

CREAM: A Generic Build-time Component Framework for Distributed
Embedded Systems

Chetan Raj1, Jiyong Park1, Jungkeun Park2 and Seongsoo Hong1
1Real-Time Operating Systems Laboratory

Seoul National University, Seoul 151-744, Korea
{chetan, parkjy, sshong}@redwood.snu.ac.kr

2Dept. of Aerospace Information Engineering
Konkuk University, Seoul 143-701, Korea

parkjk@konkuk.ac.kr

Abstract

A component framework plays an important role in
CBSD as it determines how software components are
developed, packaged, assembled and deployed. A
desirable component framework for developing diverse
cross-domain embedded applications should meet such
requirements as (1) lightweight on memory use, (2)
integrated task execution model, (3) fast inter-component
communication, (4) support for distributed processing,
and (5) transparency from underlying communication
middleware. Although current embedded system
component frameworks address some of the above
requirements, they fail to meet all of them taken together.
We thus propose a new embedded system component
framework called CREAM (Component-based Remote-
communicating Embedded Application Model). It
achieves these goals by using build-time code generation,
explicit control of task creation and execution in the
component framework, static analysis of component
composition to generate efficient component binding, and
abstraction of the component’s application logic from the
communication middleware. We have implemented the
CREAM component framework and conducted a series of
experiments to compare its performance characteristics
to a raw socket-based communication implementation
and the Lightweight-CCM implementation by MicoCCM.

Keywords: CBSD, Component Models, CCM, Koala,
AUTOSAR, CORBA

1. Introduction

The ever increasing complexity of software has led to
the wide adoption of component-based software
development (CBSD) [1, 2]. The CBSD is an
engineering methodology used to build a software
system by composing software components. The CBSD
requires less time to assemble components than to
design, code, test and debug the entire system. This
development methodology greatly reduces the software
cost and the time to market.

In order for independently developed components to
be seamlessly integrated with each other, there must be

certain rules that govern how components are developed,
packaged, assembled and deployed. The component
framework enforces the component to adhere to these
rules by providing gluing mechanisms for component
composition, communication, synchronization,
deployment and execution.

The current component frameworks for embedded
systems have been designed based on existing enterprise
computing component frameworks or from scratch to
suit for a particular application domain. Popular
embedded system component frameworks such as
Lightweight-CCM [4], SCA [5] and .NET compact
framework are designed based on existing enterprise
computing component frameworks. However, they still
require heavy resources and have significant
performance overhead as they retain many of the
fundamental features to guarantee the backward
compatibility with their base component frameworks.
For example, Lightweight-CCM is based on CCM and
they both use the heavy CORBA [6] middleware.

There have been component frameworks designed
from scratch for the embedded systems. Koala [7],
AUTOSAR [8], and PECOS [9] are widely known
examples. However, they are highly optimized for
specific application domains and it is almost impossible
to use them in other domains. For example, AUTOSAR
uses domain-specific real-time control networks such as
CAN and FlexRay. Therefore, AUTOSAR is not suitable
for generic in-vehicle entertainment systems where those
control networks are seldom used.

In this paper, we propose CREAM (Component-based
Remote-communicating Embedded Application Model)
as a generic build-time component framework for
embedded systems. Specifically, CREAM is designed for
the following five requirements essential for developing
the current-generation of cross-domain embedded
applications.

1. Lightweight on memory usage
2. Integrated task execution model
3. Fast inter-component communication
4. Support for distributed processing
5. Transparency from underlying communication

middleware

1533-2306/08 $25.00 © 2008 IEEE

DOI 10.1109/RTCSA.2008.27

318

To the best of our knowledge, CREAM is the only
component framework that strives to achieve all the
above design requirement taken together. The existing
component frameworks meet only subsets of these
requirements. For example, Koala and PECOS lack
support for distributed processing. AUTOSAR is highly
dependent on the OSEK-COM communication
middleware. Lightweight-CCM and SCA require a
significant amount of memory and CPU time.

The main idea of CREAM is to utilize build-time
information and static analysis of the final component-
composed system in order to improve the run-time
performance and reduce the usage of system resources.
Another main contribution of the CREAM component
framework is the separation of the component model
from the underlying communication middleware. This
mechanism enables CREAM to support different
communication middleware without modifying the
component business-logic source code.

