
The Robot Software Communications Architecture (RSCA): Embedded
Middleware for Networked Service Robots

Seongsoo Hong1, Jaesoo Lee1, Hyeonsang Eom2, and Gwangil Jeon3
1Real-Time Operating Systems Laboratory, School of Electrical Engineering and Computer Science,

Seoul National University, Seoul 151-744, Korea
{sshong, jslee }@redwood.snu.ac.kr

2Distributed Information Processing Laboratory, School of Computer Science and Computer Engineering,
Seoul National University, Seoul 151-744, Korea

hseom@cse.snu.ac.kr
3Department of Computer Engineering

Korea Polytechnic University, 2121 Jungwang-Dong, Siheung-Si, Gyunggi-Do 429-793, Korea
gijeon@kpu.ac.kr

Abstract

In this paper, we present a robot middleware
technology named Robot Software Communications
Architecture (RSCA) for its use in networked home service
robots. The RSCA provides a standard operating
environment for the robot applications together with a
framework that expedites the development of such
applications. The operating environment is comprised of a
real-time operating system, a communication middleware,
and a deployment middleware. Particularly, the
deployment middleware supports the reconfiguration of
component-based robot applications including installation,
creation, start, stop, tear-down, and un-installation. In
designing RSCA, we have adopted a middleware called
SCA from the software defined radio domain and extend it
since the original SCA lacks the real-time guarantees and
appropriate event services. We have fully implemented
RSCA and performed measurements to quantify its
run-time performance. Our implementation clearly shows
the viability of RSCA.

1. Introduction
Recently, the Ubiquitous Robotic Companion (URC)

project has been launched in Korea with an aim of putting
networked service robots into a practical use in residential
environments by overcoming technical challenges of the
conventional home service robots. While the usefulness of
an intelligent service robot has been evident for a long time,
its emergence as a common household device has been
painfully slow. This is due in part to the variety of
technologies involved in creating a cost-effective robot. A
modern service robot often makes a self-contained

distributed system, typically composed of a number of
embedded processors, hardware devices, and
communication buses. The logistics behind integrating
these devices are dauntingly complex, especially if the
robot is to interface with other household devices. The
ever-falling prices of high performance CPUs and the
evolution of communication technologies have made the
realization of robots’ potential closer than ever. What is left
is to address the complexity of the robotic technology
convergence.

At the head of this effort is the URC robot project.
Under development since 2004, the URC has been
conceived as “a robot friend to help people anywhere,
anytime.” The project’s aim is to improve the robot
technology and to facilitate the spread of the robot use by
making the robots more cost-effective and practical.
Specifically to that end, it has been proposed that the
robot’s most complex calculations are handled by a
high-performance remote server, which is connected via a
broadband communication network. For example, the
vision or navigation systems that need a high performance
MPU or DSP would be implemented on a remote server,
and the robot itself would act as a thin client, making it
cheaper and more lightweight.

Clearly, this type of system demands a very
sophisticated software platform which makes the logistics
of such a robot system manageable. Furthermore, beyond
simply creating such a platform, the desired goal is to create
a standard that could serve the robotics community at large.
Recently, there has been a great deal of research activity in
this area, and yet there is still no current standard that has
garnered international approval. In this paper, we thus
propose a new middleware architecture for networked
service robots by adopting an existing middleware

technology from the Software Defined Radio (SDR)
domain. It is called the Software Communications
Architecture (SCA) [1]. We extend it for the use in the
URC robots. The SCA was defined by Joint Tactical Radio
Systems (JTRS) and has become a de facto standard
middleware currently adopted by the SDR forum. It is now
widely accepted as a viable solution to reconfigurable
component-based distributed computing for adaptive
wireless radio terminals and base stations. In spite of its
numerous strengths as an embedded middleware, it cannot
be directly applied to our URC robots since it lacks some
features necessary for the URC robot applications
including real-time and QoS capabilities and appropriate
event services. Thus, we have significantly extended it to
incorporate these features and we have named the end
result Robot Software Communications Architecture
(RSCA). The RSCA provides a standard operating
environment for robot applications together with a
framework that expedites the development of such
applications. We have fully implemented RSCA and
performed measurements to quantify its run-time
performance. Our implementation clearly shows the
viability of RSCA.

