
Memory Footprint Reduction with Quasi-Static Shared Libraries
in MMU-less Embedded Systems

Jaesoo Lee, Jiyong Park, and Seongsoo Hong
School of Electrical Engineering and Computer Science,
Seoul National University, Seoul 151-742, South Korea

{jslee, parkjy, sshong}@redwood.snu.ac.kr

Abstract

Despite a rapid decrease in the price of solid state
memory devices, system memory is still a very precious
resource in embedded systems. The use of shared
libraries is known to be effective in significantly
reducing memory usage. Unfortunately, many
resource-constrained embedded systems lack MMU,
making it extremely difficult to support this technique.
To address this problem, we propose a novel shared
library scheme called the quasi-static shared library. In
quasi-static shared libraries, global symbols are bound
to pseudo-addresses at linking time and the actual
physical addresses are bound at loading time. This
scheme is made possible by emulating MMU’s memory
mapping feature with a Data Section Base Register
(DSBR) and a Data Section Base Table (DSBT).
Quasi-static shared libraries do not require symbol
tables which take up time and space at runtime.

We have implemented the proposed scheme in a
commercial ADSL (Asymmetric Digital Subscriber
Line) home network gateway and conducted a series of
experiments measuring its memory usage and
performance overhead. The result is drastic: a 35%
reduction in flash memory usage and a 10% reduction
in RAM usage. These results were achieved with only a
negligible performance penalty of less than 4%. Even
though this scheme was applied to uClinux-based
embedded systems, it can be used for any MMU-less
real-time operating system.

1 Introduction

Embedded systems are generally characterized as
systems which have stringent constraints on resources
such as processing power, power consumption, and
memory size. In spite of recent remarkable advances in
semiconductor technology, memory size in particular is
still quite limited. In general, larger memory occupies a
larger physical space, consumes more power, and costs

more. Consequently, utilizing memory efficiently is still
a driving factor that affects all aspects of system design.
Currently, many embedded systems are constructed as a
combination of COTS (Commercial Off-The-Shelf)
software components such as Linux-based operating
systems [1] and the BusyBox multi-call utility [2]. It is
technically very hard to fit heavily pre-optimized COTS
software components into systems with tight memory
constraints. Furthermore, this requires sometimes
unexpected and often error-prone tasks like modifying
the compiler, linker, loader, and operating system. In
this paper, we present an effective technique, the
quasi-static shared library, to reduce memory usage in
MMU-less embedded systems. Also, we present the
results of applying it to a commercial ADSL
(Asymmetric Digital Subscriber Line) [13] home
network gateway.

A shared library [3][8][9][10][11], in general terms,
is a library that contains routines that are loaded into
memory by the operating system as needed and
dynamically shared with other applications without
static linking. If a shared library is used, an application
need not contain the routines in that library. Instead, it
can share with other applications a copy of those
routines which is already loaded into memory. This
helps effectively reduce the amount of file system space
and runtime memory used and allows shared library
routines to be replaced on-the-fly. MMU is usually
required to implement a shared library. A library routine
is composed of a public code section that is shared
among processes and a private data section that is
assigned separately to each process. When a library
routine accesses a data symbol, it must be redirected to
the data’s physical address that is specific to each
process. To achieve this, the data section of a library
should be mapped to a fixed area in the address space of
each process. This mapping can be done easily with
MMU. However, MMU is rarely used in
resource-constrained embedded systems since it greatly
increases both the production cost and the complexity

of a system. Thus, shared libraries are not commonly
implemented in embedded systems as compared to
workstations or desktop PCs that contain MMU.

Before we consider the implementation of a shared
library on an MMU-less embedded system, we must
first make a distinction between two types of shared
libraries based on the point at which global symbols are
bound to actual addresses. The first type is the
dynamically linked shared library [3] in which symbols
are bound to addresses at loading time. The other type is
the statically linked shared library [3] in which symbols
are bound to addresses at linking time. Shared library
frameworks implemented by RidgeRun [5] and
Cadenux [5] fall under the category of dynamically
linked shared libraries. In this kind of framework, the
dynamic loader fixes all the references in an application
using symbol tables contained in the shared library.
This means that the symbol tables should be maintained
throughout the lifetime of the application, taking up
valuable space. This also causes a substantial runtime
performance penalty due to the time-consuming
dynamic linking performed when a process refers to a
library symbol for the first time. Hence, dynamically
linked shared libraries are undesirable for embedded
systems in which memory and CPU resources are
restricted. However, statically linked shared libraries
are also undesirable because each library must be
allocated to a non-overlapping region in a single
address space. This is done to avoid conflicts among
different libraries but has the potential effect of creating
serious memory waste.

