Enhancing AUTOSAR Methodology to a COTS-
based Development Process via Mapping to V-Model

Manish Kumar, Jonghun Yoo and Seongsoo Hong

School of Electrical Engineering and Computer Science
Seoul National University
Seoul, Korea
{manish, jhyoo, sshong}@redwood.snu.ac.kr

Abstract— AUTOSAR, an open standard for automotive
software, is currently being exploited by the automotive industry.
Although the standard mainly focuses on software architecture, it
also provides a development methodology. Unfortunately, the
methodology in its current form is insufficient for industrial
exploitation because it describes only an incomplete set of
activities, work products and their dependencies. Specifically, (1)
the activities to support COTS-based development are missing
even though AUTOSAR encourages the use of COTS
components; (2) it does not describe the roles and their
responsibilities; and (3) it does not specify the mapping of
activities onto a complete process model. In this paper, we
propose a new software development process for AUTOSAR by
extending the existing methodology. In doing so, we add activities
to allow COTS component selection, evaluation and integration.
Then, we define specific roles and assign responsibilities to those
roles. Finally, we describe the overall timeline of various
activities in detail by mapping the activities to the V-model. In
order to present the process, we have used SPEM 2.0 notation,
which is backward compatible with the AUTOSAR methodology
and has improved expressiveness, We have composed the
proposed process model using Eclipse Process Framework
Composer which not only performs a sanity check of the model
but also provides a way to publish it.

Keywords-component, SPEM, COTS, AUTOSAR, Process
Modeling

1. INTRODUCTION

AUTOSAR is an automotive software platform standard
established by the European automobile manufactures and their
first tier suppliers. The goal of AUTOSAR is to allow
automotive software to be composed of independently
developed components to improve reusability. Although the
standard is currently considered as mature and stable, its
adoption has not yet been widespread in industry. One of the
main reasons is the lack of a development process suited for
AUTOSAR. In fact, the AUTOSAR standard merely provides
a partial list of dependencies among artifacts. Its specification
does not define when artifacts are generated and who are
responsible for what. To apply AUTOSAR in practice,
developers need a more concrete development process. They
need a wider set of activities which can help them in making
better decisions. Furthermore, they need to know who is going
to do what in an organization at what time during the product
lifecycle.

Thus, we propose a complete software development
process suited for AUTOSAR by extending the existing
AUTOSAR methodology. First, we incorporate in the
methodology those activities that enable COTS-based software
development. Although AUTOSAR promotes the use of COTS
components, the methodology does not provide the activities
needed for COTS selection, evaluation and integration. Second,
we define roles for activities and assign them responsibilities.
They describe who in an organization will do what. Third, we
define an overall timeline for various activities in the form of a
process since the methodology does not prescribe a precise
order of activities. Our proposed process is divided into two
sub-processes. One takes care of system development and the
other component development. We map the system
development to the V-model [2] since it is widely used in the
automotive industry.

To present our process, we model it using SPEM 2.0
notations. SPEM |[4], Software Process Engineering Meta-
model, is a UML profile, specified by the OMG, for modeling
software development processes. AUTOSAR already uses a
small subset of SPEM 1.1 notations to describe its
methodology.

We have composed the proposed process model using
Eclipse Process Framework Composer (EPFC) [3]. Using this
tool, we could not only perform a sanity check of the proposed
process model but also easily publish it. We could also clearly
bring out collaboration between an original equipment
manufacturer (OEM) and suppliers. This is not a trivial task
since the AUTOSAR approach introduces many challenges
such as circular dependencies among an OEM and suppliers
and multiple layers of abstraction. Furthermore, we could
easily customize the process according to our specific needs.

The rest of the paper is organized as follows. In Section 2,
we discuss the shortcomings of the AUTOSAR methodology.
In Section 3, we provide our AUTOSAR-specific software
development process and explain its steps in detail. Section 4
gives our experience in composing the process with EPFC.
Finally, Section 5 serves as our conclusion.

