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Abstract 

In this paper, we present a robot middleware 
technology named Robot Software Communications 
Architecture (RSCA) for its use in networked home service 
robots. The RSCA provides a standard operating 
environment for the robot applications together with a 
framework that expedites the development of such 
applications. The operating environment is comprised of a 
real-time operating system, a communication middleware, 
and a deployment middleware. Particularly, the 
deployment middleware supports the reconfiguration of 
component-based robot applications including installation, 
creation, start, stop, tear-down, and un-installation. In 
designing RSCA, we have adopted a middleware called 
SCA from the software defined radio domain and extend it 
since the original SCA lacks the real-time guarantees and 
appropriate event services. We have fully implemented 
RSCA and performed measurements to quantify its 
run-time performance. Our implementation clearly shows 
the viability of RSCA. 

 

1. Introduction 
Recently, the Ubiquitous Robotic Companion (URC) 

project has been launched in Korea with an aim of putting 
networked service robots into a practical use in residential 
environments by overcoming technical challenges of the 
conventional home service robots. While the usefulness of 
an intelligent service robot has been evident for a long time, 
its emergence as a common household device has been 
painfully slow.  This is due in part to the variety of 
technologies involved in creating a cost-effective robot.  A 
modern service robot often makes a self-contained 

distributed system, typically composed of a number of 
embedded processors, hardware devices, and 
communication buses.  The logistics behind integrating 
these devices are dauntingly complex, especially if the 
robot is to interface with other household devices.  The 
ever-falling prices of high performance CPUs and the 
evolution of communication technologies have made the 
realization of robots’ potential closer than ever. What is left 
is to address the complexity of the robotic technology 
convergence. 

At the head of this effort is the URC robot project. 
Under development since 2004, the URC has been 
conceived as “a robot friend to help people anywhere, 
anytime.” The project’s aim is to improve the robot 
technology and to facilitate the spread of the robot use by 
making the robots more cost-effective and practical.  
Specifically to that end, it has been proposed that the 
robot’s most complex calculations are handled by a 
high-performance remote server, which is connected via a 
broadband communication network.  For example, the 
vision or navigation systems that need a high performance 
MPU or DSP would be implemented on a remote server, 
and the robot itself would act as a thin client, making it 
cheaper and more lightweight. 

Clearly, this type of system demands a very 
sophisticated software platform which makes the logistics 
of such a robot system manageable. Furthermore, beyond 
simply creating such a platform, the desired goal is to create 
a standard that could serve the robotics community at large. 
Recently, there has been a great deal of research activity in 
this area, and yet there is still no current standard that has 
garnered international approval. In this paper, we thus 
propose a new middleware architecture for networked 
service robots by adopting an existing middleware 



technology from the Software Defined Radio (SDR) 
domain. It is called the Software Communications 
Architecture (SCA) [1]. We extend it for the use in the 
URC robots. The SCA was defined by Joint Tactical Radio 
Systems (JTRS) and has become a de facto standard 
middleware currently adopted by the SDR forum. It is now 
widely accepted as a viable solution to reconfigurable 
component-based distributed computing for adaptive 
wireless radio terminals and base stations. In spite of its 
numerous strengths as an embedded middleware, it cannot 
be directly applied to our URC robots since it lacks some 
features necessary for the URC robot applications 
including real-time and QoS capabilities and appropriate 
event services. Thus, we have significantly extended it to 
incorporate these features and we have named the end 
result Robot Software Communications Architecture 
(RSCA). The RSCA provides a standard operating 
environment for robot applications together with a 
framework that expedites the development of such 
applications. We have fully implemented RSCA and 
performed measurements to quantify its run-time 
performance. Our implementation clearly shows the 
viability of RSCA. 

