
Building a Customizable Embedded Operating System
with Fine-Grained Joinpoints Using the AOX Programming

Environment
Jiyong Park

School of Electrical Engineering and Computer Science,
Seoul National University, Seoul 151-744, Korea

+82-2-880-8370

parkjy@redwood.snu.ac.kr

Seongsoo Hong
School of Electrical Engineering and Computer Science,

Seoul National University, Seoul 151-744, Korea
+82-2-880-8357

sshong@redwood.snu.ac.kr

ABSTRACT
Aspect-oriented programming (AOP) has been successful in
modularizing crosscutting concerns in complex software systems.
In this paper, we present our aspect-oriented approach to building
a highly customizable embedded operating system. This is a
challenging task since embedded operating systems consist of
intertwined concerns often implemented using a mixture of
multiple programming languages including an assembly language.
Furthermore, they often contain hand-optimized code that makes
clear modularization extremely difficult. We provide a two-step
approach that addresses these difficulties. First, we devised an
aspect-oriented programming environment AOX (Aspect-
Oriented eXtension). It supports both modularization and
customization of complex software via a set of aspect-oriented
mechanisms. AOX extends existing approaches in the sense that it
is entirely programming language independent and provides fine-
grained joinpoints. Second, using AOX, we built a customizable
embedded operating system we call the HEART OS. It is highly
configurable and very user-friendly. AOX has been implemented
and integrated into the Eclipse IDE as a plug-in module. The
HEART OS has also been implemented and ported to the XScale
and x86 platforms. Our experience with AOX in building the
HEART OS was very positive.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments –
Graphical environments

General Terms
Management, Design, Languages

Keywords
AOP, Operating Systems, Fine-granularity, Language
Independence

1. INTRODUCTION
Embedded operating systems should adapt to a wide variety of

hardware devices and application domains. However, various
non-functional constraints inherent in embedded systems such as
limited memory space, processing time and energy make one-fits-
all operating systems impossible. Therefore, developers need to
design embedded operating systems in a modularized and highly
customizable fashion so that they can easily scale down their
embedded operating system to a customized version that only
contains exact features required.

The existing customizable operating systems often rely on
conventional techniques such as macro preprocessing, conditional
compilation, object-oriented programming or component-based
development over micro-kernels. However, it is not always
possible to achieve full customizability with these approaches
since they fail to modularize crosscutting concerns that are
inherent in most operating systems. Examples of such crosscutting
concerns include various types of policies and path-specific
optimizations, such as scheduling, memory management,
synchronization and prefetching. It is thus unavoidable that code
fragments for such concerns are scattered across the boundaries of
source files, classes and components. Therefore, code fragments
for such concerns necessarily cross the boundaries of source files,
classes and components.

The most viable solution to this problem is the adoption of the
aspect-oriented programming (AOP) technology [1]. In AOP, a
crosscutting concern is modularized via a separate module called
an aspect. In this paper, we present an aspect-oriented approach to
building a highly customizable embedded operating system. Our
contributions are two-fold. First, to render our approach reusable
for a wide range of embedded software, we provide an aspect-
oriented programming environment we call AOX (Aspect-
Oriented eXtension). Instead of using existing AOP languages
such as AspectJ and AspectC++, we have devised our own AOP
language. It is designed to be independent of a base programming
language and to have a fine-grained control over the weaving
mechanism. Currently, AOX has been implemented and
integrated into the Eclipse IDE as a plug-in. Second, to show the
viability and effectiveness of AOX, we implement a customizable
embedded operating system we call HEART OS using AOX.

The rest of this paper is organized as follows. In Section 2, we
enumerate design requirements for our aspect-oriented
programming environment. In Sections 3 and 4, we present AOX
and HEART OS, respectively. Section 5 summarizes related work.
Finally, we conclude this paper in Section 6.

2. DESIGN REQUIREMENTS AND OUR
SOLUTION APPROACHES
Before delving into the details of AOX, we first enumerate its
design requirements for supporting customizable embedded
software development.