The remainder of this paper is organized as follows. In
Section 2, we enumerate the design requirements for our
component framework. In Section 3, we present the
CREAM component framework along with its
component model. In Section 4, we explain the key
mechanisms used in CREAM to achieve the design
requirements. In Section 5, we describe the CREAM
implementation and experimental results. Finally, in
Section 6, we provide our conclusions.

2. Design Requirements

The CREAM component framework strives to meet
the following five design requirements that are essential
for developing the current-generation of cross-domain
embedded systems applications.

1. Lightweight on memory usage: Despite decreases
in prices of solid state memory devices, memory
is still a precious resource in embedded systems.
Embedded system applications generally run on
little memory.

2. Integrated task execution model: Embedded
systems applications generally have many active
components with independent threads of control.
Moreover, many embedded systems applications
have real-time constraints. In such systems,
handling of task creation and execution forms an
important activity. Explicitly controlling those
activities in the component framework provides
greater predictability and analyzability of the
embedded systems applications.

3. Fast inter-component communication:
Components can communicate with each other
using various methods. If they are located in the

same address space, a simple direct method call
is sufficient. On the other hand, remote procedure
call (RPC) should be used when components are
in different address spaces or in different
physical nodes. Therefore, a suitable
communication mechanism must be chosen
depending on components deployment location.

4. Support for distributed processing: Many
embedded control systems such as automobile
systems consist of tens of distributed nodes.
Therefore, the support for distributed processing
is becoming a prerequisite for an embedded
system component framework.

5. Transparency from underlying communication
middleware: A component framework useful for
developing cross-domain applications should be
independent of communication middleware and
the underlying networks. For example, a
networked home service robot having its own
communication middleware needs to co-operate
with home networked appliances using another
communication middleware. Therefore,
component construction and deployment should
be transparent from the underlying middleware.

The support offered by existing embedded system
component frameworks for these design requirements are
as shown in Table 1.

Table 1. Comparisons of Component Frameworks

Component
Framework

Light-
weight

on
memory

Integ-
rated
task-
exec-
ution

model

Fast inter-
component
communi-

cation

Support for
distributed
Processing

Transparency
from

communi-
cation

middleware

Koala Yes No Yes No -NA-
PECOS Yes Yes Yes No -NA-
AUTOSAR Yes Yes Yes Yes No
CCM No No No Yes No
SCA No No No Yes No
CREAM Yes Yes Yes Yes Yes

3. The CREAM Component Framework

The CREAM component framework manages the
underlying component model. It uses services of an
object-based communication middleware to support
remote inter-component communication. The CREAM
component framework defines the component
composition and deployment semantics. It makes use of
XML based domain-profiles to describe, configure and
deploy components in the final component-composed
system.

3.1. Component Model of CREAM

The component model used in CREAM is similar to
that of other popular component frameworks such as
CCM and AUTOSAR. This component model can be
visualized as shown in Figure 1 (a). A component
interacts with other components and its environment
using ports [2, 3].

3.1.1. Components’ Port
 A port is defined as a point of interaction between a

component and its environment. These interactions occur
through well-defined interfaces [2]. The ports in
CREAM can be further categorized into client-server
ports and event-service ports.

CREAM Component

Communication Middleware

Partition 2

Partition 1

(a) Component Ports

(b) Component Composition

Legend

Component

Event Subscriber Port

Requires Port

Provides Port

Event Publisher Port

Figure 1: Component Model of CREAM.

(a) Client-Server ports: They represent synchronous
communication between components. These ports have
an interface type defined by the component developer.
The server port is named as provides port. The client port
is named as requires port. In CREAM, a requires port is
an object reference that is associated with a provides port
object instance of the same interface type.

(b) Event-service ports: They represent
asynchronous interactions between components. Event
ports are based on the push-type publisher-subscriber
event model.

3.1.2. Interfaces
The interface of a port object is described using the

CREAM’s interface definition language (IDL). The
CREAM makes use of a simple IDL supporting basic
data types such as string, integer and floating point data
types. The CREAM’s IDL is transparently mapped to the
IDL used by the underlying communication middleware
for marshalling and un-marshalling of remote procedure
calls (RPC).