2. URC Robot Hardware Platform and 
Software Requirements 
Figure 1 depicts the hardware and software structure of 

the URC robot. Two of the most essential properties of the 
URC robot are (1) that it should be able to utilize a 
high-performance remote server called a URC server 
provided by a URC service provider and (2) that it should 
be able to interface with various smart home appliances and 
sensor networks that are connected to a larger home 
network. Thus, the URC robot is inherently a part of an 
overall distributed system including the URC servers and 
various home network appliances. In this section, we first 
look into the hardware structure of a URC robot and 

describe the properties that the system software of a URC 
robot must have to support the hardware structure. 

2.1. Hardware Structure of URC Robot 
A URC robot itself is a self-contained distributed system, 

composed of a number of embedded processors, hardware 
devices, and communication busses. More specifically, as 
shown in Figure 1, the main hardware components in a 
URC robot are a Main Host Controller (MHC) and one or 
more Integrated Hardware Controllers (IHC). An IHC 
provides accesses to the sensors and the actuators for other 
components such as other IHCs and an MHC. The MHC 
acts as an interface to the robot from the outside world; it 
provides a GUI for the interactions with the robot users and 
it routes messages from an inner component to the URC 
server and the home network appliances and vice versa. 

For communication among the IHCs and MHC, a high 
bandwidth medium such as Giga-bit Ethernet, USB 2.0, or 
IEEE1394 is used. It allows a huge amount of data streams 
such as MPEG4 video frames to be exchanged inside the 
robot. Also, a controller area network such as CAN or 
FlexRay is used for communication among the IHCs, 
sensors, and actuators. Note that it is important to provide 
timing guarantees for this type of communication. 

2.2. Requirements for URC Robot Software  
As previously mentioned, the URC robot is not only a 

self-contained distributed system by itself but also part of 
an overall distributed system including remote URC 
servers and various home network appliances. Therefore, 
its application software must be developed according to the 
special requirements of a distributed robotic system. We 
argue that reconfigurability, flexibility, and reusability are 
the key requirements, among many others, for the URC 
robot software. To achieve these, developers should 
construct the application software according to the 
component-based software model, and the system software 
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Figure 1. Structure of hardware and software of URC robot. 



of the URC robot should support this model along with the 
reconfigurable distributed computing.  

More specifically, the system software should provide 
(1) a framework in which programs can be executed in a 
distributed environment, (2) a dynamic deployment 
mechanism by which a program can be loaded, 
reconfigured, and run, (3) real-time capabilities that allow 
the robot software to meet hard deadlines, (4) QoS 
capabilities which can support the robotic vision and voice 
processing, and (5) a management capability for limited 
resources and heterogeneous hardware inherent in the URC 
robot. 

3. Overall Structure of RSCA 
The RSCA is specified in terms of a set of common 

interfaces for the robot applications as the SCA is. These 
interfaces are grouped into two classes: (1) the standard 
operating environment (OE) interfaces and (2) the standard 
application component interfaces. The former defines APIs 
that developers use to dynamically deploy and control 
applications and to exploit services from underlying 
platforms. The latter defines interfaces that an application 
component should implement in order to exploit the 
component-based software model supported by the 
underlying platforms. 

As shown in Figure 1, the RSCA’s operating 
environment consists of a real-time operating system 
(RTOS), a communication middleware, and a deployment 
middleware called core framework (CF). Since RSCA 
exploits COTS software for the RTOS and communication 
middleware layers, most of the RSCA specification is 
devoted to the CF. More specifically, RSCA defines the 
RTOS to be compliant to the PSE52 class of the IEEE 
POSIX.13 Real-Time Controller System profile [6], and 
the communication middleware to be compliant to 
minimum CORBA [3] and RT-CORBA v.1.1 [2]. The CF 
is defined in terms of a set of standard interfaces, called CF 
interfaces, and a set of XML descriptors, called domain 
profiles, as will be explained subsequently in Section 4.  

The RTOS provides a basic abstraction layer that makes 
the robot applications both portable and reusable on diverse 
hardware platforms. Specifically, a POSIX compliant 
RTOS in RSCA defines standard interfaces for 
multi-tasking, file system, clock, timer, scheduling, task 
synchronization, message passing, and I/O to name a few.  