To gain the advantages of both dynamically and
statically linked shared libraries while avoiding the
aforementioned problems, we propose the quasi-static
shared library. It is a library that is loaded at an arbitrary
address but statically linked to an application. Since the
quasi-static shared library does not require a symbol
table, we can save memory and expedite the process of
computing the actual addresses of symbols.

We have implemented the proposed shared library
scheme in a commercial ADSL home network gateway.
This system is equipped with an MMU-less
ARM7TDMI processor core, 2MB flash memory, and
16MB SDRAM. uClinux [1], a derivative of Linux
for microcontrollers without MMU, is used as the
operating system. The target system is very complex,
running nearly 11 out of 35 applications simultaneously
during the course of its usual operation. We applied our
shared library scheme to all 35 of the applications and
the one library. We also performed a series of
experiments to measure memory usage and evaluate
performance overhead. The results show that the
proposed schemes reduce memory usage, both in terms

of flash memory and RAM, by a considerable amount
with negligible performance degradation.

The rest of the paper is organized as follows. In the
next section, the target system’s original linking and
loading process is explained. Section 3 presents the
mechanisms behind quasi-static shared libraries and
explains how these mechanisms are coherently
integrated into the overall system. Section 4 provides
the results of an empirical evaluation of our schemes in
the target system. Finally, Section 5 serves as our
conclusion.

2 Target System Components and
Executable Code Management

To aid in understanding the rest of this paper, we
present the target system components and explain the
original process of linking and loading executable code
and organizing the file system. Table I shows the
hardware and software components of the target system.
Basically, this system is connected to the Internet
through ADSL and provides an internet connection to
other home network devices. It also provides
information about these devices, drivers for the devices,
and a web-based interface to control them.

The original system was constructed with
conventional static libraries where library routines are
copied and statically linked to applications. When the
executable code image of an application is created,
symbol addresses are determined with the assumption
that executable code will be loaded from address 0, as
in systems with MMU. However, because the target
system lacks MMU, it is impossible to provide multiple
virtual address spaces starting from address 0 for
processes. Thus, the executable code image must have a
data structure that enables the modification of symbol
addresses that it uses. That data structure is a relocation
table and is used by the loader when the executable code
image is loaded.

The created executable code images are merged
together to create a CRAMFS image which is stored in
flash memory. In flash memory, there resides not only
the CRAMFS image, but also a bootloader and a
compressed image of uClinux. The executable code
images in CRAMFS may be either compressed or
uncompressed according to the developer’s choice. In
practice, most are compressed.

An executable code image stored in flash memory is
loaded into RAM by uClinux’s loader. In doing so,
the loader calculates the symbols’ absolute addresses
and modifies the code and data sections using the
relocation table.

3 Design Requirements and Solution
Mechanisms

As mentioned in previous sections, it is quite
difficult to implement shared libraries in MMU-less
embedded systems. Furthermore, we seek to reduce
time and space overhead by avoiding dynamic data
structures such as symbol tables, while maintaining
compatibility with conventional static libraries so that
existing applications need not be rewritten. To meet
these design goals, it is necessary to modify the code
generator of the gcc compiler [4], and the uClinux’s
loader. We also have to implement a tool for creating
pseudo-libraries that play the role of symbol tables used
in conventional shared libraries.

Before getting into these details, we first enumerate
the design requirements for quasi-static shared libraries.
In designing our schemes for memory-constrained
MMU-less embedded systems, we have the following
three design requirements in mind.

C1. The libraries should operate regardless of their
location, and their text sections should never be
modified once they are loaded. (A shared library
created with a specific, statically determined load
address in RAM might cause a significant waste in
memory usage; the memory space assigned to the
library cannot be used for other purposes even
though the library is not used by any other
processes)

C2. Multiple shared libraries should be usable by a
single process. (Without this functionality, the
shared library would be very restrictive to
developers.)

C3. The loader should operate without a symbol
table. (We therefore avoid incurring the associated
performance penalties and space overhead.)

In Section 3.1, we describe the solution mechanisms
to meet these requirements. Subsequently in Section 3.2,
we show how these mechanisms are integrated
coherently into the overall system.

3.1 Solution Mechanisms

To meet these requirements, a variety of techniques
are employed. For condition C1, we rely on a data
section base register (DSBR) and a global offset table
(GOT) [3], as well as a form of position independent
code specially enhanced for MMU-less systems. To
meet condition C2, we devise the data section base table
(DSBT) for storing the base addresses of multiple data
sections for all loaded shared libraries in a process.
Finally, to satisfy condition C3, we come up with
quasi-static linking. In the following subsections these
mechanisms will be explained in detail.