Language independence: An operating system commonly
consists of various types of artifacts written in different
programming languages. Core functionalities are usually written
in C or C++, while machine-level functionalities, such as context
switching, initialization and interrupt handling are written in
assembly languages. In addition, makefiles are used to define
software build processes, and linker scripts are employed to
specify the memory layout of the target hardware. In order to
modularize concerns that are scattered on such artifacts, we need
to make our aspect model independent of languages used.

Fine-grained joinpoints: Due to performance constraints,
operating systems often require highly optimized code. As a result,
functions and data structures are deeply intertwined beyond
module boundaries. For example, a function that creates a new
process usually contains code fragments for seemingly unrelated
features, such as context management, synchronization, signal,
file and memory management. An interrupt handler array may
contain elements for different devices. In order to enable such
optimization, our aspect model needs to support fine-grained
joinpoints.

Advice ordering and replacement: Programmers have to be able
to decide the advising order of pieces of advice if a single pointcut
is advised by multiple pieces of advice [2]. This is particularly
important since the execution order of program statements, the
placement order of fields in a structure and the order of elements
in an array have important meanings in operating systems design.
Along with the advice ordering, developers have to be able to
replace existing pieces of advice with new ones. This is needed
when developers want to design default pieces of advice that can
be overridden by other pieces of advice. This effectively reduces
the size of an operating system since replaced pieces of advice are
removed.

Given these design requirements, our approach proposes the
following solutions.

XML annotations: In our AOP language, an artifact is annotated
by predefined XML tags. As the text that surrounds the tags is not
parsed or interpreted, our model can be applied to artifacts written
in any programming language. Also, this model achieves fine-
grained joinpoints since the tag for a joinpoint can be declared
anywhere in an artifact without restriction. We are well aware that
our model may be unsafe since it does not prevent programmers
from declaring joinpoints in inappropriate places or writing pieces
of advice with illegal instructions. To overcome this drawback,
our programming environment automatically performs weaving
and compilation as a background task and immediately notifies
programmers of errors caused by such unsafe joinpoints and
pieces of advice.

Timestamp-based advice arrangement: In order to support the
advice ordering and replacement, we devise the timestamp-based
advice arrangement mechanism, in which ordering and
replacement relationships among pieces of advice are represented
in a two-level list structure. We store this structure in the most
recently modified piece of advice to ensure that the ordering and

replacement information is always up-to-date. To determine the
most recently modified one, we associate each piece of advice
with a timestamp value that is updated when its ordering or
replacement relationship has been changed.

3. AOX PROGRAMMING ENVIRONMENT
Our solution approaches in the previous section are incorporated
in AOX. In this section, we give an overview of AOX by
presenting the model of its AOP language. We also explain its
weaving mechanism in detail. Finally, we present the
implementation of the GUI and the weaver of AOX.

3.1 Model
In the AOX programming environment, a software system is
modeled as a collection of features. A feature is an entity that
encapsulates a specific concern of the system. It is implemented
by one or more elements called artifacts. The artifacts are
organized in a tree structure via an element called a group. When
features are woven, a group and an artifact are mapped to a file
and a directory in a file system, respectively.

A feature can modularize concerns that crosscut the file
boundaries. This is done by the well-known advice-pointcut-
joinpoint mechanism used in conventional AOP languages. In our
model, an artifact consists of a text, joinpoints and pieces of
advice. Here, a joinpoint represents a specific location (offset) in
the text and a piece of advice represents a text fragment that can
be copied to the joinpoints. A pointcut is defined as a named
group of joinpoints. These three elements are associated as shown
in Figure 1. In the figure, six joinpoints scattered in three artifacts
and two features are captured by three pointcuts. Among them,
one pointcut is advised by two pieces of advice defined in the
third feature.

Features interact with each other only via crosscutting interfaces,
each of which consists of related pointcuts. This idea is inspired
by the idea of XPI [3]. A feature can implement a crosscutting
interface by declaring joinpoints and associating them with the
pointcuts in the interface. Similarly, the interface can be used by
creating pieces of advice that advise some pointcuts in the
interface.