The communication middleware is an essential layer 
that makes it possible to construct distributed and 
component-based software. Specifically, the RT-CORBA 
compliant middleware provides (1) a standard way of 
message communication, (2) a standard way of using 
various services, and (3) real-time capabilities. First, the 
(minimum) CORBA ORB in RSCA provides a standard 
way of message communication between components in a 
manner transparent to heterogeneities existing in hardware, 

operating systems, network media, communication 
protocols, and programming languages. Second, the RSCA 
communication middleware provides a standard way of 
using various services. Among others, naming, logging, 
and event services are the key services that RSCA specifies 
as the mandatory services. Finally, the RT-CORBA in 
RSCA provides real-time capabilities including static and 
dynamic priority scheduling disciplines and prioritized 
communications in addition to the features provided by 
CORBA. Robot application developers are free to exploit 
these real-time capabilities to meet their applications’ hard 
deadlines. A robot application developer, for example, can 
assign a higher priority to the processing of an 
emergency-stop event than to the processing of other lesser 
important events, thereby avoiding the deadline misses of 
the emergency-stop processing that could otherwise occur. 
Note that the original SCA’s communication middleware 
does not support real-time capabilities since it recommends 
using minimum CORBA instead of RT-CORBA. 

The deployment middleware layer provides a dynamic 
deployment mechanism by which robot applications can be 
loaded, reconfigured, and run. A URC robot application 
consists of application components that are connected to 
and cooperate with each other as illustrated in Figure 2. 
Consequently, the deployment entails a series of tasks that 
include determining a particular processing node to load 
each component, connecting the loaded components, 
enabling them to communicate with each other, and starting 
or stopping the whole URC robot software.  

4. RSCA Core Framework 
Before getting into the details of the RSCA CF, we 

begin with a brief explanation about the structural elements 
that the RSCA CF uses to model a robot system and the 
relationship between these elements. In the RSCA, a robot 
system is modeled as a domain that distinguishes each 
robot system uniquely. In a domain, there exist multiple 
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Figure 2. Deployment of component-based robot 
applications. 



processing nodes and multiple applications. The nodes and 
applications respectively serve as units of hardware and 
software reconfigurability. Hardware reconfigurability is 
achieved by attaching or detaching a node to or from the 
domain. A node may have multiple logical devices, which 
act as device drivers for real hardware devices such as Field 
Programmable Gate Arrays (FPGA), Digital Signal 
Processors (DSP), General Purpose Processors (GPP), or 
other proprietary devices. On the other hand, software 
reconfigurability is achieved by creating an instance of an 
application in a domain or removing the instance from the 
domain. An application consists of components, each of 
which is called a resource. A resource in turn exposes ports 
that are used for the communication to or from other 
resources. For communication between two components, a 
port of one component should be connected to a port of the 
other where the former port is called a uses port and the 
latter port is called a provides port. For the ease of 
communication between the components and the logical 
devices, the logical devices are modeled as a specialized 
form of a resource. Configurations of each of the nodes and 
applications are described in a set of XML files called 
domain profiles. 

In this section, we explain the structure of the RSCA 
core framework in detail and the functionalities it provides. 
Note that what is described in this section is common with 
the SCA while the QoS capabilities and event service 
which will be described subsequently in Section 5 are 
unique to the RSCA.  

4.1. Structure of RSCA Core Framework 
The RSCA CF is defined in terms of a set of interfaces 

called CF interfaces and a set of XML files called domain 
profiles. As shown in Figure 3, the CF interfaces consist of 
three groups of APIs: the base application interfaces, the 
CF control interfaces, and the service interfaces. Each of 
these interfaces is defined for the application components, 
domain management, and services, respectively. The 

deployment middleware is therefore the implementation of 
the domain management and service part of the RSCA CF 
interfaces.  