3.1.1 Position Independent Code for Condition C1.
Position independent code (PIC) is required for
condition C1 because it can be executed from any
location without modification. This is possible because
PIC does not use absolute addresses when referring to
symbols. PIC is used in most shared libraries, and a
number of widely available compilers including the
gcc are able to generate it. Since the addressing scheme
used in PIC is closely related to other parts of our shared
library scheme, we first explain in detail the PIC with
MMU supports.

In PIC generated by gcc, symbols can be generally
classified into three categories depending on how their

Table I. Hardware and software components of the target system.

Main processor S5N8947 (ARM7/TDMI core, No MMU, 40MHz)
ADSL processor S5N8950 ADSL DSP, S5N8951 AFE
Memory 16MB SDRAM, 2MB Flash memory

Hardware

Interfaces ADSL × 1, Ethernet ×1, RS-232C × 1
Bootloader ARMboot 1.0.2
Operating system uClinux 2.4.17 (Linux for MMU-less processor)
File-systems CRAMFS (mounted on flash memory, program storage, read-only)

Application programs shell, web server, NAT, firewall, IP filtering, DHCP server, SNMP
server, system configuration CGI programs, and etc. (total 35)

Libraries uClibc 0.9.15 (standard C library)

Software

Development tools gcc 3.2.1 (compiler), binutils 2.13.1 (linker, assemblers, and etc.),
elf2flt (conversion tool from ELF to BFLT), and etc.

addresses are dealt with: (1) local static functions, (2)
local static data, and (3) global data and functions.
Referencing local static functions is fairly trivial since
they are contained within the same text section as the
calling function. It is easily done through PC-relative
addressing. In contrast, referencing local static data
naturally involves locating the data section. Usually, in
MMU-equipped systems, the data section of a routine is
located at a known distance from the code section as
shown in Figure 1.(a). Since this distance, denoted as a
in Figure 1.(a), is fixed at linking time, the data section
can be located in a PC-relative manner. The base
address of the data section is loaded into a register
called the data section base register (DSBR). Individual
data symbols can then be located by adding an offset,
denoted as b in Figure 1.(a), to the DSBR. On the other
hand, referencing global data and functions is done
through a global offset table (GOT) as shown in Figure
1.(b). The GOT is a table that contains entries for all of
global symbols referenced in a library. The absolute
address of a global symbol is determined and recorded
by the loader at loading-time. In order to refer to a
global symbol later on, the compiler generates code that
accesses the entry for that symbol in the GOT and
fetching the absolute address recorded in that entry.
Pseudo code for doing this is given in the text section in
Figure 1.(b). The GOT is located at a fixed offset in the
data section, usually at its beginning. Thus, once the
data section of the library is located, both global
symbols and local data can be referenced. In
MMU-equipped systems, the compiler is responsible

for generating an instruction to load the DSBR with the
data section’s base address.

Unlike the addressing schemes explained above, in
MMU-less systems, the data section of a library and
thus its GOT are located at a unknown distance away
from its code section. Therefore, PC-relative addressing
cannot be used to load DSBR. In our scheme, loading
the DSBR is handled differently by the loader and
compiler. Specifically, the DSBR is initialized by the
operating system’s loader when a process is loaded for
execution. In doing so, the loader determines the data
section base addresses of the shared libraries used in the
process and provides them for the process. The
compiler-generated code of the process updates DSBR
later on using the loader-provided addresses when a
global library function is invoked. This requires that the
uClinux loader and the code generator of the gcc
compiler should be modified. Also, application
programs should be compiled with an option that
designates one of general purpose registers as the
DSBR. This is needed to guarantee that the DSBR is not
overwritten by application programs. We explain in
detail the initialization and update of DSBR in what
follows.

3.1.2 Data Section Base Table for Condition C2. In
a process that uses multiple libraries, there are multiple
code and data sections, each of which is loaded at an
arbitrary address. Thus, the DSBR of a process should
point to different data sections as application-to-library
or inter-library calls are invoked. This requires a

Text section

Data section

add DSBR, PC, #a
add r0, DSBR, #b
str #3, [r0]

foo:

a

b

Text section

Data section

add DSBR, PC, #a
ldr r0, [DSBR, #c]
str #3, [r0]
ldr r0, [DSBR, #d]
mov pc, r0

bar:

a

c
&bar

&baz

d Global Offset
Table (GOT)

baz:

Other library

(a) (b)

Figure 1. Pseudo code for referencing symbols in MMU-equipped systems: (a) writing an integer constant to local
static variable foo using PC-relative addressing and (b) writing an integer constant to global variable bar

defined in the same library and then jumping to global function baz defined in the other library through GOT.
Note that &bar and &baz in GOT represent the absolute addresses of bar and baz, respectively.

runtime data structure called a data section base table
(DSBT). The DSBT is a table that contains the data
section base addresses of the libraries that are loaded for
a process.