The features, artifacts and interfaces are all represented in XML
files stored in a hierarchy of directories in a file system that we
call a repository. Specifically, inside an XML file for an artifact, a
joinpoint is represented by a <joinpoint> tag. The location of
the joinpoint is implicitly determined to be the point where the tag
appears in the text. Similarly, <advice></advice> tag denotes a
piece of advice. Any text other than the XML tags is considered
source code and is not interpreted by AOX.

 f1: Feature f2: Feature f3: Feature

a1: Artifact a2: Artifact a3: Artifact a4: Artifact

: Joinpoint

: Joinpoint

: Joinpoint

: Joinpoint

: Joinpoint

: Joinpoint

: Advice

: Advice

p1: Pointcut

p2: Pointcut

p3: Pointcut

Figure 1. Object diagram shows relationships among
joinpoints, pointcuts and pieces of advice.

3.2 Weaving Mechanism
AOX uses text-based static weaving; the content (text fragment)
of a piece of advice is copied into the locations where the
associated joinpoints are declared.

When multiple pieces of advice are copied in a location, they must
be copied by a predefined order. In AOX, this is done by the
timestamp-based advice arrangement mechanism. In the
mechanism, the order and replacement information is represented
in a two-level list structure that we call order info. It is an ordered
list of advice groups each of which is comprised of ordered lists of
pieces of advice. Here, the first-level list determines the order of
advice, while the second-level list determines the priority that
controls the replacement of pieces of advice. In a second-level list,
the last piece of advice in the list is assigned the highest priority
and replaces the remaining pieces of advice. In Figure 2. (a), there
are seven pieces of advice that advise the same pointcut and their
arrangement is a2 a3 a6 a7. Pieces of advice a1, a4 and a5
are replaced, so they cannot participate in weaving. Using the
two-level list structure, we can express any ordering and
replacement information.

However, the problem of where to store the order info remains.
When a piece of advice changes its location in the arrangement,
new order info is created that reflects the new arrangement. In
order to determine the most recent order info, we choose to store
the new order info in the piece of advice that has been moved the
most recently. To that end, each piece of advice has a timestamp
field and it is updated when the piece of advice has been changed.

This process is also shown in Figure 4. (b). Here, a2 has been
moved between a3 and a6. This new arrangement is described by
new order info o2. The timestamp value of a2 is set to 9 which is
the highest timestamp value among the pieces of advice. Finally,
o2 is stored in a2. When weaving, the weaver search for the piece
of advice that has the highest timestamp value and finds that it is
a2. Then the weaver arranges the pieces of advice by using the
order info stored in a2.

3.3 Graphical User Interface and Weaver
AOX is implemented as a plug-in module of the Eclipse IDE. It is
designed to prevent programmers from having to deal with the
complexities of XML files that implement the AOX programming
language. Due to space limitations, we will not explain all aspects
of the AOX plug-in in detail.

The GUI of the AOX programming environment mainly consists
of AOX navigator, the text editor and the crosscutting viewer. The
AOX navigator visualizes the structure of repositories.

Programmers can navigate through features, artifacts, interfaces,
configurations, pointcuts and so on. We also provide dedicated
form-based editors for creating and modifying the above-
mentioned elements, with the exception of the artifacts. For the
artifacts, programmers can use any text editor that is provided by
Eclipse or by other plug-in modules. AOX does not provide a
special editor for artifacts. Instead, it augments the current text
editor with graphical annotations and icons that represent
joinpoints and pieces of advice.

Figure 3 shows a text editor augmented by AOX. Here, a vertical
I-bar denotes a location where a joinpoint or a piece of advice is
declared. They are distinguished via different colors. They can
easily be added by dragging and dropping a pointcut from the
AOX navigator to the specific location in the text editor. After
that, a dialog is opened and the programmer is asked to choose
whether a joinpoint or a piece of advice will be added in the
location.

The details of joinpoints and pieces of advice are visualized and
can be edited in the crosscutting viewer as shown in Figure 5.
Here we see a list of joinpoints and pieces of advice that exist in
the artifact that is currently being edited. In the
Arguments/Content column, programmers can set argument
values for a joinpoint or text content for a piece of advice.