II. PROBLEM DESCRIPTION

The AUTOSAR methodology provides some guidance to
work with AUTOSAR but it does not provide a complete
process description. It describes only an incomplete set of

activities, work products and their dependencies. Specifically,
the methodology has the following three shortcomings.

e The methodology fails to address important
functional parts of the process. Specifically, it ignores
activities and work products required for COTS
selection, evaluation and integration. These activities
and work products are important because AUTOSAR
encourages COTS-based development. We believe
that they should be incorporated in the process to
ensure that decisions for acquiring COTS software
are made at right time by right people [5]. In this
paper, we assume that both AUTOSAR Software
(ASW) components and Basic Software (BSW)
modules are COTS software.

e The methodology fails to show the organizational
perspective of the process since roles and
responsibilities are not defined. It is not clear where
and by whom in an organization, activities are
performed.

e Furthermore, the methodology fails to show the
behavioral perspective of the process since the
overall timeline is missing. It is not clear when
activities are performed (e.g., sequencing), as well as
how they are performed through feedback loops,
iterations, complex decision-making conditions, entry
and exit criteria, and so forth [6].

While we understand that these shortcomings are
intentional since the standard is not supposed to publish a
suitable process, a lot of developers are disappointed by them.
In fact, they expect to get more concrete process
recommendation from the standard [1]. We attempt to propose
a comprehensive process model that overcomes these
shortcomings.

I1I. AUTOSAR DEVELOPMENT PROCESS MODEL

In this section, we describe the steps we have taken to
fulfill the shortcomings of the AUTOSAR methodology in
detail. We also discuss the rationale and the outcome of these
steps.

A. Adding Activities and Work Products for COTS-based
Development

Fig. 1 shows the conceptual model of our proposed COTS-
based development. We assume that OEM is primarily

4 N

ASW selection I

OEM
ASW evaluation K

ASW integration;
= » BSW selection, evaluation,
integration

Supplier
- J
Fig. 1. OEM-supplier collaboration.

responsible for ASW component selection; that OEM and
suppliers together evaluate the ASW components; and that
suppliers are solely responsible for their integration. For BSW
modules, suppliers are entirely responsible for selection,
evaluation and integration.

We define activities, work products and their dependencies
to enable COTS-based development. The process starts with
the /nitial System Requirements and finally delivers the Final
Acquisition List, which contains the confirmed list of COTS
components for building a system. Please note that these
activities are performed for both ASW components and BSW
modules at various stages of system development. The
detailed description of each activity is given as follows.

1) Analyze requirements: This iterative activity checks if
system requirements can be fulfilled by the available COTS
components by surveying the COTS component market. The
output of this activity is a set of refined system requirements
which are mapped to COTS availability.

2) Extract suitable COTS components: This activity
mainly involves extracting specific requirements from the
refined system requirements and mapping them to specific
COTS components which are available in the market.

3) Structural verification: This activity primarily involves
verifying interfaces provided or required by the components.
The output of this activity is a refined set of components
which are structurally suitable for the system.

4) Behavioral verification: This activity is performed to
check the behavioral aspects of the selected components. Even
if they fit in the system structurally, they may not behave as
per system requirements. This activity further refines the
selected list of the components. The final list is possible
candidates for integration.

5) Evaluate implementation: This activity confirms the
COTS components for integration by verifying their
implementation aspects. It results in a pre-acquisition list of
the COTS components.

6) Verify modification: After the evaluation of their
implementation, the components are integrated with the rest of
the system. The integration generally involves some
customization or optimization, which may affect the behavior
of the components. This activity verifies the components again
to ensure that they behave the same way as they behaved when
tested in isolation. The output of this activity is the final
acquisition list of COTS components.