Figure 2 shows the structure of the DSBT. It has 256
entries, each of which is four bytes long. Each entry is
dedicated to a specific shared library and contains the
data section base address of that shared library. For this
purpose, each shared library is given a unique
numerical library ID, ranging from 1 to 255, with 0
reserved for the application program itself.

When a process is loaded into memory for execution,
the loader allocates the text and data section, among
others, of the process. It also allocates the data sections
of all the shared libraries used in the process. Then, it
creates the DSBT by filling up its entries with the
allocated data section base addresses and attaches it to
the front of the process’s data section. It goes on
replicating the DSBT and attaching its replica to the
front of the data section of each shared library. Finally,
it sets the DSBR to the data section base address of the
process. We have modified the uClinux’s loader for
this job. Figure 2 shows the configuration of DSBR and
DSBT right after process loading. Under this scheme,
an entry corresponding to a shared library with
LIBRARY_ID can thus be easily located using a simple
formula as below.

ADDRESS = [DSBR – 4 * LIBRARY_ID – 4]

We choose to replicate DSBT for all shared libraries
at the expense of the increased memory space so as to
allow a process to access both a data section and DSBT
via a single DSBR regardless of the currently active
data section. This way, we can avoid using an extra
register for accessing DSBT. Note that general purpose
registers are extremely valuable resource in enhancing
the runtime performance of executable code. Moreover,

the space overhead is relatively small in that the size of
the DSBT can be configurable at build-time according
to the number of shared libraries used by the system
with a maximum of 255 shared libraries. For example, it
would be 64 bytes per shared library if the number of
shared libraries used in the system is 15, which is a
relatively large number of libraries for a normal
embedded system. Developers can even merge several
distinct libraries at build-time to further reduce the table
size.

During the execution, when an
application-to-library or inter-library call is made, the
DSBR should be updated so that it points to the data
section base address of the called library. To do so, the
process should first obtain the library ID of the called
library and then compute the address of the DSBT entry
corresponding to that library. Since the library ID is
statically determined at build-time, the compiler can
generate an instruction that computes the address of that
DSBT entry. After that, the process saves the original
DSBR and set the DSBR to the address obtained from
the DSBT entry. Conversely, when returning from an
application-to-library or inter-library call, the process
restores the original DSBR from the stack. We have
modified the code generator of gcc so that it can
produce appropriate instructions in the prologue and
epilogue of globally defined library functions.

As a concrete example, we provide below the code
for the printf function contained in the uClibc
library. This code is generated by the modified gcc and
the library ID of uClibc is 1. Note that the gcc
compiler uses sl register as DSBR in the ARM
architecture.
<printf>:
(1) : mov ip, sp
(2) : stmdb sp!, {r0, r1, r2, r3}
(3) : stmdb sp!, {sl, fp, ip, lr, pc}
(4) : ldr r3, [pc, #28]
(5) : ldr sl, [sl, -#8]
(6) : ldr r3, [sl, r3]
(7) : sub fp, ip, #20
(8) : ldr r0, [r3]
(9) : ldr r1, [fp, #4]
(10): add r2, fp, #8
(11): bl c28 ; vfprintf
(12): ldmdb fp, {sl, fp, sp, pc}

The three shaded instructions are those generated by
our modified compiler. Instruction (3) saves the original
DSBR. Instruction (5) computes the address of the
DSBT entry that corresponds to uClibc and sets
DSBR accordingly. Instruction (12) restores the
original DSBR. Obviously, these additional instructions
cause performance overhead whenever an inter-library
call is made. In Section 4.2, we show that this has
negligible impact on overall performance.

Entry for library 255

Entry for library 254

...

Entry for library 1

Entry for application program

Data section

Data Section Base Table
(DSBT)

DSBR

255

254

...

1

0

Index

4 bytes

Figure 2. Structure of DSBT and method for
accessing its entries.

Although we demonstrate our scheme for the ARM
architecture, it is also effective for other architectures
such as x86 that support multiple segment registers.
Even in such architectures, DSBT is still needed if the
number of shared libraries used in a process exceeds the
number of available segment registers.

