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Abstract—In a cloud computing system, virtual machines 
owned by different clients are co-hosted on a single physical 
machine. It is vital to isolate network performance between the 
clients for ensuring fair usage of the constrained and shared 
network resources of the physical machine. Unfortunately, the 
existing network performance isolation techniques are not 
effective for cloud computing systems because they are difficult 
to be adopted in a large scale and require non-trivial 
modification to the network stack of a guest OS. In this paper, 
we propose a performance isolation-enabled virtual distributed 
Ethernet (PIE-VDE) to overcome such difficulties. It is a 
network virtualization software module running on a host OS. 
It intends to (1) allocate fair share of outgoing link bandwidth 
to the co-hosted clients and (2) divide a client’s share to the 
virtual machines owned by it in a fair way. Our approach 
supports full virtualization of a guest OS, ease in wide scale 
adoption, limited modification to the existing system, low run-
time overhead and work-conserving servicing. Experimental 
results show the effectiveness of the proposed mechanism. 
Every client received at least 99.5% of its bandwidth share as 
specified by its weight.  
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I. INTRODUCTION 

Cloud computing has become an important computing 
paradigm in the Internet as it evolves to an effective means 
for seamless information retrieval and service provision 
over the Internet. It has already been widely deployed in 
data centers for web-hosting, data processing and utility 
computing. Often, such cloud data centers are constructed at 
a huge scale and requested to service a high churn of clients. 
This incurs serious technical challenges to the cloud 
providers in terms of efficient hardware resource sharing, 
fair resource allocation, and reliable and secure services. 
System virtualization technology which was originally 
developed in 1960’s for mainframe computers has been 
brought up to directly address many of such technical issues. 
System virtualization enables multiple existing operating 
systems, often referred to as a guest OS, to share a physical 
machine by providing them with an illusion of exclusive 

access to imaginary hardware called a virtual machine (VM). 
As a result, it has been successfully used in enterprise and 
desktop computing domains for the cost-effective sharing 
and maintenance of computing resources. 

System virtualization is often subdivided into CPU, 
memory and I/O virtualization since different types of 
resources require distinct techniques. Virtual Machine 
Monitors (VMMs) such as Xen and VMware ESX server 
provide mechanisms for CPU, memory and disk 
virtualization. In case of network, virtual networks such as 
Virtual Distributed Ethernet (VDE) [1] provide multiple 
abstracted networks from the same physical network 
infrastructure. Particularly, VDE realizes the packet 
forwarding, switching and routing functionalities of the 
virtual network fabric.  

Unfortunately, ensuring the network performance of 
cloud computing applications has not been of much concern 
until recently although network performance metrics such as 
throughput, delay and packet loss rate show large variations 
with the bandwidth usage pattern of other co-residing VMs 
[2]. The fundamental steps in this direction are the 
minimization of network performance interference and 
providing adequate network resources. While the latter 
necessarily involves hardware changes at a huge scale, the 
former can possibly be put into effect with software 
modifications. With the increasing scale and complexity of 
the network, the performance isolation has become essential 
for optimal and fair usage of the constrained and shared 
network resources.  

In this paper, we address the network performance 
isolation problem in the context of cloud computing. The 
network performance interference in the cloud network 
occurs when clients do not get the required amount of 
bandwidth due to excessive network bandwidth usage by 
other clients. Some users of the Amazon EC2 servers have 
reported of pronounced variations in delay and throughput 
due to “noisy neighbors” who run highly network intensive 
loads [3]. As performance of cloud computing applications 
is highly affected by the network performance, it is vital to 
ensure a client’s network bandwidth requirement. The client 
can either specify the network requirement in the form of 



shares, or if not directly specified it can be interpreted by 
the cloud provider from its computing requirements. 

In the literature, there are some techniques for network 
performance isolation, such as Transmission Control 
Protocol (TCP)-based techniques, Quantized Congestion 
Notification (QCN) [4], and Class of Service (CoS) 
technologies [5]. However, these are not quite effective for 
the cloud computing network as explained below.  

A TCP-based solution, Seawall [6], provides a network 
performance isolation solution based on end nodes. It sets 
up TCP-like tunnels between each pair of communicating 
VMs or applications that nest the transport layer protocol 
and control flow rate while ensuring fair resource usage on 
every network link. In order to avoid performance issues 
associated with nested TCP control loops such as 
deteriorated throughput and increased delay in lossy 
networks [7], it modifies the network stack to defer 
congestion control to Seawall’s shim layer. The need for 
changes to the network stack of the guest OS precludes this 
solution from working on the full-virtualization systems. 

