
Providing Network Performance Isolation
in VDE-based Cloud Computing Systems

Vijeta Rathore1), Jonghun Yoo1), Jaesoo Lee1) and Seongsoo Hong1), 2), 3)

1) School of Electrical Engineering and Computer Science
2) Department of Intelligent Convergence Systems,

Graduate School of Convergence Science and Technology
3) Advanced Institutes of Convergence Science and Technology

Seoul National University, Republic of Korea
email:{vijeta, jhyoo, jslee, sshong}@redwood.snu.ac.kr

Abstract—In a cloud computing system, virtual machines
owned by different clients are co-hosted on a single physical
machine. It is vital to isolate network performance between the
clients for ensuring fair usage of the constrained and shared
network resources of the physical machine. Unfortunately, the
existing network performance isolation techniques are not
effective for cloud computing systems because they are difficult
to be adopted in a large scale and require non-trivial
modification to the network stack of a guest OS. In this paper,
we propose a performance isolation-enabled virtual distributed
Ethernet (PIE-VDE) to overcome such difficulties. It is a
network virtualization software module running on a host OS.
It intends to (1) allocate fair share of outgoing link bandwidth
to the co-hosted clients and (2) divide a client’s share to the
virtual machines owned by it in a fair way. Our approach
supports full virtualization of a guest OS, ease in wide scale
adoption, limited modification to the existing system, low run-
time overhead and work-conserving servicing. Experimental
results show the effectiveness of the proposed mechanism.
Every client received at least 99.5% of its bandwidth share as
specified by its weight.

Keywords-Network performance isolation; cloud computing;
Virtual Distributed Ethernet (VDE); proportionally fair resource
allocation

I. INTRODUCTION

Cloud computing has become an important computing
paradigm in the Internet as it evolves to an effective means
for seamless information retrieval and service provision
over the Internet. It has already been widely deployed in
data centers for web-hosting, data processing and utility
computing. Often, such cloud data centers are constructed at
a huge scale and requested to service a high churn of clients.
This incurs serious technical challenges to the cloud
providers in terms of efficient hardware resource sharing,
fair resource allocation, and reliable and secure services.
System virtualization technology which was originally
developed in 1960’s for mainframe computers has been
brought up to directly address many of such technical issues.
System virtualization enables multiple existing operating
systems, often referred to as a guest OS, to share a physical
machine by providing them with an illusion of exclusive

access to imaginary hardware called a virtual machine (VM).
As a result, it has been successfully used in enterprise and
desktop computing domains for the cost-effective sharing
and maintenance of computing resources.

System virtualization is often subdivided into CPU,
memory and I/O virtualization since different types of
resources require distinct techniques. Virtual Machine
Monitors (VMMs) such as Xen and VMware ESX server
provide mechanisms for CPU, memory and disk
virtualization. In case of network, virtual networks such as
Virtual Distributed Ethernet (VDE) [1] provide multiple
abstracted networks from the same physical network
infrastructure. Particularly, VDE realizes the packet
forwarding, switching and routing functionalities of the
virtual network fabric.

Unfortunately, ensuring the network performance of
cloud computing applications has not been of much concern
until recently although network performance metrics such as
throughput, delay and packet loss rate show large variations
with the bandwidth usage pattern of other co-residing VMs
[2]. The fundamental steps in this direction are the
minimization of network performance interference and
providing adequate network resources. While the latter
necessarily involves hardware changes at a huge scale, the
former can possibly be put into effect with software
modifications. With the increasing scale and complexity of
the network, the performance isolation has become essential
for optimal and fair usage of the constrained and shared
network resources.

In this paper, we address the network performance
isolation problem in the context of cloud computing. The
network performance interference in the cloud network
occurs when clients do not get the required amount of
bandwidth due to excessive network bandwidth usage by
other clients. Some users of the Amazon EC2 servers have
reported of pronounced variations in delay and throughput
due to “noisy neighbors” who run highly network intensive
loads [3]. As performance of cloud computing applications
is highly affected by the network performance, it is vital to
ensure a client’s network bandwidth requirement. The client
can either specify the network requirement in the form of

shares, or if not directly specified it can be interpreted by
the cloud provider from its computing requirements.

In the literature, there are some techniques for network
performance isolation, such as Transmission Control
Protocol (TCP)-based techniques, Quantized Congestion
Notification (QCN) [4], and Class of Service (CoS)
technologies [5]. However, these are not quite effective for
the cloud computing network as explained below.