3.1.3 Quasi-Static Linking for Condition C3.
Finally, to fulfill condition C3, we present the
quasi-static linking mechanism. Quasi-static linking is a
novel linking mechanism that statically links an
application with a library using a logical numeric
address for a symbol and dynamically determines the
absolute address of a symbol at loading-time using a
simple address resolution formula. It permits a shared
library to be loaded at an arbitrary address since the
permanent address of a symbol is dynamically
determined and it avoids a symbol table at loading-time
since symbols are statically bound anyway.

The two core components of the quasi-static linking
mechanism are a pseudo-address and a pseudo-library.

A pseudo-address is defined for a symbol as a logical
numerical address that specifies the library the symbol
belongs to and its offset inside the library. A
pseudo-address, thus, consists of two fields, a library ID
and an offset as shown in Figure 3.(a). The library ID
and the offset are 8 bits and 24 bits wide, respectively.
The offset is the distance from the start of the library to
the definition of the symbol when the text section and
the data section are contiguous.

A pseudo-library is a library that contains only a
symbol table but not any code or data. Thus, a
pseudo-library cannot be used at runtime to bind the
library code and data into an application. Instead, a
normal shared library object with the symbol table
stripped off is used. Each entry in the symbol table
specifies symbols by their names and their
corresponding pseudo-addresses. As an example,
Figure 4 depicts the symbol table for the printf.o
object contained in the pseudo-library of the uClibc
library. In this library, the pseudo-address of printf

Figure 3. (a) Format of a pseudo-address and (b) an example of converting pseudo address 0x03000200
into an absolute address 0x200100.

SYMBOL TABLE:
00000000 l d ._shared_lib_symbols_ 00000000
00000000 l d .text 00000000
00000000 l d .data 00000000
00000000 l d .bss 00000000
00000000 l d .comment 00000000
00000000 l d *ABS* 00000000
00000000 l d *ABS* 00000000
00000000 l d *ABS* 00000000
00000000 l df *ABS* 00000000 _gen_sym_base_.c
01011ff8 g ._shared_lib_symbols_ 00000000 printf

Figure 4. Symbol table for printf.o in the pseudo-library of uClibc.

is defined as 0x01011ff8: the function printf is
defined in a shared library with the ID 1, and its entry
address relative to the start of the shared library is
0x00011ff8.

Given a shared library and its pseudo-library, the
quasi-static linking mechanism works as follows.
Pseudo-libraries are statically linked to the application,
a feat possible because they have the same format as a
static library. As a result, pseudo-addresses from the
pseudo-libraries are embedded in locations in the
application where absolute addresses of global symbols
are expected. Also, relocation entries are created
accordingly in the relocation table of the application for
those locations since pseudo-addresses are required to
be fixed at loading time. A relocation entry is just an
offset into the application of those locations where the
pseudo-addresses are used. It is important to mention
that there is no need to maintain a symbol table in the
shared library since symbols are already resolved at
linking time. At loading-time, the embedded
pseudo-addresses are converted to absolute addresses
by the loader after the shared libraries have been loaded
into memory.

Specifically, for every relocation entry in the
relocation table, the loader first extracts the library ID
field from the pseudo-address and then loads the
corresponding shared library if it is not loaded yet. Next,
it extracts the offset field from the pseudo-address and
adds the offset to the base address of the text section.
Note that the distance in memory between the text
section and the data section should be added to this
result if the offset is larger than the size of the text
section, in other words, if the offset represents some
location in the data section. Finally, the loader replaces
the pseudo-address with the converted absolute address.
Figure 3.(b) shows an example of extrapolating an
absolute address from a pseudo-address.

Using quasi-static linking via pseudo-addresses
makes the dynamic linking process simpler and faster
than true dynamic linking with only a shared library.
However, quasi-static linking carries the following
restrictions, which we believe are not critical limitations
for a small embedded system.

• Maximum number of libraries that can be in
system is 255 (ID 0 is reserved for the application
program).

• Library size (including text and data sections)
cannot exceed 16MB.

• All application programs using a library should be
re-linked with it whenever the library is updated
because the offsets of the symbols inside the
library might have changed.

3.2 Putting It All Together

Applying our proposed mechanisms to an embedded
system involves modifying the gcc compiler [4] and
the uClinux’s loader as explained above, as well as
implementing the tool for creating pseudo-libraries.
Table II summarizes the modified tool components and
their added functions. When we developed a tool chain
by integrating them, we put our emphasis on
maintaining compatibility with conventional static
libraries so that existing applications need not be
rewritten. We explain how these mechanisms and
corresponding tools are integrated coherently into the
overall system development processes.

Figure 5 shows our new process for building
applications and libraries, as well as the components
that participate in each step. As shown in the figure, an
application is built through exactly same process as
when conventional static shared libraries are used. Its
source code is compiled, and the generated object files
are statically linked with pseudo-libraries to create an
executable binary as explained in Section 3.1.3. The
resultant executable, of course, is converted to BFLT
(Binary FLaT file format) [6] by the elf2flt tool,
since they should be executed on the target system.