2. URC Robot Hardware Platform and
Software Requirements
Figure 1 depicts the hardware and software structure of

the URC robot. Two of the most essential properties of the
URC robot are (1) that it should be able to utilize a
high-performance remote server called a URC server
provided by a URC service provider and (2) that it should
be able to interface with various smart home appliances and
sensor networks that are connected to a larger home
network. Thus, the URC robot is inherently a part of an
overall distributed system including the URC servers and
various home network appliances. In this section, we first
look into the hardware structure of a URC robot and

describe the properties that the system software of a URC
robot must have to support the hardware structure.

2.1. Hardware Structure of URC Robot
A URC robot itself is a self-contained distributed system,

composed of a number of embedded processors, hardware
devices, and communication busses. More specifically, as
shown in Figure 1, the main hardware components in a
URC robot are a Main Host Controller (MHC) and one or
more Integrated Hardware Controllers (IHC). An IHC
provides accesses to the sensors and the actuators for other
components such as other IHCs and an MHC. The MHC
acts as an interface to the robot from the outside world; it
provides a GUI for the interactions with the robot users and
it routes messages from an inner component to the URC
server and the home network appliances and vice versa.

For communication among the IHCs and MHC, a high
bandwidth medium such as Giga-bit Ethernet, USB 2.0, or
IEEE1394 is used. It allows a huge amount of data streams
such as MPEG4 video frames to be exchanged inside the
robot. Also, a controller area network such as CAN or
FlexRay is used for communication among the IHCs,
sensors, and actuators. Note that it is important to provide
timing guarantees for this type of communication.

2.2. Requirements for URC Robot Software
As previously mentioned, the URC robot is not only a

self-contained distributed system by itself but also part of
an overall distributed system including remote URC
servers and various home network appliances. Therefore,
its application software must be developed according to the
special requirements of a distributed robotic system. We
argue that reconfigurability, flexibility, and reusability are
the key requirements, among many others, for the URC
robot software. To achieve these, developers should
construct the application software according to the
component-based software model, and the system software

RSCA Interface

Robot Software
Communication
Architecture

RTOS
DSPs, MCPs

RT Control Area Networks
(CAN, FlexRay, PCI, …)

RT CORBA
& Services

Integrated Hardware Controller

RSCA

RT CORBA
Home Network

Middleware

Adapter

Embedded OS
CPU

로봇제어
모듈

로봇제어
모듈
로봇제어
모듈

로봇제어
모듈
Actuator
Module

Actuator
Module

Sensor
Interface
Module

Sensor
Interface
Module

High-speed Network
(IEEE1394, USB 2.0, …)

Home ServerHome Server 홈네트워크
디바이스

홈네트워크
디바이스
홈네트워크
디바이스

홈네트워크
디바이스

Home Network
Device

Home Network
Device

멀티미디어
디바이스

멀티미디어
디바이스
Multimedia

Interface
Module

Multimedia
Interface
Module

Robot Applications

Main Host Controller

홈네트워크
디바이스

홈네트워크
디바이스
홈네트워크
디바이스

홈네트워크
디바이스URC ServersURC Servers

Robot Inside

Home Network
& Internet

Infra-Network
(IEEE802.11g, …)

Figure 1. Structure of hardware and software of URC robot.

of the URC robot should support this model along with the
reconfigurable distributed computing.

More specifically, the system software should provide
(1) a framework in which programs can be executed in a
distributed environment, (2) a dynamic deployment
mechanism by which a program can be loaded,
reconfigured, and run, (3) real-time capabilities that allow
the robot software to meet hard deadlines, (4) QoS
capabilities which can support the robotic vision and voice
processing, and (5) a management capability for limited
resources and heterogeneous hardware inherent in the URC
robot.