Specifically, (1) the base application interfaces are the 
interfaces that the deployment middleware uses to control 
each of the components comprising an application. Thus, 
every application component should implement these 
interfaces. These interfaces include the functionalities of 
starting/stopping a resource, configuring the resource, and 
connecting a port of the resource to a port of another 
resource. (2) The CF control interfaces are the interfaces 
provided to control the robot system. Controlling the robot 
system includes activities such as installing/uninstalling a 
robot application, starting/stopping it, 
registering/unregistering a logical device, tearing up/down 
a node, etc. (3) The service interfaces are the common 
interfaces that are used by both the deployment middleware 
and the applications. Currently, three services are provided: 
distributed file system, event, and QoS.  

The domain profiles are a set of XML descriptors 
describing the configurations and the properties of 
hardware and software in a domain. They consist of seven 
types of XML descriptors as shown in Figure 4. (1) The 
Device Configuration Descriptor (DCD) describes a 
hardware configuration, and (2) the Software Assembly 
Descriptor (SAD) describes a software configuration and 
the connections among components. (3) These descriptors 
consist of one or more Software Package Descriptors 
(SPD), each of which describes a software component 
(Resource) or a hardware device (Device). (4) The 
Properties Descriptor File (PRF) describes optional 
reconfigurable properties, initial values, and executable 
parameters that are referenced by other domain profiles. (5) 
The domainmanager configuration descriptor (DMD) 
describes the DomainManager component and services 
used. (6) The Software Component Descriptor (SCD) 
describes the interfaces that a component provides or uses. 
Finally, (7) the Device Package Descriptor (DPD) 

Figure 3. Relationships among CF interfaces. 
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describes a hardware device and identifies the class of the 
device. 

4.2. Functionalities of RSCA Core Framework 
Primarily, the RSCA core framework provides (1) 

dynamic system reconfiguration, (2) QoS and real-time 
guarantees, (3) heterogeneous distributed computing, and 
(4) heterogeneous resource management. 
Dynamic system reconfiguration. In RSCA, the system 
reconfiguration is supported at three different levels: 
component level, application level and deployment level. 
For reconfiguration at the individual component level, the 
RSCA deployment middleware provides a way to specify 
and dynamically configure reconfigurable parameters of 
components. For the application-level reconfiguration, the 
RSCA deployment middleware provides a way to describe 
an application in various possible configurations 
(structures and parameters), each for different application 
requirements and constraints. The deployment-level 
reconfiguration indicates that the RSCA deployment 
middleware should choose one of possible assemblies as it 
is appropriate to the current resource availabilities. 
QoS and real-time guarantees. As will be explained 
subsequently in Section 5, the deployment middleware 
supports application-level QoS guarantees while the RTOS 
and the communication middleware support real-time 
guarantees for individual components. 
Heterogeneous distributed computing. The RSCA 
deployment middleware hides the distributed nature of 
hardware platforms from the applications by making 
distributed nodes be seen as a single virtual system or a 
domain. Robot applications need not consider how many 
processing nodes the domain consists of or which 
communication medium they use. 
Heterogeneous resource management. The RSCA 
deployment middleware supports heterogeneous resource 
management via the Device interface. The Device interface 
provides interfaces to allocate and de-allocate a certain 
amount of resource such as memory, CPU, and network 
bandwidth. The Device interface also supports the 
synchronization of accesses to a resource by providing the 
resource usage and management status. A developer should, 
of course, choose and implement how resources are 
allocated and synchronized based on the efficiency of 
resource usage.  

5. QoS and Event Support in RSCA Core 
Framework 
QoS and event services are the newly added services 

that mostly delineate RSCA from the original SCA. In this 
section, we explain how these services are provided by the 
RSCA core framework in detail. 

5.1. QoS Support  in RSCA Core Framework 

While home service robots are heavily involved in 
real-time signal processing such as vision and voice 
processing, the original SCA lacks QoS capabilities in 
terms of both QoS specification and enforcement. Thus, we 
have significantly extended the SCA for the QoS support in 
defining RSCA [4]. Specifically, we have (1) extended 
domain profiles to allow for resource and QoS 
requirements specification, (2) added services providing 
admission control and resource allocation to the RSCA 
core framework, and (3) extended the software 
communication bus based on the real-time ORB following 
the RT-CORBA v.1.1 specification. All of these extensions 
are made while maintaining backward compatibility so that 
URC robot developers can use existing SCA tools.   