3.2. Communication Middleware

The CREAM uses a lightweight communication
middleware for supporting distributed processing. In
general, any object-based communication middleware
that supports marshalling and un-marshalling of object
method calls can be used. The CREAM code generator
can be extended to support any object-based
communication middleware without requiring the costly
re-coding of existing components’ business logic.

3.3. Component Composition and Deployment

Component composition is defined as a process of
integrating two or more components into a single unit. In
CREAM, the composition of client-server ports involves
associating requires port object references of one
component with provides port object instances of another
component. The event-service ports are composed
together by associating event publisher and subscriber
ports to a common event channel as accomplished in
other push-type event models.

In CREAM, deploying components involves grouping
of component instances into different partitions. A
partition is executed as an OS process. All component
instances of the same partition form collocated
components and share the same address space. These
partitions are managed by a separate standalone
DomainExecutionManager which waits for the
boot up of all partitions. It can then be used to start and
stop the execution of partitions in the system.

3.4. Domain Profiles

CREAM Code
Generator

Component
Assemblies

SCD + SPD + CPD +
SAD + SDD +
Components

Figure 2: Domain Profiles Processing.

The CREAM component framework makes use of
XML based domain profiles as its component definition
language [2] for describing various operations on
components. These domain profiles are – (1) Software
Component Descriptor (SCD) used for specifying and
developing components, (2) Software Packaging
Descriptor (SPD) for describing the software component
package, (3) Component Properties Descriptor (CPD) for
describing the custom properties of component instances,
(4) Software Assembly Descriptor (SAD) for composing
components to form an assembly, and lastly (5) Software
Deployment Descriptor (SDD) which provides the
partitioning and deploying information. These domain
profiles are consumed by the CREAM’s code-generator
to produce the final component assemblies as shown in
Figure 2.

4. Key Mechanisms of CREAM

The key mechanisms of CREAM that achieve the
aforementioned design requirements are explained in this
section.

4.1. Build-Time Code Generation for Developing
a Lightweight System

The CREAM is a build-time component framework.
The component framework binds all component
references and dependencies at build-time. This analysis
helps remove costly memory consuming features such as
XML-parsers, naming-services and dynamic component
binding to achieve a lightweight system.

The CREAM code generator analyzes the domain
profiles and extracts required information at build-time.
This information includes the components’ interfaces and
ports, inter-connection of components’ ports, custom
properties of component instances, partition and
deployment information. The code generator uses this
information to generate statically configured code that
instantiates the components, inter-connects the
components’ ports and deploys the composed
components. This static analysis and build-time code
generation removes the need for a heavy run-time and
enables developing a lightweight final system.

4.2. Integrated Task Execution Model

Handling of task creation and execution forms an
important activity in embedded software systems. These
systems usually have many active elements that need
their own threads of control. Manual coding of task
creation and execution for such active elements causes
the strong coupling of applications to target platforms.
Moreover, manual coding for task creation leads to
difficulties in predictability and analyzability of the
embedded application system. To address this problem,
the CREAM has integrated the task execution model into
the component framework. The CREAM explicitly
controls the creation and execution of all tasks in the
system. This integrated task model enables automatic
synchronization among shared component instances and
helps analyze the WCET of tasks.

In CREAM, components are of two types: (1) active
components, with an independent thread of control, and
(2) passive components, with no independent thread of
control. In CREAM, active components implement a
run method. The CREAM component framework
creates a task and initializes its entry point to the run
method for each active component.

The task execution model in the CREAM component
framework can be described in Figure 3. The CREAM
framework in each partition creates a component service

thread for all passive components. The framework then
creates active run threads for each active component in
the partition. All remote method invocation (RMI) on a
method of a passive component is executed within the
context of the component service thread. The inter-
component communications between all components
within a partition occur through simple local function
calls. Each partition registers themselves with their
network port and location details with the
DomainExecutionManager which is then used to start
and stop executions of all partitions.

<< Remote RPC Function Call >>

Partition 1 Partition 2

<< Process>>

<<Active Run
Threads>>

<< Component
Service Thread >>

reads
<< Local
Function
Calls >>

Active
Components

Passive
Components

DomainExecutionManager

<< Process>>

<<Active Run
Threads>>

<< Component
Service Thread >>

reads
<< Local
Function
Calls >>

Active
Components

Passive
Components

Figure 3: Task Execution Model of CREAM.