3. Overall Structure of RSCA
The RSCA is specified in terms of a set of common

interfaces for the robot applications as the SCA is. These
interfaces are grouped into two classes: (1) the standard
operating environment (OE) interfaces and (2) the standard
application component interfaces. The former defines APIs
that developers use to dynamically deploy and control
applications and to exploit services from underlying
platforms. The latter defines interfaces that an application
component should implement in order to exploit the
component-based software model supported by the
underlying platforms.

As shown in Figure 1, the RSCA’s operating
environment consists of a real-time operating system
(RTOS), a communication middleware, and a deployment
middleware called core framework (CF). Since RSCA
exploits COTS software for the RTOS and communication
middleware layers, most of the RSCA specification is
devoted to the CF. More specifically, RSCA defines the
RTOS to be compliant to the PSE52 class of the IEEE
POSIX.13 Real-Time Controller System profile [6], and
the communication middleware to be compliant to
minimum CORBA [3] and RT-CORBA v.1.1 [2]. The CF
is defined in terms of a set of standard interfaces, called CF
interfaces, and a set of XML descriptors, called domain
profiles, as will be explained subsequently in Section 4.

The RTOS provides a basic abstraction layer that makes
the robot applications both portable and reusable on diverse
hardware platforms. Specifically, a POSIX compliant
RTOS in RSCA defines standard interfaces for
multi-tasking, file system, clock, timer, scheduling, task
synchronization, message passing, and I/O to name a few.

The communication middleware is an essential layer
that makes it possible to construct distributed and
component-based software. Specifically, the RT-CORBA
compliant middleware provides (1) a standard way of
message communication, (2) a standard way of using
various services, and (3) real-time capabilities. First, the
(minimum) CORBA ORB in RSCA provides a standard
way of message communication between components in a
manner transparent to heterogeneities existing in hardware,

operating systems, network media, communication
protocols, and programming languages. Second, the RSCA
communication middleware provides a standard way of
using various services. Among others, naming, logging,
and event services are the key services that RSCA specifies
as the mandatory services. Finally, the RT-CORBA in
RSCA provides real-time capabilities including static and
dynamic priority scheduling disciplines and prioritized
communications in addition to the features provided by
CORBA. Robot application developers are free to exploit
these real-time capabilities to meet their applications’ hard
deadlines. A robot application developer, for example, can
assign a higher priority to the processing of an
emergency-stop event than to the processing of other lesser
important events, thereby avoiding the deadline misses of
the emergency-stop processing that could otherwise occur.
Note that the original SCA’s communication middleware
does not support real-time capabilities since it recommends
using minimum CORBA instead of RT-CORBA.

The deployment middleware layer provides a dynamic
deployment mechanism by which robot applications can be
loaded, reconfigured, and run. A URC robot application
consists of application components that are connected to
and cooperate with each other as illustrated in Figure 2.
Consequently, the deployment entails a series of tasks that
include determining a particular processing node to load
each component, connecting the loaded components,
enabling them to communicate with each other, and starting
or stopping the whole URC robot software.

4. RSCA Core Framework
Before getting into the details of the RSCA CF, we

begin with a brief explanation about the structural elements
that the RSCA CF uses to model a robot system and the
relationship between these elements. In the RSCA, a robot
system is modeled as a domain that distinguishes each
robot system uniquely. In a domain, there exist multiple

DSP

GPPDSP

MCU

MCU
DSP

DSP

DSP

deployment

DSP

application components

sensors or actuators

processing nodes

component-based
robot application

Figure 2. Deployment of component-based robot
applications.

processing nodes and multiple applications. The nodes and
applications respectively serve as units of hardware and
software reconfigurability. Hardware reconfigurability is
achieved by attaching or detaching a node to or from the
domain. A node may have multiple logical devices, which
act as device drivers for real hardware devices such as Field
Programmable Gate Arrays (FPGA), Digital Signal
Processors (DSP), General Purpose Processors (GPP), or
other proprietary devices. On the other hand, software
reconfigurability is achieved by creating an instance of an
application in a domain or removing the instance from the
domain. An application consists of components, each of
which is called a resource. A resource in turn exposes ports
that are used for the communication to or from other
resources. For communication between two components, a
port of one component should be connected to a port of the
other where the former port is called a uses port and the
latter port is called a provides port. For the ease of
communication between the components and the logical
devices, the logical devices are modeled as a specialized
form of a resource. Configurations of each of the nodes and
applications are described in a set of XML files called
domain profiles.