Using our RSCA core framework, the robot application 
developers can achieve their desired QoS by simply 
specifying their requirements in the domain profiles. In 
doing so, the application developers are responsible for 
describing their application structure and participating 
components in a dedicated XML descriptor called the 
Software Assembly Descriptor (SAD) described in Figure 
4. Since a legacy SCA SAD only describes connections or 
flows of messages between components, we extend various 
fields in the SAD to specify QoS-related information such 
as the sampling periods and the maximum latencies. 

The robot application component developers should 
specify in the extended fields of Software Package 
Descriptor (SPD) resource demands in terms of 
dependencies on the hardware and the expected 
computational resource requirements for data processing. 
Along with this, application component developers should 
implement a predefined set of configurable property 
operations that the RSCA core framework invokes to 
deliver the results of resource allocation. For the 
implementation of configurable property operations, RSCA 
provides a skeleton component implementation from which 
QoS-aware components will be derived. 

In order to guarantee the desired QoS, described in the 
domain profiles, a certain amount of resources needs to be 
allocated to each application based on the current resource 
availability, and this must be enforced throughout the 
lifetime of the application. This involves admission control, 
resource allocation, and resource enforcement. For the 
admission control and the resource allocation, we add the 
ResourceAllocator component as shown in Figure 3. On the 
other hand, for the resource enforcement, we rely on the 
COTS layer of the RSCA operating environment following 
the design philosophy of SCA. To aid in understanding 
how the desired QoS is guaranteed, we explain the 
modified application creation process in RSCA.  

An application in an RSCA domain is created by the 
ApplicationFactory component, which belongs to the 
RSCA domain management part and is in charge of 
instantiating a specified type of application. When 



ApplicationFactory instantiates an application in RSCA, it 
ascertains its QoS requirements from the domain profile 
and then passes the information to the ResourceAllocator. 
If the application is admissible, the ResourceAllocator 
generates the resource allocation plan for the application 
based on the current resource availability. The 
ApplicationFactory component performs the resource 
allocation plan generated by ResourceAllocator in the 
following steps: it deploys all components onto the 
loadable/executable devices as designated in the plan, and 
then it delivers scheduling parameters to each component. 
On receiving the scheduling parameters, each component 
should set the RT-CORBA scheduling policy with the 
given scheduling parameters, and ascertain that those are 
enforced throughout its lifetime. 

5.2. Event Support in RSCA Core Framework 
In SCA, a CORBA event service is specified as a 

mandatory service. Although the CORBA event service 
provides a standardized way of producing or subscribing to 
an event to and from a certain event channel, there are three 
critical problems in using it for robotic applications. First, 
the reusability of components is seriously damaged since 
event channel names should be hard-coded within the 
components. Consequently, developers cannot deploy the 
components that communicate via the event channels 
without recompiling them. More seriously, the naming 
conflicts may occur among the events channels used by the 
irrelevant components. Second, it is very difficult for 
non-CORBA expert programmers to use the CORBA event 
service since a significant amount of manual coding is 
required for retrieving the proxy suppliers and consumers 
of the event channels. Finally, developers should manage 
the life cycle of the CORBA event channels manually. 
Specifically, developers have to assure that an event 
channel is launched before applications begin to use it. 
Developers also have to assure that the event channel is 
destroyed when applications do not use it any more by 
monitoring the usage status of the event channel. This is 
essential to avoid the waste of memory that the event 
channel occupies. 

Thus, instead of directly using the CORBA event 
service as in the SCA, we have defined our own. To do so, 
we have (1) extended domain profiles of the original SCA 
to allow for describing connections using CORBA event 
channels, (2) introduced interfaces to the RSCA CF 
allowing application components to easily use the event 
channels, (3) added to the RSCA CF a service providing the 
life-cycle management of event channels, and (4) modified 
the application instantiation and torn-down process to 
automatically manage connections between applications 
and event channels. 