A TCP-based solution, Seawall [6], provides a network
performance isolation solution based on end nodes. It sets
up TCP-like tunnels between each pair of communicating
VMs or applications that nest the transport layer protocol
and control flow rate while ensuring fair resource usage on
every network link. In order to avoid performance issues
associated with nested TCP control loops such as
deteriorated throughput and increased delay in lossy
networks [7], it modifies the network stack to defer
congestion control to Seawall’s shim layer. The need for
changes to the network stack of the guest OS precludes this
solution from working on the full-virtualization systems.

The QCN is a congestion notification protocol for cloud
data center networks. This protocol also has some
shortcomings. First, it works only within a layer-2 domain.
Second, it necessitates hardware or software implementation
on every network node, making it less flexible to changes
and difficult to implement in a huge network.

The CoS technologies, namely, 802.1p Layer 2 tagging,
Type of Service and Differentiated Services (DiffServ),
provide quality of service among classes of traffic. They
either fail to suit the huge scale of the cloud networks or
cannot be effective due to lack of standard policies among
network providers.

In this paper, we propose a software mechanism to
provide performance isolation among the clients in a cloud
network. In order to suit the huge scale of a cloud data
center and optimal resource utilization, our design principles
include full virtualization support, ease in wide scale
adoption, limited modification to the existing system, low
run-time overhead and work-conserving servicing. The
mechanism is embedded in VDE at the end nodes of the
network. We propose an enhanced version of the open
source VDE switch we call Performance Isolation Enabled-
VDE (PIE-VDE) switch to exercise the mechanism. It
intercepts the traffic originating at the node, segregates it
per VM and sends it to the outgoing link in a work-
conserving manner such that clients get fair share of
network bandwidth. It uses the VTRR proportionally fair
scheduling policy [8] to multiplex bandwidth among the
clients. The overhead is minimal since VTRR has an O(1)
time-complexity. The solution works for all network and
transport layer protocols owing to the protocol agnostic
nature of VDE. Also, it is scalable since it involves software
modification only on the end nodes.

For validation of our mechanism, we have implemented
it and performed thorough tests. The results confirm that
network performance isolation among the clients is achieved
by the mechanism.

This paper is organized as follows. Section 2 gives a
background of the VDE to aid in understanding the solution

mechanism and its implementation. Section 3 describes the
target system architecture and gives the problem description.
Section 4 provides the details of the solution mechanism.
Section 5 validates the mechanism through a set of
experiments. Section 6 concludes the paper.

II. BACKGROUND
We briefly give an overview of the VDE and its

architecture as a background to our work.

A. Overview of VDE
VDE is an open source layer-2 virtual distributed

network. We have chosen to provide our network
performance isolation mechanism in VDE as it has been
used by open source cloud computing platforms including
Eucalyptus [9] to build private networks for a cluster of
nodes.

VDE provides an Ethernet-compliant virtual network to
connect VMs, applications and real machines.VDE is a
virtual network with its parts being completely built in
software. It is distributed in the sense that parts of the same
VDE network can run on different physical machines. It
supports the Ethernet protocol and is able to forward, send
and route plain Ethernet packets. It provides interfaces to
connect with VMs, connectivity tools as well as virtual
interfaces of real systems.

B. Architecture
VDE is component-based software. Its components have

the same functionality as the hardware components in the
modern Ethernet network. The two main components are the
VDE switch and the VDE cable.

The main functionality of VDE switch is to switch
Ethernet packets between the ports. It manages dynamic
association between physical addresses and ports using a
hash table. The VDE cable is used to interconnect two VDE
switches. It consists of three software components: two
VDE plugs, one at each end of the cable, and an
interconnection tool. The VDE plug is a program connected
to a switch to convert all the traffic to a standard stream
connection. The interconnection tool bi-directionally
connects the streams of the two plugs.

C. Operation of VDE
The VDE switch associates a file descriptor to each

connected port. It polls the file descriptor for any packet
arrival events. When a packet arrives from a connected VM
or a process, the switch receives the packet and reads the
destination physical address. It then looks up the egress port
in the hash table and forwards the packet to the port.

The VDE switch has two modes of operation: switch
mode and hub mode. The switch mode is used for switching
packets to only specific ports while the hub mode is used to
broadcast packets to all the connected ports. It also supports
retransmission of unsuccessfully sent packets by maintaining
a separate queue. The user can enable or disable the
retransmission as needed.