Component instances
deployed under
execution contexts of
two or more tasks

<< local >>

<< remote>>

<< Component
Service Thread >>

Partition 1

Synchronized

Partition 2

Figure 4: Automatic Synchronization.

The task model of CREAM enables automatic
synchronization among shared component instances. This
mechanism is described in Figure 4. The CREAM code
generator statically parses the software assembly
descriptor (SAD) to analyze for shared component
instances used by two or more active components. The
code generator then automatically embeds code that uses
underlying OS task synchronizing primitives such as a
mutex and semaphore to coordinate access to these
shared component instances.

 The integrated task model of CREAM helps in using
external WCET analysis tools within the CREAM
component framework. The CREAM component
framework, having the complete knowledge of all the
tasks in the system, can automatically configure these
WCET tools to evaluate the worst case execution time for
all tasks.

4.3. Fast Inter-component Communication

The CREAM achieves inter-component
communication performance efficiency for collocated
inter-component method calls by mapping collocated
components’ port composition to local function calls and
remote components’ port composition to communication
middleware based remote function calls.

The composition optimization is achieved using
polymorphism and the delegator design pattern. The port
interface type is associated with an abstract class. This
abstract class has two implementations: (1) the actual
business logic implementation of interface methods and
(2) the delegation implementation to a proxy that handles
remote object communication. CREAM’s code generator
automatically generates the second implementation. The
collocated inter-component calls are mapped to the actual
business logic implementation method. The remote inter-
component calls are mapped to the auto generated
delegation implementation method. This entire
mechanism is visualized in Figure 5.

interface Printer
{

void print(string someMessage);
};

CREAM Code
Generator

PrinterRemote

- PrinterProxy prxy;

+ void print(string message)
{
return prxy->print(message);

}

<<realization>>

PrinterImpl

+ void print(string messasge)
{
buffer = message;
cout<< buffer;

}

- string buffer;

Business logic, implemented by
component developer

Delegator, auto generated by
CREAM code generator

Middleware
IDL processor

<<dependency>>

Middleware
IDL

PrinterAbstract PrinterProxy

Figure 5: Interface Methods Local and Remote
Implementation.

The build-time binding of component ports to
appropriate local or remote references provides
optimization and efficiency over that of run-time
component frameworks. Those component frameworks
usually bind all component ports at run-time and use their
communication middleware for inter-component method
calls. This communication middleware overhead for
collocated inter-component communication is completely
avoided in CREAM.

4.4. Transparency from Underlying
Communication Middleware

In the CREAM component framework, the component
model and operations on components such as component
construction, composition and deployment are made
independent of the underlying communication
middleware. This separation is achieved by developing
thin abstraction layer for the communication middleware,
having minimal requirements on object-based
communication middleware, and code-generation tools.
Specifically, it only requires object methods marshalling
and un-marshalling support from the communication
middleware. Any communication middleware which
support this minimal requirement can be used in the
CREAM component framework.

The CREAM code generator helps achieve the
separation of application logic code from the
communication mechanisms. The code generator
automatically associates the application business logic
object to communication middleware’s object servants. It
then extracts the business logic object’s information from
communication middleware’s object proxies. This
preserves the investment done on developing the actual
business logic of components and enables the
components to be deployed over different
communication middlewares.

5. Implementation and Experimental Results

We have implemented the CREAM framework using
the standard C++ programming language and the code-
generator in Perl scripting language. We have developed
and tested the CREAM on two OS platforms: Linux
(2.6.22 kernel) and Windows XP. On Linux, gcc (4.1.3)
compiler, and autoconf (2.61) and automake (1.10)
build-toolsets were used. On Windows, Visual Studio
2005 was used to develop the CREAM.

We have compared the CREAM performance
characteristics to a socket based raw implementation and
the MicoCCM. In the raw implementation, method calls
between collocated components were handled through
local function calls, and method calls between two
partitions were handled through socket communication.
This raw implementation allows us to compare the
communication performance for best obtainable values.
On the other hand, MicoCCM has been used in many
distributed real-time embedded system applications.