In this section, we explain the structure of the RSCA
core framework in detail and the functionalities it provides.
Note that what is described in this section is common with
the SCA while the QoS capabilities and event service
which will be described subsequently in Section 5 are
unique to the RSCA.

4.1. Structure of RSCA Core Framework
The RSCA CF is defined in terms of a set of interfaces

called CF interfaces and a set of XML files called domain
profiles. As shown in Figure 3, the CF interfaces consist of
three groups of APIs: the base application interfaces, the
CF control interfaces, and the service interfaces. Each of
these interfaces is defined for the application components,
domain management, and services, respectively. The

deployment middleware is therefore the implementation of
the domain management and service part of the RSCA CF
interfaces.

Specifically, (1) the base application interfaces are the
interfaces that the deployment middleware uses to control
each of the components comprising an application. Thus,
every application component should implement these
interfaces. These interfaces include the functionalities of
starting/stopping a resource, configuring the resource, and
connecting a port of the resource to a port of another
resource. (2) The CF control interfaces are the interfaces
provided to control the robot system. Controlling the robot
system includes activities such as installing/uninstalling a
robot application, starting/stopping it,
registering/unregistering a logical device, tearing up/down
a node, etc. (3) The service interfaces are the common
interfaces that are used by both the deployment middleware
and the applications. Currently, three services are provided:
distributed file system, event, and QoS.

The domain profiles are a set of XML descriptors
describing the configurations and the properties of
hardware and software in a domain. They consist of seven
types of XML descriptors as shown in Figure 4. (1) The
Device Configuration Descriptor (DCD) describes a
hardware configuration, and (2) the Software Assembly
Descriptor (SAD) describes a software configuration and
the connections among components. (3) These descriptors
consist of one or more Software Package Descriptors
(SPD), each of which describes a software component
(Resource) or a hardware device (Device). (4) The
Properties Descriptor File (PRF) describes optional
reconfigurable properties, initial values, and executable
parameters that are referenced by other domain profiles. (5)
The domainmanager configuration descriptor (DMD)
describes the DomainManager component and services
used. (6) The Software Component Descriptor (SCD)
describes the interfaces that a component provides or uses.
Finally, (7) the Device Package Descriptor (DPD)

Figure 3. Relationships among CF interfaces.

Domain Profile

Device Configuration
Descriptor

DomainManager
Configuration Descriptor

Software Assembly
Descriptor

Software Package
Descriptor

Properties
Descriptor

Device Package
Descriptor

Software Component
Descriptor

0..n0..n 1

1..n

1

0..n
0..n

0..n 0..1

1..n

1..n

0..n0..n 1

1..n

1

0..n
0..n

0..n 0..1

1..n

1..n

HW profile
SW profile
HW/SW profile

Legend

Figure 4. Relationships among domain profiles.

describes a hardware device and identifies the class of the
device.