However, the library building process is slightly
different from that of the conventional static library
scheme. As shown in Figure 5, our library building
process accepts one or more library source files as its
inputs and produces both a shared library and a
pseudo-library as its outputs. In doing so, it temporarily
generates a normal static library, since the tool creating
the pseudo-library requires it as an input. The static
library and the shared library are built following exactly
the same process as in a conventional library system.
First, our modified gcc compiler generates the object

Table II. Modified components and added
functionality.

gcc - Has functionality to get library ID value
from command argument.

- Adds instructions in prologue and
epilogue of global functions.
Instructions include saving, setting, and
restoring DSBR with the help of DSBT.

gensym - Creates pseudo-library which contains
only symbol names and
pseudo-addresses.

loader - Creates and initializes DSBT
- Converts pseudo-address to absolute

address
- Loads libraries for their dependencies

files in PIC. This compilation step is controlled by a
command line option (-mid-shared-library)
added to the original compiler. With this option, as
explained in Section 3.1.2, the code fetching the data
section base address to the DSBR is generated at the
prologue of each global function, and the code restoring
the DSBR is generated at the epilogue. The
programmer-supplied library ID is passed through a
command line argument (-mshared-library-id
<id>) that we have extended into the gcc compiler.
Second, the linker links all the object files together to
generate the shared library in ELF (Executable and
Linking Format) [7]. The shared library is, in turn,
transformed into BFLT so that it is loadable to the target
system. Third, the archive utility (normally ar) collects
the object files and produces the static library in ELF.
As already explained, this is temporarily generated to
create the pseudo library.

The final build step of the library build process is

creating the pseudo-library. For this use, we developed
a new tool named gensym. As depicted in Figure 5,
gensym takes as inputs a static library and a shared
library both in ELF. The pseudo-library is created by
extracting the symbol tables from this static library and
discarding the rest. Then, all symbols in the
pseudo-library are redefined with pseudo-addresses
generated from the library ID and the offsets provided
in the shared library as explained in Section 3.1.3.
Pseudo-libraries built throughout this process are
placed in the development environment so that they can
be quasi-statically linked with applications.

4 Experimental Evaluation

We have implemented the proposed quasi-static
shared library scheme in a commercial ADSL home
network gateway equipped with an MMU-less
ARM7TDMI processor core, 2MB flash memory, and
16MB SDRAM. We have conducted a series of
experiments to measure its memory usage and evaluate
its performance overhead. Before presenting the
measured results, we give an overview of the target
applications and libraries.

The target system contains three classes of
applications: system utilities such as cp and mount,
modem utilities such as adsldmt, and communication
utilities such as the boa web server. The applications
use two libraries: the standard C library uClibc that is
distributed with uClinux and the SNMP library
UCD-SNMP. We applied the shared library scheme only
to uClibc since UCD-SNMP is not shared among
applications, but is used by only two SNMP-related
utilities: snmpd and snmptrap.

4.1 Measuring Memory Usage

Since our overall aim is to reduce the power
consumption and production cost of the system by

0

20

40

60

80

100

120

ad
sl

dm
t

ag
et

ty ar
p

at
m

ar
p

at
m

ar
pd bo

a
br

26
84

ct
l

br
ct

l
cp

dn
sm

as
q

eb
ta

bl
es

flp
ro

g

ifc
on

fig
in

et
d

in
it

ip
ta

bl
es

lin
kc

he
ck

lo
gi

n ls
m

ak
e_

s_
ad

sl
m

ou
nt ps

re
bo

ot
ro

ut
e

pp
po

ed
sn

m
pd

sn
m

pt
ra

p
ro

ut
ed

sa
ve

en
vm

se
te

nv
m sh

st
ar

t_
pp

po
e

te
ln

et
d

tra
ps

ta
rt

ud
hc

pd

lib
c.

so

179

x
10

00
 b

yt
es

conventional static library
quasi-static shared library

Figure 6. Flash memory usage.