III. PROBLEM FORMULATION
In this section, we describe the target system architecture

and formulate our problem.

A. Target System Architecture
The target cloud system comprises of a set of physical

computing nodes. A physical node runs a host OS on which
a VMM is executed. The VMM is used by the cloud provider
to instantiate VMs according to clients’ computing
requirements. Hosted VMMs are needed in order to run VDE
switch and VDE cable processes on the host OS.

The cloud network is realized using VDE as depicted in
Fig. 1. Each physical node has a VDE switch that
interconnects the VMs on the node and provides connection
with other physical nodes. The switches are connected via
cables according to the needed topology. In Fig. 1, all pairs
of switches are connected.

B. Problem Definition
For the cloud computing system described above, our

approach aims to provide network performance isolation
among clients. Clients are individuals or organizations that
buy computing, network and storage resources from the
cloud providers. A contract is signed between a client and a
cloud provider about the services received by the client.

A given physical node services a set of clients denoted by
{c1, c2, …, cm}. Client ci owns a set of VMs denoted by {v1

i,
v2

i, …, vn
i}. On a particular node, client ci’s network

requirement is expressed by its weight wi. It expects a
fraction of bandwidth proportional to this weight. For given
outgoing link bandwidth B, the bandwidth entitled to client ci
is simply given by:

i
i m

j
j i

wB B
w

�

� �

�
 (1)

A client’s share of bandwidth Bi is in turn divided among
the VMs owned by it as:

1 2() () ()i i i
i nB b v b v b v� � � �� (2)

where b(vj
i) is bandwidth used by VM vj

i.
Our approach intends to (1) ensure proportionally fair

allocation of bandwidth among the clients and (2) divide a
client’s share of bandwidth among the VMs owned by it in a
fair way. Fairness criterion for VMs of a client is subject to
the application. In most practical cases, VMs belonging to a
client have similar network requirements and are given
equal weights. In cases where VMs have varied
requirements, different weights are assigned. In that case,
the VMs should be provided with proportionally fair shares
of bandwidth.

IV. THE PROPOSED APPROACH
We propose a software approach to solve the problem of

network performance isolation in the cloud network. Our
approach is based on a two-level link-bandwidth scheduling
where the first level scheduling is done among clients and
the second among VMs owned by each client. Using the
specification of the clients and their VMs, our approach first
generates a schedule of clients according to a proportionally
fair scheduling algorithm. We particularly adopt the VTRR
algorithm for its low time-complexity and improved fairness
as compared to other algorithms. At the next level, our
approach makes a schedule in terms of VMs. If VMs
belonging to a client have equal weights, then a round-robin
scheduler is used; otherwise, a proportionally fair scheduler
is used in a nested fashion.

We realize our mechanism as an enhancement to the
legacy VDE switch. We name it performance isolation-
enabled VDE (PIE-VDE). The mechanism observes the
design principles stated in Section 1. It is based on the VDE
switch alone and does not need any modification to the guest
OS or its applications, thus supporting full-virtualization.
The change to the VDE switch is incremental and can be
easily adopted through a software patch. The mechanism
does not perform static bandwidth reservations and
multiplexes the bandwidth share among the VMs in a work
conserving manner.

We extend the legacy VDE switch by adding four
components to it: (1) a VTRR scheduler, (2) a packet
dispatcher, (3) per-client schedulers and (4) per-VM packet
queues.

The VTRR scheduler computes a client schedule from
the given set of clients and the associated weights. VTRR is
a linear-time proportional share scheduler that combines the
round-robin and proportionally fair scheduling approaches.
A client schedule is a sequence of clients such that the
number of each client appearing in the sequence is
proportional to its weight. The same sequence is repeated as
long as the clients and their weights remain unchanged. Thus,
VTRR scheduler is invoked only once when such a change
occurs.

For each client in the schedule, the packet dispatcher
invokes the corresponding per-client scheduler to pick a
packet and transmits it to the outgoing link. When a client
has no packet to transmit, the packet dispatcher simply skips
the client and continues to the next one in the schedule. This
ensures the work-conserving property of our mechanism.

A per-client scheduler schedules multiple per-VM queues
that belong to the same client. It is instantiated when a new Figure. 1. Target cloud computing system architecture.

client is allocated to the physical node. It is either a round-
robin or proportionally fair scheduler depending on the
weights of VMs in the client. When a request arrives from
the packet dispatcher, it returns a packet from a queue
according to its scheduling policy.