4.2. Functionalities of RSCA Core Framework
Primarily, the RSCA core framework provides (1)

dynamic system reconfiguration, (2) QoS and real-time
guarantees, (3) heterogeneous distributed computing, and
(4) heterogeneous resource management.
Dynamic system reconfiguration. In RSCA, the system
reconfiguration is supported at three different levels:
component level, application level and deployment level.
For reconfiguration at the individual component level, the
RSCA deployment middleware provides a way to specify
and dynamically configure reconfigurable parameters of
components. For the application-level reconfiguration, the
RSCA deployment middleware provides a way to describe
an application in various possible configurations
(structures and parameters), each for different application
requirements and constraints. The deployment-level
reconfiguration indicates that the RSCA deployment
middleware should choose one of possible assemblies as it
is appropriate to the current resource availabilities.
QoS and real-time guarantees. As will be explained
subsequently in Section 5, the deployment middleware
supports application-level QoS guarantees while the RTOS
and the communication middleware support real-time
guarantees for individual components.
Heterogeneous distributed computing. The RSCA
deployment middleware hides the distributed nature of
hardware platforms from the applications by making
distributed nodes be seen as a single virtual system or a
domain. Robot applications need not consider how many
processing nodes the domain consists of or which
communication medium they use.
Heterogeneous resource management. The RSCA
deployment middleware supports heterogeneous resource
management via the Device interface. The Device interface
provides interfaces to allocate and de-allocate a certain
amount of resource such as memory, CPU, and network
bandwidth. The Device interface also supports the
synchronization of accesses to a resource by providing the
resource usage and management status. A developer should,
of course, choose and implement how resources are
allocated and synchronized based on the efficiency of
resource usage.

5. QoS and Event Support in RSCA Core
Framework
QoS and event services are the newly added services

that mostly delineate RSCA from the original SCA. In this
section, we explain how these services are provided by the
RSCA core framework in detail.

5.1. QoS Support in RSCA Core Framework

While home service robots are heavily involved in
real-time signal processing such as vision and voice
processing, the original SCA lacks QoS capabilities in
terms of both QoS specification and enforcement. Thus, we
have significantly extended the SCA for the QoS support in
defining RSCA [4]. Specifically, we have (1) extended
domain profiles to allow for resource and QoS
requirements specification, (2) added services providing
admission control and resource allocation to the RSCA
core framework, and (3) extended the software
communication bus based on the real-time ORB following
the RT-CORBA v.1.1 specification. All of these extensions
are made while maintaining backward compatibility so that
URC robot developers can use existing SCA tools.

Using our RSCA core framework, the robot application
developers can achieve their desired QoS by simply
specifying their requirements in the domain profiles. In
doing so, the application developers are responsible for
describing their application structure and participating
components in a dedicated XML descriptor called the
Software Assembly Descriptor (SAD) described in Figure
4. Since a legacy SCA SAD only describes connections or
flows of messages between components, we extend various
fields in the SAD to specify QoS-related information such
as the sampling periods and the maximum latencies.

The robot application component developers should
specify in the extended fields of Software Package
Descriptor (SPD) resource demands in terms of
dependencies on the hardware and the expected
computational resource requirements for data processing.
Along with this, application component developers should
implement a predefined set of configurable property
operations that the RSCA core framework invokes to
deliver the results of resource allocation. For the
implementation of configurable property operations, RSCA
provides a skeleton component implementation from which
QoS-aware components will be derived.

In order to guarantee the desired QoS, described in the
domain profiles, a certain amount of resources needs to be
allocated to each application based on the current resource
availability, and this must be enforced throughout the
lifetime of the application. This involves admission control,
resource allocation, and resource enforcement. For the
admission control and the resource allocation, we add the
ResourceAllocator component as shown in Figure 3. On the
other hand, for the resource enforcement, we rely on the
COTS layer of the RSCA operating environment following
the design philosophy of SCA. To aid in understanding
how the desired QoS is guaranteed, we explain the
modified application creation process in RSCA.

An application in an RSCA domain is created by the
ApplicationFactory component, which belongs to the
RSCA domain management part and is in charge of
instantiating a specified type of application. When

ApplicationFactory instantiates an application in RSCA, it
ascertains its QoS requirements from the domain profile
and then passes the information to the ResourceAllocator.
If the application is admissible, the ResourceAllocator
generates the resource allocation plan for the application
based on the current resource availability. The
ApplicationFactory component performs the resource
allocation plan generated by ResourceAllocator in the
following steps: it deploys all components onto the
loadable/executable devices as designated in the plan, and
then it delivers scheduling parameters to each component.
On receiving the scheduling parameters, each component
should set the RT-CORBA scheduling policy with the
given scheduling parameters, and ascertain that those are
enforced throughout its lifetime.