Library source filesLibrary source filesLibrary Source FilesLibrary Source Files

Shared Library (ELF)Shared Library (ELF)

libc_conv.solibc_conv.so

Library source filesLibrary source filesLibrary source filesLibrary source filesApplication Source FilesApplication Source Files

*.c; *.*.c; *.cppcpp; *.h;; *.h;……

Object FilesObject FilesObject FilesObject FilesObject FilesObject Files

.o.o

Object FilesObject FilesObject FilesObject FilesObject FilesObject Files

.o.o

Library Source FilesLibrary Source Files

*.c; *.*.c; *.cppcpp; *.h; ; *.h; ……

Shared Library (BFLT)Shared Library (BFLT)

lib1.solib1.so

PseudoPseudo--LibraryLibrary

libc.alibc.a

An Application ProgramAn Application Program

foo.elffoo.elf

Build Process of A Library
(standard C library)

Build Process of An Application
(foo)

compilercompiler

linkerlinker

compilercompiler

elf2fltelf2flt gensymgensym

linkerlinker

An Application ProgramAn Application Program

foofoo

elf2fltelf2flt
in ELFin ELF

in BFLTin BFLT

legendlegend

Static LibraryStatic Library

libc_conv.alibc_conv.a

archive toolarchive tool

Figure 5. Development process of quasi-static
shared library.

reducing the amount of flash memory and RAM used,
the metrics of our experiments are obvious: the amount
of flash memory usage and RAM usage. While the
former is defined for each application and library, the
latter is defined for each application only. The flash
memory usage of an application is defined as the sum of
its code and data sections. The RAM usage of an
application is defined according to which scheme is
being used. In a statically linked application, RAM
usage is defined as the sum of the code, data and bss
sections. But if the quasi-static shared library scheme is
used, we must also include the size of the libraries’ data
in calculating RAM usage. In calculating memory usage,
we ignore the amount of memory consumed by
relocation tables, headers of executable files, heaps, and
stacks since they are constant regardless of library
schemes.

Figure 6 depicts the changes in flash memory usage
after our shared library scheme is applied. It shows a
35% reduction in flash memory usage from 1004KB to
651KB. The reason behind this is clear: library code is
not copied into the executable file of each application
but is instead kept as a single shared file (libc.so in
Figure 6).

Figure 7 depicts the changes in the RAM usage.
Overall RAM usage has been reduced 10% from
2435KB to 2200KB. Compared to the decreases in the
flash memory usage, this is not a large decrease. In fact,
the amount of RAM usage in some applications actually
increases. This happens because the data section of an
entire library is allocated to a process when using a
shared library, while only the data sections of specific
library routines are allocated to a process when using a
conventional static library. If the data section of an
entire library is larger than the code and data that a
certain application uses from the library, there is no
advantage (in terms of RAM usage) to applying
quasi-static linking to that application, and this is the
reason why the RAM usages of some applications are

increased with the quasi-static shared libraries. In our
scheme, it is possible for developers to selectively
choose whether each application is linked to quasi-static
shared libraries or conventional static libraries.
4.2 Measuring Performance Overhead

The target system, an ADSL home network gateway,
has two operational scenarios: the normal operational
scenario in which the target system performs protocol
conversions from ATM traffic to Ethernet traffic and
vice versa, and the configuration scenario in which the
user changes the configuration and monitors the status
of the target system. In the normal operational scenario,
applying our shared library scheme does not affect the
performance of the target system, because all the
protocol conversions are performed by the kernel, not
by any user programs. We therefore turn our attention to
the configuration scenario.

In order to evaluate the performance penalty caused
by our schemes in the configuration scenario, we
measured the response time for configuring the target
system. In our system, a user configures the gateway
using a web browser. The configuration request is
serviced by the adsl.cgi program via a boa web
server. In order to apply the changes in the
configuration, the adsl.cgi program invokes other
system utilities such as sh, ifconfig, and
iptables several times (8 times for sh, 7 times for
ifconfig, and 1 time for iptables). Table III
shows the result with the response time representing the

0

50

100

150

200

250

ad
sl

dm
t

ag
et

ty ar
p

at
m

ar
p

at
m

ar
pd bo

a
br

26
84

ct
l

br
ct

l
cp

dn
sm

as
q

eb
ta

bl
es

flp
ro

g
ifc

on
fig

in
et

d
in

it
ip

ta
bl

es
lin

kc
he

ck
lo

gi
n ls

m
ak

e_
s_

ad
sl

m
ou

nt ps
re

bo
ot

ro
ut

e
pp

po
ed

sn
m

pd
sn

m
pt

ra
p

ro
ut

ed
sa

ve
en

vm
se

te
nv

m sh
st

ar
t_

pp
po

e
te

ln
et

d
tra

ps
ta

rt
ud

hc
pd

lib
c.

so

x
10

00
 b

yt
es

conventional static library
quasi-static shared library

Figure 7. RAM usage.

Table III. Response time of configuring the target
system via a web browser.

 with conventional
static library

with quasi-static
shared library

response
time 957 ms 994 ms

time taken for the execution of adsl.cgi. The result
shows that the performance penalty for the shared
library is only 3.4 %.