The QCN is a congestion notification protocol for cloud 
data center networks. This protocol also has some 
shortcomings. First, it works only within a layer-2 domain. 
Second, it necessitates hardware or software implementation 
on every network node, making it less flexible to changes 
and difficult to implement in a huge network.  

The CoS technologies, namely, 802.1p Layer 2 tagging, 
Type of Service and Differentiated Services (DiffServ), 
provide quality of service among classes of traffic. They 
either fail to suit the huge scale of the cloud networks or 
cannot be effective due to lack of standard policies among 
network providers.  

In this paper, we propose a software mechanism to 
provide performance isolation among the clients in a cloud 
network. In order to suit the huge scale of a cloud data 
center and optimal resource utilization, our design principles 
include full virtualization support, ease in wide scale 
adoption, limited modification to the existing system, low 
run-time overhead and work-conserving servicing. The 
mechanism is embedded in VDE at the end nodes of the 
network. We propose an enhanced version of the open 
source VDE switch we call Performance Isolation Enabled-
VDE (PIE-VDE) switch to exercise the mechanism. It 
intercepts the traffic originating at the node, segregates it 
per VM and sends it to the outgoing link in a work-
conserving manner such that clients get fair share of 
network bandwidth. It uses the VTRR proportionally fair 
scheduling policy [8] to multiplex bandwidth among the 
clients. The overhead is minimal since VTRR has an O(1) 
time-complexity. The solution works for all network and 
transport layer protocols owing to the protocol agnostic 
nature of VDE. Also, it is scalable since it involves software 
modification only on the end nodes. 

For validation of our mechanism, we have implemented 
it and performed thorough tests. The results confirm that 
network performance isolation among the clients is achieved 
by the mechanism. 

This paper is organized as follows. Section 2 gives a 
background of the VDE to aid in understanding the solution 

mechanism and its implementation. Section 3 describes the 
target system architecture and gives the problem description. 
Section 4 provides the details of the solution mechanism. 
Section 5 validates the mechanism through a set of 
experiments. Section 6 concludes the paper. 

II. BACKGROUND 
We briefly give an overview of the VDE and its 

architecture as a background to our work. 

A. Overview of VDE  
VDE is an open source layer-2 virtual distributed 

network. We have chosen to provide our network 
performance isolation mechanism in VDE as it has been 
used by open source cloud computing platforms including 
Eucalyptus [9] to build private networks for a cluster of 
nodes. 

VDE provides an Ethernet-compliant virtual network to 
connect VMs, applications and real machines.VDE is a 
virtual network with its parts being completely built in 
software. It is distributed in the sense that parts of the same 
VDE network can run on different physical machines. It 
supports the Ethernet protocol and is able to forward, send 
and route plain Ethernet packets. It provides interfaces to 
connect with VMs, connectivity tools as well as virtual 
interfaces of real systems. 

B. Architecture  
VDE is component-based software. Its components have 

the same functionality as the hardware components in the 
modern Ethernet network. The two main components are the 
VDE switch and the VDE cable. 

The main functionality of VDE switch is to switch 
Ethernet packets between the ports. It manages dynamic 
association between physical addresses and ports using a 
hash table. The VDE cable is used to interconnect two VDE 
switches. It consists of three software components: two 
VDE plugs, one at each end of the cable, and an 
interconnection tool. The VDE plug is a program connected 
to a switch to convert all the traffic to a standard stream 
connection. The interconnection tool bi-directionally 
connects the streams of the two plugs. 

C. Operation of VDE  
The VDE switch associates a file descriptor to each 

connected port. It polls the file descriptor for any packet 
arrival events. When a packet arrives from a connected VM 
or a process, the switch receives the packet and reads the 
destination physical address. It then looks up the egress port 
in the hash table and forwards the packet to the port.  

The VDE switch has two modes of operation: switch 
mode and hub mode. The switch mode is used for switching 
packets to only specific ports while the hub mode is used to 
broadcast packets to all the connected ports. It also supports 
retransmission of unsuccessfully sent packets by maintaining 
a separate queue. The user can enable or disable the 
retransmission as needed. 



III. PROBLEM FORMULATION
In this section, we describe the target system architecture 

and formulate our problem. 

A. Target System Architecture  
The target cloud system comprises of a set of physical 

computing nodes. A physical node runs a host OS on which 
a VMM is executed. The VMM is used by the cloud provider 
to instantiate VMs according to clients’ computing 
requirements. Hosted VMMs are needed in order to run VDE 
switch and VDE cable processes on the host OS. 