When using our RSCA core framework, robot 
application developers can describe a connection between 

components via an event channel in our extended software 
assembly descriptor. The associated event channel is 
identified with its unique name.  When ApplicationFactory 
creates an application, it locates the CORBA event channel 
associated with the designated name and pass the channel 
to the application component. In doing so, the 
EventChannelManager shown in Figure 3 provides 
interfaces to locate the event channel for the 
ApplicationFactory. The EventChannelManager also 
manages the lifecycle of event channels: creates or destroys 
event channels dynamically on needs. 

6. Experimental Evaluation 
In evaluating RSCA, it is important to quantify its 

run-time performance since it is built upon the COTS 
software layer containing the RT-CORBA ORB. Note that 
the RSCA core framework does not affect run-time 
performance at all since it only participates in the 
deployments of the robot applications. To quantify the 
run-time performance of RSCA, we have completely 
implemented the RSCA and constructed a simple robot 
application. In this section, we report on our experimental 
evaluation of RSCA. 

6.1. Experimental Setup 
As shown in Figure 5, our RSCA was implemented on a 

hardware platform consisting of an ERSP Scorpion robot 
from Evolution Robotics [7] and two processing nodes, a 
desktop computer and a laptop computer. The laptop 
computer is mounted on top of the Scorpion robot and 
connected to the robot via USB 2.0. The desktop and laptop 
computers are connected via 802.11b Wireless LAN. 
Although this configuration is not as complicated as the 
actual URC robots, it has all the components required to 
measure the performance of RSCA without incurring 
various side effects that could otherwise be seen. 

Our RSCA core framework was implemented on top of 
Linux v.2.4.20 and TAO [5] real-time ORB v.1.3.1. The 
RSCA CF runs on both of the desktop and the laptop 
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computers. An application, named RangeStop, was 
constructed using the ERSP library [7] and RSCA 
components and interfaces. Specifically, the application is 
constructed with two RSCA devices IRSensor and 
DriveSystem as shown in Figure 7. These devices abstract a 
set of range sensors and a set of motor actuators, 
respectively. The application moves the robot in the 
forward direction to the wall while it periodically reads the 
distance to the wall using the IRSensor device. And it stops 
the robot if it detects that the wall is within 60cm ahead of 
the robot.  

To compare the run-time performance of the application 
against those that do not use RSCA, we also constructed the 
same application in two other versions making use of 
TCP/IP and the ERSP’s legacy message passing, 
respectively, for communication among the components. 
Note that TCP/IP is widely used as a legacy transport for 
the communication among the components spanning 
multiple distributed nodes. Also, an application version 
making use of the ERSP’s legacy message passing is 
constructed as a single monolithic binary, and thus it can be 
executed only on a single node. 

6.2. Performance Evaluation of RSCA 
In order to quantify the run-time performance, we used 

two metrics: the communication delay and the distance 
from the wall. The delay incurred by transferring messages 
between two application components is measured to 
quantify the overhead incurred by using COTS software 
layer of the RSCA. The distance from the wall when the 
robot stops completely is measured to quantify the resultant 
effects of the COTS layer on the robot’s behavior.  The 
results are presented in comparisons among the three cases: 

single node, TCP/IP, and RSCA cases. Note that, in the 
cases of TCP/IP and RSCA, the components are deployed 
with spanning the two nodes: IRSensor and DriveSystem on 
the Node1, and StopCrash on the Node2.  

Figure 8 (a) depicts the message propagation delay 
measured from the RangeStop application. As shown, the 
message propagation delays of the TCP/IP and RSCA cases 
are 8 to 9 times larger than those of the single node case, 
while the message propagation delay of the RSCA case is 
slightly larger than that of the TCP/IP case. The average 
latencies in the single node, the TCP/IP, and the RSCA 
cases are 222.2us, 1872.6us, and 2045.9us, respectively. 
Thus, the overhead incurred by distributed communication 
is almost 900% while the communication using 
RT-CORBA incurs less than 10% of the additional delay 
compared to the TCP/IP communication. 