The most important feature of the viewer is the ability to see and
manipulate the arrangement of the pieces of advice. When a
joinpoint or a piece of advice is expanded by the + button, all
pieces of advice that advise the same pointcut are shown even if
some pieces of advice come from other features. The pieces of
advice are listed in the order that they will be woven together. In
this way, programmers can see the result of weaving before the
actual weaving is performed.

o1: Order Info

: Advice Group : Advice Group : Advice Group : Advice Group

a1: Advice

timestamp = 5

a2: Advice

timestamp = 7

a3: Advice

timestamp = 1

a4: Advice

timestamp = 0

a5: Advice

timestamp = 8

a6: Advice

timestamp = 2

a7: Advice

timestamp = 3

o1: Order Info

: Advice Group : Advice Group : Advice Group : Advice Group

a1: Advice

timestamp = 5

a2: Advice

timestamp = 7

a3: Advice

timestamp = 1

a4: Advice

timestamp = 0

a5: Advice

timestamp = 8

a6: Advice

timestamp = 2

a7: Advice

timestamp = 3

arrangement: a1 a3 a2 a6 a7arrangement: a2 a3 a6 a7

(a) (b)

o2: Order Info

: Advice Group : Advice Group : Advice Group : Advice Group

a1: Advice

timestamp = 5

a2: Advice

timestamp = 7

a3: Advice

timestamp = 1

a4: Advice

timestamp = 0

a5: Advice

timestamp = 8

a6: Advice

timestamp = 2

a7: Advice

timestamp = 3

: Advice Group

a2: Advice

timestamp = 9

o1: Order Infomoved

Previous order info
(same as in (a))

.......

Figure 2. The timestamp-based advice arrangement mechanism. (a) The original arrangement. (b) a2 is moved to the middle of a3
and a6. The dotted lines and bold lines represent removed and added parts, respectively.

JoinpointPieces of advicePointcuts

Drag and Drop

Figure 3. Screenshot of the text editor that shows graphical
annotations for pieces of advice and joinpoints. The joinpoint
of the handler pointcut is added to the text by drag and drop.

The arrangement of pieces of advice can be changed by drag and
drop. A piece of advice can be dropped between two adjacent
pieces of advice or it may be dropped on top of another piece of
advice to replace it. The replaced item is then shown as shadowed.
Note that only the pieces of advice that are defined in the artifact
that is currently being edited can be rearranged. This ensures that
programmers cannot modify pieces of advice from other artifacts
by mistake.

An artifact in a repository is woven into a file in an eclipse project.
Weaving is activated by the build command that is invoked from
the GUI. The command may be set to automatic so that the
weaving is performed in the background whenever the repository
is modified.

It is important that programmers be able to use project specific
text editors, navigators, debuggers and useful functionalities, such
as code assist and auto completion and the AOX plug-in
simultaneously. This allows AOX to be applicable to any existing
plug-in module and possibly to new plug-in modules that have not
yet been developed.

4. HEART OS
Using AOX, we have built a customizable embedded operating
system that we call the HEART OS (Highly Expandable Aspect-
oriented Real-Time Operating System). Like most embedded
operating systems, the HEART OS is designed as a library kernel
and consists of heterogeneous files that are written in C,
assembler, makefile and linker script.

The HEART OS consists of 15 features. When all features are
enabled, the HEART OS provides functionalities similar to that of
Nucleus or the uC/OS II real-time kernel. When only the minimal
set of features is enabled, it becomes a very tiny operating system
that only supports interrupt management. Currently, it is ported on
the XScale and x86 platforms. To show the viability and
effectiveness of AOX, we will now explain implementation
details of two representative mechanisms of the HEART OS:
scheduling and interrupt handling.

The scheduling mechanism is implemented as shown in Figure 6.
Feature arm, which implements the behaviors specific to the
ARM architecture, exposes pointcut when_reset at the reset
handler function. Feature scheduler advises the pointcut to invoke
init_schedule() during the reset.

The scheduling mechanism requires additional fields in thread
control block (struct thread), e.g. priority and state. This is
achieved by advising pointcut new_field. A joinpoint for the
pointcut is located at the end of the declaration of struct thread in
feature thread.