The cloud network is realized using VDE as depicted in 
Fig. 1. Each physical node has a VDE switch that 
interconnects the VMs on the node and provides connection 
with other physical nodes. The switches are connected via 
cables according to the needed topology. In Fig. 1, all pairs 
of switches are connected.

B. Problem Definition  
For the cloud computing system described above, our 

approach aims to provide network performance isolation 
among clients. Clients are individuals or organizations that 
buy computing, network and storage resources from the 
cloud providers. A contract is signed between a client and a 
cloud provider about the services received by the client. 

A given physical node services a set of clients denoted by 
{c1, c2, …, cm}. Client ci owns a set of VMs denoted by    {v1

i,
v2

i, …, vn
i}. On a particular node, client ci’s network 

requirement is expressed by its weight wi. It expects a 
fraction of bandwidth proportional to this weight. For given 
outgoing link bandwidth B, the bandwidth entitled to client ci
is simply given by: 
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A client’s share of bandwidth Bi is in turn divided among 
the VMs owned by it as: 

1 2( ) ( ) ( )i i i
i nB b v b v b v� � � ��                     (2) 

where b(vj
i) is bandwidth used by VM vj

i.
Our approach intends to (1) ensure proportionally fair 

allocation of bandwidth among the clients and (2) divide a 
client’s share of bandwidth among the VMs owned by it in a 
fair way. Fairness criterion for VMs of a client is subject to 
the application. In most practical cases, VMs belonging to a 
client have similar network requirements and are given 
equal weights. In cases where VMs have varied 
requirements, different weights are assigned. In that case, 
the VMs should be provided with proportionally fair shares 
of bandwidth. 

IV. THE PROPOSED APPROACH
We propose a software approach to solve the problem of 

network performance isolation in the cloud network. Our 
approach is based on a two-level link-bandwidth scheduling 
where the first level scheduling is done among clients and 
the second among VMs owned by each client. Using the 
specification of the clients and their VMs, our approach first 
generates a schedule of clients according to a proportionally 
fair scheduling algorithm. We particularly adopt the VTRR 
algorithm for its low time-complexity and improved fairness 
as compared to other algorithms. At the next level, our 
approach makes a schedule in terms of VMs. If VMs 
belonging to a client have equal weights, then a round-robin 
scheduler is used; otherwise, a proportionally fair scheduler 
is used in a nested fashion. 

We realize our mechanism as an enhancement to the 
legacy VDE switch. We name it performance isolation-
enabled VDE (PIE-VDE). The mechanism observes the 
design principles stated in Section 1. It is based on the VDE 
switch alone and does not need any modification to the guest 
OS or its applications, thus supporting full-virtualization. 
The change to the VDE switch is incremental and can be 
easily adopted through a software patch. The mechanism 
does not perform static bandwidth reservations and 
multiplexes the bandwidth share among the VMs in a work 
conserving manner.   

We extend the legacy VDE switch by adding four 
components to it: (1) a VTRR scheduler, (2) a packet 
dispatcher, (3) per-client schedulers and (4) per-VM packet 
queues. 

The VTRR scheduler computes a client schedule from 
the given set of clients and the associated weights. VTRR is 
a linear-time proportional share scheduler that combines the 
round-robin and proportionally fair scheduling approaches. 
A client schedule is a sequence of clients such that the 
number of each client appearing in the sequence is 
proportional to its weight. The same sequence is repeated as 
long as the clients and their weights remain unchanged. Thus, 
VTRR scheduler is invoked only once when such a change 
occurs. 

For each client in the schedule, the packet dispatcher 
invokes the corresponding per-client scheduler to pick a 
packet and transmits it to the outgoing link. When a client 
has no packet to transmit, the packet dispatcher simply skips 
the client and continues to the next one in the schedule. This 
ensures the work-conserving property of our mechanism. 

A per-client scheduler schedules multiple per-VM queues 
that belong to the same client. It is instantiated when a new Figure. 1. Target cloud computing system architecture. 



client is allocated to the physical node. It is either a round-
robin or proportionally fair scheduler depending on the 
weights of VMs in the client. When a request arrives from 
the packet dispatcher, it returns a packet from a queue 
according to its scheduling policy. 

Finally, a per-VM packet queue is given to each VM. It is 
instantiated when a new VM is created on the physical node. 
Packets transmitted by a VM are inserted at the tail of the 
associated packet queue. 

We illustrate our mechanism through an example shown 
in Fig. 2. A physical node services three clients c1, c2 and c3.
They own three, two and one VMs and their weights are 
given by 5, 3 and 1, respectively. All VMs owned by the 
same client are given equal weights. The applications 
running on the VMs establish TCP flows such that all the 
flows pass through the outgoing link. In total, client c1, c2
and c3 establish seven, four and one flows, respectively. 