It is worthwhile to emphasize that the distributed 
communication mechanisms such as TCP/IP, UDP/IP, and 
UNIX domain sockets would be used if the robot 
application components have to be collaborated on a 
distributed hardware inherent in the most modern robot 
systems. Even though RT-CORBA incurs a small 
additional overhead compared to the legacy 
communication mechanisms, it seems that the flexibility of 
RT-CORBA is enough to compensate the overhead. Note 
that RT-CORBA ORB selects the communication medium 
flexibly at run-time without changing the implementations 
of the application components. If properly configured, for 
example, TAO RT-CORBA ORB automatically selects 
shared memory for the communication between the 
components collocated on the same node.  

Figure 8 (b) depicts the distance from the wall to the 
robot when it stops completely. As shown, there are no 
significant differences among those three cases. The 
average distances for each case of single node, TCP/IP, and 
RSCA are 49.97cm, 48.67cm, and 48.35cm, respectively, 
meaning that the robot advanced by 10.03cm, 11.33cm, and 
11.65cm, respectively after the robot detects the wall within 

IRSensor StopCrash DriveSystem
 

Figure 6. Structure of RangeStop application used for 
the experiments. 
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Figure 7. Results from StopCrash application.



60 cm. Compared to the differences in the message 
propagation delay, this is not a large difference of less than 
4%. Thus, we can conclude that the effects of using the 
RT-CORBA on the overall behavior of the robot are less 
than 4% for the StopCrash application. 

7. Related Work 
Traditionally, research into robot software architectures 

has been mainly focused on an application software 
framework [7][8][9][10] with an aim of helping developers 
programming their robot applications. However, as the 
robot hardware becomes distributed and heterogeneous, the 
robot software architectures are requested to address 
software complexity arising during both the management 
of complex distributed robot applications and the 
development of such applications. Recently, several 
approaches have been proposed based on middleware 
technologies to overcome ever-increasing software 
complexity, thereby significantly reducing the 
time-to-market. DROS [11] and Connexis [12] are the 
examples that use RPC-level custom middleware, and 
MIRO [13] and OCP [14] are the examples that utilize 
CORBA and RT-CORBA, respectively. 

Unfortunately, these middleware systems fail to meet all 
of the software requirements presented in Section 2.2. 
Specifically, they do not support dynamic deployment, 
dynamic reconfiguration, and resource managements even 
though the real-time and the QoS capabilities and 
component-based distributed computing are partially 
supported in OCP. As already explained in the paper, the 
RSCA effectively fulfills those requirements. 

8. Conclusions 
In this paper, we have presented the Robot Software 

Communication Architecture (RSCA) we have developed 
to address the complexity inherent in networked home 
service robots. The RSCA provides a standard operating 
environment for the robot applications together with a 
framework that expedites the development of such 
applications. The operating environment is comprised of a 
real-time operating system, a communication middleware, 
and a deployment middleware, which collectively form a 
hierarchical structure. Particularly, the deployment 
middleware called the RSCA core framework provides (1) 
a framework in which programs can be executed in a 
distributed environment, (2) a dynamic deployment 
mechanism by which a program can be loaded, 
reconfigured, and run, (3) real-time capabilities that allow 
robot software to meet hard deadlines, (4) QoS capabilities 
which can support robotic vision and voice processing, and 
(5) a management capability for limited resources and 
heterogeneous hardware inherent in the URC robot. As a 
result, the RSCA solves many of important problems 
arising in creating an application performing complex tasks 

in the URC robot composed of the heterogeneous and 
distributed hardware. 

We have completely implemented the RSCA and 
performed extensive measurements to analyze the effects of 
the RSCA’s COTS software layer on the performance and 
the robot behaviors. The results are promising: less than 
10% of an additional delay to the legacy communication 
and less than 4% of an effect on the overall robot compared 
to the case where the RSCA is not used. This outcome 
clearly demonstrates the viability of the RSCA. The RSCA 
is currently in an adoption process as a Korean domestic 
standard and is waiting for the industry approval. 
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