5.2. Event Support in RSCA Core Framework
In SCA, a CORBA event service is specified as a

mandatory service. Although the CORBA event service
provides a standardized way of producing or subscribing to
an event to and from a certain event channel, there are three
critical problems in using it for robotic applications. First,
the reusability of components is seriously damaged since
event channel names should be hard-coded within the
components. Consequently, developers cannot deploy the
components that communicate via the event channels
without recompiling them. More seriously, the naming
conflicts may occur among the events channels used by the
irrelevant components. Second, it is very difficult for
non-CORBA expert programmers to use the CORBA event
service since a significant amount of manual coding is
required for retrieving the proxy suppliers and consumers
of the event channels. Finally, developers should manage
the life cycle of the CORBA event channels manually.
Specifically, developers have to assure that an event
channel is launched before applications begin to use it.
Developers also have to assure that the event channel is
destroyed when applications do not use it any more by
monitoring the usage status of the event channel. This is
essential to avoid the waste of memory that the event
channel occupies.

Thus, instead of directly using the CORBA event
service as in the SCA, we have defined our own. To do so,
we have (1) extended domain profiles of the original SCA
to allow for describing connections using CORBA event
channels, (2) introduced interfaces to the RSCA CF
allowing application components to easily use the event
channels, (3) added to the RSCA CF a service providing the
life-cycle management of event channels, and (4) modified
the application instantiation and torn-down process to
automatically manage connections between applications
and event channels.

When using our RSCA core framework, robot
application developers can describe a connection between

components via an event channel in our extended software
assembly descriptor. The associated event channel is
identified with its unique name. When ApplicationFactory
creates an application, it locates the CORBA event channel
associated with the designated name and pass the channel
to the application component. In doing so, the
EventChannelManager shown in Figure 3 provides
interfaces to locate the event channel for the
ApplicationFactory. The EventChannelManager also
manages the lifecycle of event channels: creates or destroys
event channels dynamically on needs.

6. Experimental Evaluation
In evaluating RSCA, it is important to quantify its

run-time performance since it is built upon the COTS
software layer containing the RT-CORBA ORB. Note that
the RSCA core framework does not affect run-time
performance at all since it only participates in the
deployments of the robot applications. To quantify the
run-time performance of RSCA, we have completely
implemented the RSCA and constructed a simple robot
application. In this section, we report on our experimental
evaluation of RSCA.

6.1. Experimental Setup
As shown in Figure 5, our RSCA was implemented on a

hardware platform consisting of an ERSP Scorpion robot
from Evolution Robotics [7] and two processing nodes, a
desktop computer and a laptop computer. The laptop
computer is mounted on top of the Scorpion robot and
connected to the robot via USB 2.0. The desktop and laptop
computers are connected via 802.11b Wireless LAN.
Although this configuration is not as complicated as the
actual URC robots, it has all the components required to
measure the performance of RSCA without incurring
various side effects that could otherwise be seen.

Our RSCA core framework was implemented on top of
Linux v.2.4.20 and TAO [5] real-time ORB v.1.3.1. The
RSCA CF runs on both of the desktop and the laptop

TAO
ERSP
Driver

& Library
USB

TCP/IP

RSCA CF

TAO

TCP/IP

Driving App

ERSP
Library802.11b

WLAN

Laptop (Node1)
P4M 1.4G, 768M RAM

PC (Node2)
VIA 1G, 512M RAM

Robot
ERSP Scorpion

OS
(Linux 2.4.20)

OS
(Linux 2.4.20)

RSCA CF

Driving App

Figure 5. Experimental hardware and software
configurations.

computers. An application, named RangeStop, was
constructed using the ERSP library [7] and RSCA
components and interfaces. Specifically, the application is
constructed with two RSCA devices IRSensor and
DriveSystem as shown in Figure 7. These devices abstract a
set of range sensors and a set of motor actuators,
respectively. The application moves the robot in the
forward direction to the wall while it periodically reads the
distance to the wall using the IRSensor device. And it stops
the robot if it detects that the wall is within 60cm ahead of
the robot.

