 	 > _ ,  _ ×  ℎ  

where n is the number of tasks. sysctl_sched_latency, nr_latency and min_granularity are system-wide 
constants and their values are 6, 8 and 0.75, 
respectively, in current Linux implementations. 

When a task runs out of its time slice, the 
NEED_RESCHED flag is set. In every scheduling tick, 
CFS updates the virtual run-time of the currently 
running task and checks the NEED_RESCHED flag. If 
it is set, CFS schedules a task with the smallest virtual 
run-time in the run-queue. 

 
3. Analysis of CFS 
 
To analyze CFS under extreme workload, we first 
introduce task starvation time as a metric. It is defined 
as a time interval for which a task must wait in the run-
queue. A scheduling algorithm is said to achieve good 
interactivity if the task starvation time is bounded 
below by a small constant. Long starvation time 
devastates the responsiveness of interactive tasks. 

Figure 1 depicts an execution scenario where task  
exhibits its maximum starvation time under CFS. At 
time t2,  receives a user input which requires δ CPU 
time. Since only a small amount of time, ε is left in the 
current time slice, the response is sent back to the user 
in time t3, which is t1+P+δ-ε. 

In CFS, once a task runs out of its time slice, it can 
be rescheduled only after all other tasks in the run-
queue completely consume their time slices. Thus, 
maximum starvation time   is computed by  = ∑  −  ∑ ∈ ×  

where    is the minimum weight of runnable tasks. 
As defined in Section 2, P is a linear function of the 

number of tasks. Therefore,   is bounded by O(n). 
Clearly, CFS demonstrates poor interactivity in huge 
data center servers where the number of tasks is 
extremely large. 

 
4. Implication of the Analysis 
 
CFS was designed to overcome several problems of the 
classical priority-based O(1) scheduler of older Linux. 

Unfortunately, our analysis shows that CFS introduces 
a different type of problem. Two key factors behind 
this problem are (1) the lack of priorities and (2) non-
preemptive execution during a give time slice. Thus, 
we suggest that priority-based preemption be 
introduced to CFS. Particularly to deal with an 
interactive task, we define an interactive priority which 
is higher than those of other fair scheduling tasks. 
When a task receives a user input, its priority is 
temporarily raised to the interactive priority so that it 
can preempt other tasks and continue to execute even 
though it has used up its time slice. 

Figure 2 illustrates an execution scenario of the 
suggested approach. At time t1, task  receives a user 
input which takes δ time to be serviced. Its priority is 
boosted to the interactive priority. Task   now 
preempts other tasks and executes for ω more time 
where ω is a heuristically obtained value to service the 
user input. The user can receive the response for the 
input at desirable time t1+δ. The maximum starvation 
time is bounded by constant ω. To guarantee fairness, 
next time slice of  is compensated to time	slicei	–	ω. 
 
5. Conclusion 
 
We have formally analyzed the behavior of CFS under 
extreme workload to precisely characterize its task 
starvation problem. Based on our analysis, we have 
suggested that the CFS be extended to incorporate 
priority-based preemption. 
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Figure 2. Improved execution scenario. 
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Figure 1. Execution scenario with maximum 

starvation time. 
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