Finally, a per-VM packet queue is given to each VM. It is
instantiated when a new VM is created on the physical node.
Packets transmitted by a VM are inserted at the tail of the
associated packet queue.

We illustrate our mechanism through an example shown
in Fig. 2. A physical node services three clients c1, c2 and c3.
They own three, two and one VMs and their weights are
given by 5, 3 and 1, respectively. All VMs owned by the
same client are given equal weights. The applications
running on the VMs establish TCP flows such that all the
flows pass through the outgoing link. In total, client c1, c2
and c3 establish seven, four and one flows, respectively.

In the legacy VDE, there is no mechanism for allocating

network bandwidth among clients. Thus, the outgoing link
bandwidth is allocated to each flow by the TCP congestion
control mechanism which maintains max-min fairness
among the flows. Each client obtains a fraction of the
bandwidth proportional to its number of flows. Specifically,
client c1 gets about a half of the bandwidth, c2 gets a third
and c3 gets only a twelfth of the bandwidth instead of the due
shares according to the weights.

In the proposed mechanism, the VTRR scheduler makes
schedule (c1, c2, c3, c1, c2, c1, c2, c1, c1) and creates per-client
schedulers and per-VM queues as shown in Fig. 3.
According to the schedule, the packet dispatcher invokes a
per-client scheduler which in turn returns a packet from the
associated queues in the round-robin manner. As a result,
each client receives the outgoing link bandwidth in
proportion to its weight.

V. VALIDATION
We have implemented the solution mechanism in the

open source VDE switch version 2.2.3. Among four
components we have added, the packet dispatcher runs in a
separate thread whereas the other ones run in the main thread
of VDE switch.

We performed experiments to compare the performance
isolation capability of the legacy VDE and PIE-VDE. The
experimental setup is shown in Fig. 4. We used a physical
machine whose hardware consists of a 64-bit Intel Core2
Duo processor and 2GB of RAM. On the physical machine,
the Linux 2.6.32 kernel was run as a host OS and KVM was
used as a VMM. On the host OS, six VMs were instantiated
and they were connected with each other via two VDE
switches. The switches were connected though a couple of
VDE plugs and a dpipe connection tool. The six VMs were
owned by two clients, c1 and c2 as shown in Fig. 4. Their
weights were given by 1 and 2, respectively. Thus, Client c2
expects to get twice the bandwidth used by client c1. That is,

2 1/B B = 2.
In order to generate network traffic between VMs, we ran

Iperf version 2.0.4 which is a network performance
benchmark tool [10]. It generated a burst of TCP traffic from
a source VM to a destination VM. Source and destination
relationship between VMs is shown in Table I. It then
reported the average throughput received by each flow.

Packet
dispatcher

Client c1

Clien
t c 2

Cl
ien

t c
3

Client weights
w1 = 5
w2 = 3
w3 = 1

VTRR scheduler Schedule

VDE switch

Outgoing
link

v1
1

v3
1

v1
2

v2
2

v1
3

Port 1

Port 2

Port 3

Port 4

Port 5

Port 6

RR

FIFO

Per-VM queues

(c1,c2,c3,c1,c2,c1,c2,c1,c1)

Per-client scheduler
v2

1

RR

Figure 3. Component structure of the proposed mechanism.

Physical machine

v1
1

v1
2

v2
2

v1
1'

v1
2'

v2
2'

VDE
switch s1

VDE
switch s2

Client c1 Client c1

Client c2 Client c2

dpipe

Weights:
w1 = 1
w2 = 2

Figure 4. Experimental setup.

�
�

�

�

Figure 2. Cloud computing system with VDE network.

Table II shows the experimental results. We can observe
that PIE-VDE allocates the link bandwidth to clients
according to their weights whereas the legacy VDE gives
nearly equal amount of bandwidth to each flow. In PIE-VDE,
total bandwidth was 69.1 Mbps and the expected share of
bandwidth for c1 and c2 were 23.0 and 46.1 Mbps,
respectively. The actual share of bandwidth received by c1
and c2 were 99.5% and 100.2% of the expected ones,
respectively. 2 1/B B was 2.01 in PIE-VDE whereas it was
3.28 in the legacy VDE. We can also observe that PIE-VDE
provides each VM owned by a client with equal share of
bandwidth in a fair way.