5 Conclusions

In this paper, we have presented the quasi-static
shared library scheme as a means of reducing both the
dynamic and static memory requirements of heavily
optimized, resource-constrained embedded systems
lacking MMU. The proposed scheme is based on our
quasi-static linking mechanism in which global symbols
referenced in a library are bound to pseudo-addresses at
linking time and the actual physical addresses are bound
at loading time. Quasi-static linking is distinct from
existing shared library schemes that rely on either
normal static linking or dynamic linking because it
utilizes static linking only partially for
pseudo-addresses and does not employ a symbol table
as dynamic linking does. Avoiding symbol tables
allows our scheme to incur only a small amount of time
and space overhead. This is possible because
pseudo-addresses stored in pseudo-libraries keep the
information required for symbol binding, and absolute
addresses can be computed via a very simple address
resolution formula involving only simple integer
operations. Our scheme maintains compatibility with
conventional shared libraries so that existing
applications need not be rewritten. These characteristics
make our scheme appropriate for COTS-based
embedded systems that are subject to stringent
performance and resource constraints.

We have realized our scheme by emulating the
memory-mapping feature of MMU with a DSBR and
DSBTs. This required us to modify the gcc code
generator and uClinux’s loader and create a new tool
named gensym. We have implemented the entire
scheme in a commercial ADSL home network gateway
and created a tool chain for building and deploying
shared libraries. We have performed extensive
measurements to analyze the RAM and Flash memory
requirements of the home network gateway and to
evaluate its performance overhead. The results are
drastic: a 35% reduction in flash memory usage and a
10% reduction in RAM usage. These results were
achieved with only a negligible performance penalty of
less than 4%.

There are two research directions along which our
scheme can be extended. First, we are developing a tool
that automatically divides a shared library into several
smaller shared libraries by inspecting the usage patterns
of given applications. We expect that this tool, if used in
the quasi-static library scheme, will help to reduce
RAM usage more effectively since unrelated portions of

the original shared library do not have to be linked.
Because the original shared library is not linked in its
entirety, valuable space in RAM is freed up with the
only drawback being a slight increase in the number of
DSBT entries due to the increased number of shared
libraries. Because the DSBT is capable of holding a
maximum of 255 entries, this scheme should be feasible
for the vast majority of embedded systems. The second
direction for our future work is to extend our framework
to support eXecution-In-Place (XIP) [12]. XIP is a
technique whereby a program stored in ROM or flash
memory is run directly from the location where it is
stored. With XIP, the text section of a program does not
have to be loaded into RAM. Thus, XIP can effectively
reduce RAM usage. In order to execute an application
program in place, it should operate regardless of its
location and its text section should never be modified
for the execution. Note that our shared libraries fulfill
these conditions, meaning that the same mechanisms
used in our shared library scheme are also very effective
in implementing XIP. The results look promising.

6 References

[1] uClinux, “Embedded Linux and Microcontroller
Project,” URL: http://www.uClinux.org.
[2] BusyBox, URL: http://www.busybox.net/about.html.
[3] John R. Levine, “Linkers & Loaders,” Morgan
Kaufmann, 2000.
[4] gcc, “GNU Compiler Collection,” URL:
http://gcc.gnu.org.
[5] Cadenux, URL://www.ridgerun.com.
[6] uClinux, “BFLT: Binary FLAT file format,” URL:
http://www.uclinux.org.
[7] Tools Interface Standards – TIS, “Executable and
Linkable Format (ELF), version 1.2,” Portable Formats
Specifications, 1995.
[8] Marc Sabatella, “Issues in shard library design,” In
Proceedings of the Summer 1990 USENIX Conference, pages
11-23, Anaheim, CA, June 1990.
[9] R. A. Gingell, M. Lee, X. T. Dang, and M. S. Weeks,
“Shared Libraries in SunOS,” Proceedings of the USENIX
1987 Summer Conference, Phoenix, Arizona, 1987.
[10] James Q. Arnold, “Shared libraries on UNIX System
V,” In Proceedings of the USENIX 1986 Summer Conference,
1986.
[11] D. M. D. M. Beazley, B. D. Ward, and I. R. Cooke,
“The Inside Story on Shared Libraries and Dynamic
Loading,” IEEE Computing in Science & Engineering Vol. 3,
Issue 5 (Sep/Oct 2001): pp 90-97.
[12] Don Verneer, “eXecute-In-Place,” Memory Card
Magazine, March/April 1991.
[13] P.W. Agnew and A.S. Kellerman, “Distributed
Multimedia,” p. 144, Addison Wesley, ACM Press, 1996.