We used two computing hosts with the following
configuration for our experiments: Intel Centrino 2.80
GHz running Linux 2.6.22 kernel and having 1 GB of
RAM memory. The CREAM component framework
made use of the Ice-E communication middleware in
these experiments.

We measured inter-component communication time
for three scenarios. First, the inter-component
communication time for components in the same address
space was measured. Second, the inter-component
communication time for components residing in different
address spaces, but within the same host was measured.
Third, the inter-component communication for remote
components residing in different hosts was measured.

Table 2. Inter-component Communication time

 CREAM Raw MicoCCM
Collocated
components in
the same
address space

1.43 µs 1.10 µs 2.74 µs

Remotely located
components in
the same host

43.4 µs 37.2 µs 76.5 µs

Remotely located
components in
different hosts

351 µs 332 µs 387 µs

As shown in Table 2, for collocated components in the
same address space, the communication overhead of
CREAM compared to the raw implementation is 30%
whereas MicoCCM causes 149%. For remotely located
components in the same and different hosts, the overhead
of CREAM is 16.6% and 5.7%, respectively. Compared
to this, the overhead of MicoCCM was 106% and 16.6%,
respectively.

Table 3. Framework Memory Consumption

CREAM
Processes

Size
(MB)

DomainExecution-
Manager

48

Partition A
(on computer 1) 48

Partition B
(on computer 2)

40

Total 128

MicoCCM
Processes

Size
(MB)

Naming-
service

24

mico-ccmd
(daemon on
computer 1)

48

component-
server (on
computer 1)

56

mico-ccmd
(daemon on
computer 2)

40

component-
server (on
computer 2)

48

Total 216

Table 3 shows that the CREAM component

framework makes use of three OS processes:
DomainExecutionManager, PartitionA and
PartitionB to implement the experimental system of
Figure 8 (c) on two hosts. On the other hand, Table 4
shows that MicoCCM uses five OS processes: Naming-
service, two mico-ccmd processes and two

component-server processes for the same
experimental setup. As can be inferred from Tables 3 and
4, CREAM uses 40.7% less memory than MicoCCM.
This is achieved through the removal of naming-service
and dynamic-composition features of CCM which are
rarely needed for an embedded application.

6. Conclusion

In this paper, we have proposed the CREAM as a new
generic component framework for distributed embedded
systems. We have identified the design requirements of a
component framework that meets the challenges of
distributed cross-domain applications. We have designed
and implemented the CREAM component framework,
which is lightweight on memory usage, has integrated
task-execution model, efficiently handles inter-
component communication, and supports distributed
processing in a communication middleware transparent
manner. The CREAM component framework was
evaluated and compared to a raw socket-based
implementation and the MicoCCM.

References
[1] Ivica Crnkovic, and Magnus Larsson, Building Reliable

Component-Based Software Systems, Artech House, 2002

[2] C. Szyperski, D. Gruntz, and S. Murer, Component
Software: Beyond Object-Oriented Programming, second
ed. Addison-Wesley, 2002.

[3] Kung-Kiu Lau, Zheng Wang, Software Component
Models, IEEE Transactions on Software Engineering, vol.
33, no. 10, October 2007

[4] Lightweight CORBA Component Model (CCM), OMG
Final Adopted Specification, ptc/03-11-03,
http://www.omg.org/docs/ptc/03-11-03.pdf

[5] Joint Tactical Radio Systems. Software Communications
Architecture Specification V.3.0, August, 2004.
http://sca.jpeojtrs.mil/

[6] Common Object Request Broker Architecture: Core
Specification, http://www.omg.org/technology/documents
corba_spec_catalog.htm , Mar. 2004.

[7] R. van Ommering, F. van der Linden, J. Kramer, and J.
Magee, “The Koala Component Model for Consumer
Electronics Software,” Computer, vol. 33, no. 3, pp. 78-85,
Mar. 2000.

[8] AUTOSAR Development Partnership, "AUTOSAR
architecture", available at www.autosar.org, Autosar GbR

[9] PECOS Project: http://www.pecos-project.org/

[10] MicoCCM: http://www.fpx.de/MicoCCM

[11] Ice-E: http://www.zeroc.com/icee/index.html