B. Defining Roles and Assigning Responsibilities

Table 1 shows the roles we define for both the system and
component development. These roles are very common in any
software organization but their descriptions which determine
their skills, competencies and responsibilities are AUTOSAR
specific. For example, the role “architect” in the OEM row
describes an actor who is responsible for designing software
composition and hardware topology. Thus, the actor must
have enough domain knowledge of automotive software
systems and various hardware resources available in the
market. Similarly, an “architect” in the Supplier/Vendor row

TABLE 1. ROLES AND THEIR DESCRIPTIONS

Role Description
OEM Stakeholder The management or the end user of the system whose needs must be satisfied by the project
Analyst Gathers input from the stakeholders to understand the problem and translate them into technical requirements (system
Architect ﬁ::;)onsiblc for designing the system, both software composition and hardware topology
Manager Responsible for project planning and coordination between stakeholders and suppliers
Developer Responsible for integration of ECUs in the system
Tester Responsible for black-box testing of the ECUs and the System
Supplier Stakeholder OEMs for Tier 1 suppliers or Tier 1 suppliers for Tier 2 suppliers
Venfdor Analyst Gathers input from the stakeholders to understand the problem and translate them into technical requirements (ECU
or component level)
Architect Responsible for designing ECU configuration or component architecture
Manager Responsible for project planning and coordination between stakeholders and development team
Developer Responsible for integrating components in ECUs or development of new components
Tester Responsible for functional testing of new components or of components integrated in an ECU

describes an actor who is responsible for configuring an ECU
or its component architecture. This actor is supposed to know
the details of the ECU and its execution environment.

The specific job of a role is described by assigning it
specific activities and work products. Due to space limitation,
we cannot show the responsibility assignments of all the roles;
we explain how this is done by giving two examples. The
“architect” in an OEM organization must perform four
activities: Decide on all SWC in the System, Generate System
Topology, Generate Top Level Composition and Perform
SWC-ECU Mapping. These activities result in five work
products: Collection of Available SWC Implementation,
System Configuration Description, System mapping
Constraints, System Topology and Top-Level Composition.
These activities and work products are in accordance with the
role description as mentioned in the last step. Similarly, the
“architect” in a supplier organization performs two activities:
Decide on all Atomic SWC Implementations and Generate
ECU SW Composition. They result in two specific work
products: All Atomic SWC Implementations on the ECU and
ECU Softiware Composition. These activities and work
products again match the role description. Similar assignments
are made for all the roles shown in Table 1. These assignments
make it clear as who in the organization is doing what
activities. This helps ensure that no activity or work product is
left out and also to ensure that there is no conflict in
responsibilities between two roles,

C. Mapping AUTOSAR Methodology to Phases of
Development Process and Defining a Lifecycle

As shown in Fig. 2, we map the extended set of activities to
various phases of a development process. The AUTOSAR
methodology starts with system configuration, ignoring the
activities which are required to generate the inputs of system
configuration. We introduce requirement and architecture
phases which contain activities to generate the inputs of
system configuration. After that, we map the system
configuration activities to system design phase. Then, ECU
configuration takes place and we map these activities to the
subsystem design phase. Once ECU configuration is over, the

components are integrated into an ECU and the executable is
generated. These activities are mapped to the integration
phase. The AUTOSAR methodology does not describe testing
related activities. We add the following phases to take care of
this issue: unit testing phase which contains activities to test
the functionality of ECUs, subsystem testing phase which
contains activities to test the ECUs as a black box before
integrating them into the system, system testing phase which
contains activities to test the system as a whole and finally,
vehicle testing phase which contains activities for the user
testing of the system.

For component implementation, we introduce the
requirement phase which contains activities for the software
requirement analysis. Then, the API generation activities of
the AUTOSAR methodology are mapped to the structural
design phase and activities required to implement the
component are mapped to the implementation phase. To test
the newly developed components, we add testing phase which
contains testing related activities. Finally, the resource
requirements of the component are measured in resource
measurement phase,

Once the mapping is over, we define an end-lo-end
lifecycle for the system development and for the software
component development. We use the Delivery Process of
SPEM 2.0 to present the lifecycle. A Delivery Process is a
Process that covers a whole development lifecycle from
beginning to end [4]. Delivery Process defines what gets
produced, how those items are produced, and the required
staffing in the form of integrated Work, Work Product, and
Team Breakdown Structures. We use it to describe only the
sequencing aspects of the Process ignoring the business
aspects such as the scale of the engagement and staffing
information.