Those additional fields must be initialized when a thread is being
created. Therefore, thread makes pointcut when_created available
at the appropriate point in thread_create() function. By advising

the pointcut, scheduler initializes the priority and state and inserts
the thread into the ready queue. Note that the pointer to the thread
structure is passed from thread to scheduler via the argument
passing mechanism. Lastly, scheduler implements several
scheduling functions as APIs, e.g. schedule() and set_priority().

The interrupt handling mechanism is implemented as shown in
Figure 7. First, arm makes a pointcut when_interrupt available at
the point where hardware interrupt is first handled. The pointcut is
advised by feature base so that global_irq_handler() function is
invoked at every interrupt. Feature base is the default feature that
is enabled in all configurations. It implements a generic OS
architecture for the interrupt handler dispatching and provides a
generic build script for the OS.

The function receives an IRQ number for the current interrupt and
dispatches a handler from array handlers[] using the IRQ number
as an index. In order for other features to add their own specific
handlers to the array, the initialization part of the array is available
through pointcut handler, which is defined in interface interrupt.

This pointcut is first advised by feature pxa255, which knows the
number and the name of interrupt sources in XScale platform.
However, since the feature may or may not provide handler
routines for the interrupts, pxa255 initially advises the handler
pointcut with the pieces of advice that simply contain “0” (NULL).
This means all interrupts are ignored by default. Among the
interrupts, we have chosen to program pxa255 to provide a
handler for the timer interrupt (timer0_handler()), since it is the
most important interrupt. In addition to that, as an example, we
have programmed feature user to provide a handler for the serial
device interrupt (serial_handler()). These two new interrupt
handlers can be registered by advising pointcut handler and
replacing the existing pieces of advice.

5. RELATED WORK
There have been many language extensions and mechanisms that
support fine-grained joinpoints over existing AOP languages.
These include the statement annotation [4], the test-based
joinpoints [5] and Fluid AOP [6]. Among them, the statement
annotation is closest to ours; a joinpoint can be declared by

arm

thread

ht_reset_handler()

ht_create_context()

......

thread_create()

when_reset
......

hardware_events

struct thread

when_created

......

thread

new_field

scheduler

call init_schedule

priority, state, ...

......

init_schedule()

•initialize priority
•insert into

ready queue
•state is set to ready

schedule()

ht_switch_context()

featurefeature

crosscutting interfacecrosscutting interface

pointcutpointcut

function or
data structure

adviceadvice

joinpoint

function call,
data access, or pointer

export advise

Legend

Figure 6. Scheduling mechanism in the HEART OS.

A piece of
advice

All pieces of advice that advise the same pointcut as this piece of advice

Joinpoint

Drag and Drop

Figure 5. Screenshot of the crosscutting viewer.

attaching an annotation to a statement in a method body. However,
the mechanism relies on the language dependent annotation
mechanism provided by Java, whereas we use language
independent XML tags.

XVCL [7] is a language independent technique comparable to
AOX; the base programming language is considered a simple text
and the text is augmented using XML tags. Specifically, in XVCL,
<break> and <insert> tags serve as a joinpoint and a piece of
advice, respectively. However, it does not support the ordering of
the <insert> tags. It also lacks the ability to modularize
multiple concerns that crosscut each other, which is possible in
AOX.

AspectJ and AspectC++ support aspect ordering in a different way
from our approach. Using those languages, it is possible to declare
partial orderings among aspects that will be collected to form a
complete ordering. Nagy, et al. [2] proposed a mechanism that
allow programmers to specify conditional and dynamic ordering
among aspects. However, approach only support ordering at the
level of aspects and cannot control the order among individual
pieces of advice, nor do they support advice replacement.

There have been several GUI-based AOP tools that help
programmers modularizing crosscutting concerns: Stellation [8],
FEAT [9] and Bugdel [10]. They are similar to AOX in that
programmers are not required to use the complicated pointcut
designator of the conventional AOP languages. However, we have
found that these approaches have a weak point as well; they do
not work for an artifact that is augmented by other meta-language,
such as a C source file decorated with the macro definitions. Also,
they do not support selective enabling and disabling of concerns,
and thus are difficult to use for developing customizable software
systems.