To compare the run-time performance of the application
against those that do not use RSCA, we also constructed the
same application in two other versions making use of
TCP/IP and the ERSP’s legacy message passing,
respectively, for communication among the components.
Note that TCP/IP is widely used as a legacy transport for
the communication among the components spanning
multiple distributed nodes. Also, an application version
making use of the ERSP’s legacy message passing is
constructed as a single monolithic binary, and thus it can be
executed only on a single node.

6.2. Performance Evaluation of RSCA
In order to quantify the run-time performance, we used

two metrics: the communication delay and the distance
from the wall. The delay incurred by transferring messages
between two application components is measured to
quantify the overhead incurred by using COTS software
layer of the RSCA. The distance from the wall when the
robot stops completely is measured to quantify the resultant
effects of the COTS layer on the robot’s behavior. The
results are presented in comparisons among the three cases:

single node, TCP/IP, and RSCA cases. Note that, in the
cases of TCP/IP and RSCA, the components are deployed
with spanning the two nodes: IRSensor and DriveSystem on
the Node1, and StopCrash on the Node2.

Figure 8 (a) depicts the message propagation delay
measured from the RangeStop application. As shown, the
message propagation delays of the TCP/IP and RSCA cases
are 8 to 9 times larger than those of the single node case,
while the message propagation delay of the RSCA case is
slightly larger than that of the TCP/IP case. The average
latencies in the single node, the TCP/IP, and the RSCA
cases are 222.2us, 1872.6us, and 2045.9us, respectively.
Thus, the overhead incurred by distributed communication
is almost 900% while the communication using
RT-CORBA incurs less than 10% of the additional delay
compared to the TCP/IP communication.

It is worthwhile to emphasize that the distributed
communication mechanisms such as TCP/IP, UDP/IP, and
UNIX domain sockets would be used if the robot
application components have to be collaborated on a
distributed hardware inherent in the most modern robot
systems. Even though RT-CORBA incurs a small
additional overhead compared to the legacy
communication mechanisms, it seems that the flexibility of
RT-CORBA is enough to compensate the overhead. Note
that RT-CORBA ORB selects the communication medium
flexibly at run-time without changing the implementations
of the application components. If properly configured, for
example, TAO RT-CORBA ORB automatically selects
shared memory for the communication between the
components collocated on the same node.

Figure 8 (b) depicts the distance from the wall to the
robot when it stops completely. As shown, there are no
significant differences among those three cases. The
average distances for each case of single node, TCP/IP, and
RSCA are 49.97cm, 48.67cm, and 48.35cm, respectively,
meaning that the robot advanced by 10.03cm, 11.33cm, and
11.65cm, respectively after the robot detects the wall within

IRSensor StopCrash DriveSystem

Figure 6. Structure of RangeStop application used for
the experiments.

0

500
1000

1500

2000

2500
3000

3500

4000

Single TCP/IP RSCA

de
la

y
(u

se
c)

30

40

50

60

Single TCP/IP RSCA

di
sta

nc
e

(c
m

)

(a) Message propagation delay (b) Distance from the wall

Figure 7. Results from StopCrash application.

60 cm. Compared to the differences in the message
propagation delay, this is not a large difference of less than
4%. Thus, we can conclude that the effects of using the
RT-CORBA on the overall behavior of the robot are less
than 4% for the StopCrash application.

7. Related Work
Traditionally, research into robot software architectures

has been mainly focused on an application software
framework [7][8][9][10] with an aim of helping developers
programming their robot applications. However, as the
robot hardware becomes distributed and heterogeneous, the
robot software architectures are requested to address
software complexity arising during both the management
of complex distributed robot applications and the
development of such applications. Recently, several
approaches have been proposed based on middleware
technologies to overcome ever-increasing software
complexity, thereby significantly reducing the
time-to-market. DROS [11] and Connexis [12] are the
examples that use RPC-level custom middleware, and
MIRO [13] and OCP [14] are the examples that utilize
CORBA and RT-CORBA, respectively.