VI. CONCLUSION
We have proposed a mechanism to provide network

performance isolation in a VDE-based cloud computing
system. It achieves proportionally fair allocation of network
bandwidth among co-residing clients on a physical node and
also provides fairness among the VMs owned by a client.
Our approach is distinctive as it focuses on the client
abstraction which is the main entity in a cloud computing
contract. It is based on the virtual switch and hence does not
incur any modifications to the guest OS and the existing
network infrastructure. We have conducted several
experiments to validate the approach. The results showed
the effectiveness of the proposed mechanism. Every client
received at least 99.5% of its bandwidth share as specified
by its weight.

In the future, we plan to extend the approach for the
receiving end in order to make the mechanism complete and

more effective. The future distributed computing systems
will be larger in terms of size and complexity, thus software
solutions for providing performance guarantees will become
extremely important.

ACKNOWLEDGMENT
The work reported in this paper is supported in part by the

Technology Innovation Program (No. 10036495) funded by
the Ministry of Knowledge Economy (MKE, Korea), by
Digital Media Communications R&D Center, Samsung
Electronics, Co. Ltd (No. 0421-20110016), by Advanced
Institutes of Convergence Technology (AICT), Institute for
Green Smart Systems and by Automation and Systems
Research Institute (ASRI).

REFERENCES

[1] R. Davoli, “VDE: virtual distributed Ethernet,” Proc. of
IEEE/Create-Net Tridentcom 2005, Trento, Italy, pp.
213-220, May 2005.

[2] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat,
“Enforcing performance isolation across virtual
machines in Xen,” Proc. of the ACM/IFIP/USENIX 7th
International Middleware Conference, Melbourne,
Australia, vol. 4290, no. 7, pp. 342-362, Lecture Notes in
Computer Science, Springer, November 2006.

[3] http://alan.blog-
city.com/has_amazon_ec2_become_over_
subscribed.htm.

[4] R. Pan, B. Prabhakar, and A. Laxmikantha, “QCN:
quantized congestion notification,”
http://www.ieee802.org/1/files/public/docs2007/au-
prabhakar-qcn-description.pdf, May 2007.

[5] M. Roughan, S. Sen, O. Spatscheck, and N. Duffield,
“Class-of-service mapping for QoS: a statistical
signature-based approach to IP traffic classification,”
Proc. of Internet Meas. Conf. 2004, Sicily, Italy, pp.
135–148, October 2004.

[6] A. Shieh, S. Kandula, A. Greenberg, and C. Kim,
“Seawall: performance isolation for cloud datacenter
networks,” 2nd USENIX Workshop on Hot Topics in
Cloud Computing (HotCloud '10), 2010.

[7] C. Kiraly, G. Bianchi, and R. L. Cigno, “Solving
performance issues in anonymization overlays with a L3
approach,” University of Trento Information Engineering
and Computer Science Department Technical Report
DISI-08-041, Ver. 1.1, September 2008.

[8] J. Nieh, C. Vaill, and H. Zhong, “Virtual-time round-
robin: an O(1) proportional share scheduler,” Proc. of
USENIX Annual Technical Conference, Berkeley, CA,
USA, pp. 245–260, June 2001.

[9] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S.
Soman, L. Youseff, and D. Zagorodnov, “The
Eucalyptus open-source cloud-computing system,” the
9th IEEE Int’l Symp. on Cluster Comp. and the Grid,
2009, (CCGRID '09), Shanghai, China, pp.124-131, May
2009.

[10] A. Tirumala, F. Qin, J. Dugan, J. Ferguson, and K. Gibbs,
“Iperf 1.7.0 - the TCP/UDP bandwidth measurement
tool,” http://dast.nlanr.net/Projects/Iperf, 2004.

TABLE I. FLOWS ESTABLISHED FOR OUR EXPERIMENT

Flows Client Source VM Destination VM
F1 c1 v1

1 v1
1’

F2 c2 v1
2 v1

2’
F3 c2 v1

2 v2
2’

F4 c2 v2
2 v1

2’
F5 c2 v2

2 v2
2’

TABLE II. ACHIEVED THROUGHPUT IN MB/S

Flows Clients

F1 F2 F3 F4 F5 c1 c2

VDE 17.0 13.8 14.5 14.5 13.0 17.0 55.8

PIE-VDE 22.9 13.4 11.7 9.41 11.7 22.9 46.2