In line with our HEART OS, there have been several research
projects on using AOP technologies in modularizing operating
system concerns. Coady, et al. [11] successfully modularized
some path-specific optimizations concerns in the FreeBSD kernel
using AspectC with low overhead. Lohmann, et al. [12] proposed
CiAO which is an embedded operating system that modularizes
its features using AspectC++. KLASY [13] is a dynamic aspect
weaver which is used to add aspects dynamically to the NetBSD
kernel.

6. CONCLUSION AND FUTURE WORK
In this paper, we have presented our aspect-oriented approach to

building a customizable embedded operating system in two steps.
First, we have devised the AOX programming environment with
XML annotations and timestamp-based advice arrangement
mechanisms. These mechanisms allow AOX to be independent of
the base programming language and to enable fine-grained
joinpoints. We have implemented AOX as a plug-in to Eclipse
IDE. Although AOX is designed for our customizable operating
system, we are confident that it can serve as a general
programming environment for most embedded system software.

Using AOX, we have built a customizable embedded operating
system we call the HEART OS. We have shown that our aspect-
oriented approach is effective in modularizing crosscutting
features in the operating system while satisfying the
aforementioned requirements. Our experience with AOX in
building the HEART OS was very positive.

We are now planning to enhance AOX. Specifically, it will be
integrated with the variant management tools such as
pure::variants so that AOX can be used for developing software
product lines.

7. REFERENCES
[1] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,

C., Loingtier, J.-M., and Irwin, J. Aspect-oriented
programming In Proceedings of ECOOP, 1997, 220-242.

[2] Nagy, I., Bergmans, L., and Aksit, M. Composing Aspects at
Shared Join Points. In Proceedings of NODe, 2005.

[3] Griswold, W. G., Shonle, M., Sullivan, K., Song, Y., Tewari,
N., Cai, Y., and Rajan, H. Modular Software Design with
Crosscutting Interfaces. IEEE Software (2006), 51-60.

[4] Eaddy, M. and Aho, A. Statement Annotations for Fine-
Grained Advising. In Proceedings of RAM-SE, 2006.

[5] Sakurai, K. and Masuhara, H. Test-based Pointcuts for Robust
and Fine-Grained Join Point Specification. In Proceedings of
AOSD, 2008.

[6] Hon, T. and Kiczales, G. Fluid AOP join point models. In
Proceedings of OOPSLA, 2006.

[7] Jarzabek, S. Software Reuse Beyond Components with XVCL.
In Proceedings of GTTSE, 2007.

[8] Chu-Carroll, M. C., Wright, J., and Ying, A. T. T. Visual
separation of concerns through multidimensional program
storage. In Proceedings of AOSD, 2003, 188-197.

[9] Robillard, M. P. and Murphy, G. C. Representing Concerns in
Source Code. ACM Transactions Software Engineering and
Methodology, 16, 1 (2007).

[10] Usui, Y. and Chiba, S. Bugdel: An Aspect-Oriented
Debugging System. In Proceedings of APSEC, 2005.

[11] Coady, Y. and Kiczales, G. Back to the Future: A Retroactive
Study of Aspect Evolution in Operating System Code. In
Proceedings of AOSD, 2003, 50-59.

[12] Lohmann, D., Streicher, J., Spinczyk, O., and Schröder-
Preikschat, W. Interrupt synchronization in the CiAO
operating system: experiences from implementing low-level
system policies by AOP. In Proceedings of Workshop on
Aspects, components, and patterns for infrastructure software,
2007.

[13] Yanagisawa, Y., Kourai, K., Chiba, S., and Ishikawa, R. A
dynamic aspect-oriented system for OS kernels. In
Proceedings of GPCE, 2006.

arm

ht_irq_handler()

when_interrupt
......

hardware_events

base

handler[irq]();

global_irq_handler()

......

call global_irq
_handler

handlers[] = { }

handlers[]

handler
......

interrupt

pxa255

timer0_handler()

NULL

timer0_handler

NULL
NULL

user

serial_handler()

serial_handler

Figure 7. Interrupt handling mechanism in the HEART OS.