We define two Delivery Processes: one for the system
development and the other for the component development.
We map the system development phases to the V-model
because of its popularity in the automotive industries whereas
we map the component development to the waterfall model for
the sake of simplicity. We observe that although component

p== SN I . =
Sructire Design Phase ""--.. ------- (] =
- o System Testing
el Architecture Design Phase
~ -
[} \‘L
= v-__ S
et ataot Phaze bt T ~e [(=1
S -—]
Seen ~ System Design Phase Sushsysten Testing bl
o e
s el /
Tosting Mhase Sa -~
) =
Subsystem Design Phase Une Testing
£ e \ /
e e TR
Rescurce Messurement Phase 0 TSN Raea, .
_____ - =)
Integration Phase Suppler
AUTOSAR Software Component System

Development Process

Development Process

Fig. 2. Final process modeled in SPEM 2.0,

development is supposed to be independent of system
development, there exist some dependencies between them as
shown by dotted arrows in Fig. 2. For instance, requirements
for a needed component are derived from the system
development. The structural design of a component is done in
close collaboration with architecture and system design
phases. The implementation of a component happens by
taking feedback from the subsystem design phase. Finally, the
tested component is integrated during the integration phase of
the system development.

IV. EXPERIENCE OF MANAGING THE PROCESS
MODEL WITH ECLIPSE PROCESS FRAMEWORK
COMPOSER

To manage the process effectively, we have composed it
using the EPFC. It is a process management tool used for
tailoring and deploying a development process using SPEM
2.0 notations |3]. We have created a method content library for
the AUTOSAR process which contains the basic elements
such as roles, tasks and work products and their relationships.
Then, we created Processes in the form of Delivery Processes
in the EPFC’s process editor as the breakdown of nested
activities using the basic elements of method content. Two
Delivery Processes were created, one for system development
and another for ASW component development. They were
added to a configuration and then published.

In our published configuration, the left pane contains the
basic view of the system development and component
development process. Developers can navigate through these
processes by expanding various development phases. They
can also get detailed information about an activity by clicking
the activity. The detailed view displayed on the right pane
shows the roles that perform the activity, additional
performers if any, the input and output work products of the
activity and the process usage of the activity.

With the EPFC, we could perform a sanity check of our
process model. By presenting the model in a structured view,

we could show the possible collaboration that can exist
between an OEM and suppliers in an efficient manner. Most
importantly, by publishing the process, we could collaborate
with other developers concerned with the process. They
further were able to customize the process according to their
understanding and provided us with their valuable feedback.

V. CONCLUSION

In this paper, we have proposed a development process for
AUTOSAR by extending its existing methodology. First, we
have introduced additional activities and work products to
support COTS selection, evaluation and integration. Then, we
have added the missing elements of a process by defining roles
and assigning responsibilities to them. Finally, we have
mapped these activities to traditional software development
process models. We have used SPEM 2.0 to present the process
and the EPFC to compose the process.

We believe that the AUTOSAR way of working can be
greatly simplified when presented in a form of a process
model. The model can provide guidance and can be even
tailored according to specific needs of a project. Since the
EPFC provides a structured view of the model, it can also serve
as a tool for learning about AUTOSAR which by itself is a
complex set of standards.

REFERENCES
Automotive Embedded Systems Handbook, edited by Nicolas Navet and
Francoise Simonot-Lion, 2008.
The V-Model, http://www.v-modell.iabg.de.
Eclipse Process Framework project, http://www.cclipse.org/epf.

SPEM. SPEM Software Process Engineering Meta-Model home page,
http://ww.omg.org/technology/documnets/formal/spem.htm.

B. Henderson-Sellers, C. Gonzalez-Perez, MK, Serour and D.G.
Firesmith, “Method Engineering and COTS Evaluation,” MPEC’05 at
ICSE™05, May 21, 2005.

Bill Curtis, Marc [. Kellner and Jim Over, “Process Modeling,”
Communications of the ACM, September 1992, Vol. 35, No. 9.