Unfortunately, these middleware systems fail to meet all
of the software requirements presented in Section 2.2.
Specifically, they do not support dynamic deployment,
dynamic reconfiguration, and resource managements even
though the real-time and the QoS capabilities and
component-based distributed computing are partially
supported in OCP. As already explained in the paper, the
RSCA effectively fulfills those requirements.

8. Conclusions
In this paper, we have presented the Robot Software

Communication Architecture (RSCA) we have developed
to address the complexity inherent in networked home
service robots. The RSCA provides a standard operating
environment for the robot applications together with a
framework that expedites the development of such
applications. The operating environment is comprised of a
real-time operating system, a communication middleware,
and a deployment middleware, which collectively form a
hierarchical structure. Particularly, the deployment
middleware called the RSCA core framework provides (1)
a framework in which programs can be executed in a
distributed environment, (2) a dynamic deployment
mechanism by which a program can be loaded,
reconfigured, and run, (3) real-time capabilities that allow
robot software to meet hard deadlines, (4) QoS capabilities
which can support robotic vision and voice processing, and
(5) a management capability for limited resources and
heterogeneous hardware inherent in the URC robot. As a
result, the RSCA solves many of important problems
arising in creating an application performing complex tasks

in the URC robot composed of the heterogeneous and
distributed hardware.

We have completely implemented the RSCA and
performed extensive measurements to analyze the effects of
the RSCA’s COTS software layer on the performance and
the robot behaviors. The results are promising: less than
10% of an additional delay to the legacy communication
and less than 4% of an effect on the overall robot compared
to the case where the RSCA is not used. This outcome
clearly demonstrates the viability of the RSCA. The RSCA
is currently in an adoption process as a Korean domestic
standard and is waiting for the industry approval.

References
[1] Joint Tactical Radio Systems. “Software Communications

Architecture Specification V.3.0,” August, 2004.
[2] Object Management Group. “ Real-Time CORBA

Specification Revision 1.1.” OMG document
formal/02-08-02 (August 2002).

[3] Object Management Group. “ The Common Object
Request Broker Architecture: Core Specification Revision
3.0.” Dec. 2002.

[4] J. Lee, J. Park, S. Han, and S. Hong, "Extending Software
Communications Architecture for QoS Support in SDR
Signal Processing," 11th IEEE Intl. Conf. on Embedded and
Real-Time Computing Systems and Applications, 2005.

[5] F. Kuhns, D. D. Schmidt, et al. “The Design and
Performance of a Real-Time Object Request Broker.” IEEE
Real-Time/Embedded Technology and Applications
Symposium, May 2000.

[6] Institute for Electrical and Electronic Engineers.
“Information Technology- Standardized Application
Environment Profile- POSIX Realtime Application Support
(AEP).” IEEE Std 1003.13, Feb. 2000.

[7] Evolution Robotics. “ERSP 3.0 Users Guide.”
http://www.evolution.com, 2004.

[8] Peter Soetens. “The Complete OROCOS Software Guide.”
http://www.orocos.org.

[9] ORiN Forum. “Specification of ORiN(Ver. 0.5).”
http://jara.jp/e/orin/En_ORiN.pdf.

[10] David J. Miller and R. Charleene Lennox. “An
Object-Oriented Environment for Robot System
Architectures.” IEEE Intl. Conf. on Robotics and
Automation, Cincinnati, Ohaio, Aug. 13-16, 1990.

[11] David Austin. “Dave’s Operating System.”
http://www.dros.org.

[12] IMB Rational Software Corporation. “Rational Rose
Real-Time Connexis User Guide: Revision 2003.06.00.”
2003.

[13] H. Utz, and et. el. “Miro - middleware for mobile robot
applications.” IEEE Transactions on Robotics and
Automation, Volume: 18, Issue: 4 , pp:493 – 497, Aug.
2002.

[14] James L. Paunicha, Brian R. Mendel, and David E. Corman.
“The OCP – An Open Middleware Solution for Embedded
Systems.” Proceedings of the American Control Conference,
Arlington, VA, June 25-27, 2001.