In the legacy VDE, there is no mechanism for allocating 

network bandwidth among clients. Thus, the outgoing link 
bandwidth is allocated to each flow by the TCP congestion 
control mechanism which maintains max-min fairness 
among the flows. Each client obtains a fraction of the 
bandwidth proportional to its number of flows. Specifically, 
client c1 gets about a half of the bandwidth, c2 gets a third 
and c3 gets only a twelfth of the bandwidth instead of the due 
shares according to the weights. 

In the proposed mechanism, the VTRR scheduler makes 
schedule (c1, c2, c3, c1, c2, c1, c2, c1, c1) and creates per-client 
schedulers and per-VM queues as shown in Fig. 3. 
According to the schedule, the packet dispatcher invokes a 
per-client scheduler which in turn returns a packet from the 
associated queues in the round-robin manner. As a result, 
each client receives the outgoing link bandwidth in 
proportion to its weight. 

V. VALIDATION
We have implemented the solution mechanism in the 

open source VDE switch version 2.2.3. Among four 
components we have added, the packet dispatcher runs in a 
separate thread whereas the other ones run in the main thread 
of VDE switch. 

We performed experiments to compare the performance 
isolation capability of the legacy VDE and PIE-VDE. The 
experimental setup is shown in Fig. 4. We used a physical 
machine whose hardware consists of a 64-bit Intel Core2 
Duo processor and 2GB of RAM. On the physical machine, 
the Linux 2.6.32 kernel was run as a host OS and KVM was 
used as a VMM. On the host OS, six VMs were instantiated 
and they were connected with each other via two VDE 
switches. The switches were connected though a couple of 
VDE plugs and a dpipe connection tool. The six VMs were 
owned by two clients, c1 and c2 as shown in Fig. 4. Their 
weights were given by 1 and 2, respectively. Thus, Client c2
expects to get twice the bandwidth used by client c1. That is, 

2 1/B B = 2. 
In order to generate network traffic between VMs, we ran 

Iperf version 2.0.4 which is a network performance 
benchmark tool [10]. It generated a burst of TCP traffic from 
a source VM to a destination VM. Source and destination 
relationship between VMs is shown in Table I. It then 
reported the average throughput received by each flow. 
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Table II shows the experimental results. We can observe 
that PIE-VDE allocates the link bandwidth to clients 
according to their weights whereas the legacy VDE gives 
nearly equal amount of bandwidth to each flow. In PIE-VDE, 
total bandwidth was 69.1 Mbps and the expected share of 
bandwidth for c1 and c2 were 23.0 and 46.1 Mbps, 
respectively. The actual share of bandwidth received by c1
and c2 were 99.5% and 100.2% of the expected ones, 
respectively. 2 1/B B  was 2.01 in PIE-VDE whereas it was 
3.28 in the legacy VDE. We can also observe that PIE-VDE 
provides each VM owned by a client with equal share of 
bandwidth in a fair way. 

VI. CONCLUSION
We have proposed a mechanism to provide network 

performance isolation in a VDE-based cloud computing 
system. It achieves proportionally fair allocation of network 
bandwidth among co-residing clients on a physical node and 
also provides fairness among the VMs owned by a client. 
Our approach is distinctive as it focuses on the client 
abstraction which is the main entity in a cloud computing 
contract. It is based on the virtual switch and hence does not 
incur any modifications to the guest OS and the existing 
network infrastructure. We have conducted several 
experiments to validate the approach. The results showed 
the effectiveness of the proposed mechanism. Every client 
received at least 99.5% of its bandwidth share as specified 
by its weight.  

In the future, we plan to extend the approach for the 
receiving end in order to make the mechanism complete and 

more effective. The future distributed computing systems 
will be larger in terms of size and complexity, thus software 
solutions for providing performance guarantees will become 
extremely important.  
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TABLE I. FLOWS ESTABLISHED FOR OUR EXPERIMENT

Flows Client Source VM Destination VM 
F1 c1 v1

1 v1
1’

F2 c2 v1
2 v1

2’
F3 c2 v1

2 v2
2’

F4 c2 v2
2 v1

2’
F5 c2 v2

2 v2
2’

TABLE II. ACHIEVED THROUGHPUT IN MB/S

Flows Clients

F1 F2 F3 F4 F5 c1 c2

VDE 17.0 13.8 14.5 14.5 13.0 17.0 55.8

PIE-VDE 22.9 13.4 11.7 9.41 11.7 22.9 46.2




