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Abstract 

Despite a rapid decrease in the price of solid state 
memory devices, system memory is still a very precious 
resource in embedded systems. The use of shared 
libraries is known to be effective in significantly 
reducing memory usage. Unfortunately, many 
resource-constrained embedded systems lack MMU, 
making it extremely difficult to support this technique. 
To address this problem, we propose a novel shared 
library scheme called the quasi-static shared library. In 
quasi-static shared libraries, global symbols are bound 
to pseudo-addresses at linking time and the actual 
physical addresses are bound at loading time. This 
scheme is made possible by emulating MMU’s memory 
mapping feature with a Data Section Base Register 
(DSBR) and a Data Section Base Table (DSBT). 
Quasi-static shared libraries do not require symbol 
tables which take up time and space at runtime. 

We have implemented the proposed scheme in a 
commercial ADSL (Asymmetric Digital Subscriber 
Line) home network gateway and conducted a series of 
experiments measuring its memory usage and 
performance overhead. The result is drastic: a 35% 
reduction in flash memory usage and a 10% reduction 
in RAM usage. These results were achieved with only a 
negligible performance penalty of less than 4%. Even 
though this scheme was applied to uClinux-based 
embedded systems, it can be used for any MMU-less 
real-time operating system. 

1 Introduction 

Embedded systems are generally characterized as 
systems which have stringent constraints on resources 
such as processing power, power consumption, and 
memory size. In spite of recent remarkable advances in 
semiconductor technology, memory size in particular is 
still quite limited. In general, larger memory occupies a 
larger physical space, consumes more power, and costs 

more. Consequently, utilizing memory efficiently is still 
a driving factor that affects all aspects of system design. 
Currently, many embedded systems are constructed as a 
combination of COTS (Commercial Off-The-Shelf) 
software components such as Linux-based operating 
systems [1] and the BusyBox multi-call utility [2]. It is 
technically very hard to fit heavily pre-optimized COTS 
software components into systems with tight memory 
constraints. Furthermore, this requires sometimes 
unexpected and often error-prone tasks like modifying 
the compiler, linker, loader, and operating system. In 
this paper, we present an effective technique, the 
quasi-static shared library, to reduce memory usage in 
MMU-less embedded systems. Also, we present the 
results of applying it to a commercial ADSL 
(Asymmetric Digital Subscriber Line) [13] home 
network gateway. 

A shared library [3][8][9][10][11], in general terms, 
is a library that contains routines that are loaded into 
memory by the operating system as needed and 
dynamically shared with other applications without 
static linking. If a shared library is used, an application 
need not contain the routines in that library. Instead, it 
can share with other applications a copy of those 
routines which is already loaded into memory. This 
helps effectively reduce the amount of file system space 
and runtime memory used and allows shared library 
routines to be replaced on-the-fly. MMU is usually 
required to implement a shared library. A library routine 
is composed of a public code section that is shared 
among processes and a private data section that is 
assigned separately to each process. When a library 
routine accesses a data symbol, it must be redirected to 
the data’s physical address that is specific to each 
process. To achieve this, the data section of a library 
should be mapped to a fixed area in the address space of 
each process. This mapping can be done easily with 
MMU. However, MMU is rarely used in 
resource-constrained embedded systems since it greatly 
increases both the production cost and the complexity 



of a system. Thus, shared libraries are not commonly 
implemented in embedded systems as compared to 
workstations or desktop PCs that contain MMU.  

Before we consider the implementation of a shared 
library on an MMU-less embedded system, we must 
first make a distinction between two types of shared 
libraries based on the point at which global symbols are 
bound to actual addresses. The first type is the 
dynamically linked shared library [3] in which symbols 
are bound to addresses at loading time. The other type is 
the statically linked shared library [3] in which symbols 
are bound to addresses at linking time. Shared library 
frameworks implemented by RidgeRun [5] and 
Cadenux [5] fall under the category of dynamically 
linked shared libraries. In this kind of framework, the 
dynamic loader fixes all the references in an application 
using symbol tables contained in the shared library. 
This means that the symbol tables should be maintained 
throughout the lifetime of the application, taking up 
valuable space. This also causes a substantial runtime 
performance penalty due to the time-consuming 
dynamic linking performed when a process refers to a 
library symbol for the first time. Hence, dynamically 
linked shared libraries are undesirable for embedded 
systems in which memory and CPU resources are 
restricted. However, statically linked shared libraries 
are also undesirable because each library must be 
allocated to a non-overlapping region in a single 
address space. This is done to avoid conflicts among 
different libraries but has the potential effect of creating 
serious memory waste.  

To gain the advantages of both dynamically and 
statically linked shared libraries while avoiding the 
aforementioned problems, we propose the quasi-static 
shared library. It is a library that is loaded at an arbitrary 
address but statically linked to an application. Since the 
quasi-static shared library does not require a symbol 
table, we can save memory and expedite the process of 
computing the actual addresses of symbols. 

We have implemented the proposed shared library 
scheme in a commercial ADSL home network gateway. 
This system is equipped with an MMU-less 
ARM7TDMI processor core, 2MB flash memory, and 
16MB SDRAM. uClinux [1], a derivative of Linux 
for microcontrollers without MMU, is used as the 
operating system. The target system is very complex, 
running nearly 11 out of 35 applications simultaneously 
during the course of its usual operation. We applied our 
shared library scheme to all 35 of the applications and 
the one library. We also performed a series of 
experiments to measure memory usage and evaluate 
performance overhead. The results show that the 
proposed schemes reduce memory usage, both in terms 

of flash memory and RAM, by a considerable amount 
with negligible performance degradation. 

The rest of the paper is organized as follows. In the 
next section, the target system’s original linking and 
loading process is explained. Section 3 presents the 
mechanisms behind quasi-static shared libraries and 
explains how these mechanisms are coherently 
integrated into the overall system. Section 4 provides 
the results of an empirical evaluation of our schemes in 
the target system. Finally, Section 5 serves as our 
conclusion. 

2 Target System Components and 
Executable Code Management 

To aid in understanding the rest of this paper, we 
present the target system components and explain the 
original process of linking and loading executable code 
and organizing the file system. Table I shows the 
hardware and software components of the target system. 
Basically, this system is connected to the Internet 
through ADSL and provides an internet connection to 
other home network devices. It also provides 
information about these devices, drivers for the devices, 
and a web-based interface to control them.  

The original system was constructed with 
conventional static libraries where library routines are 
copied and statically linked to applications. When the 
executable code image of an application is created, 
symbol addresses are determined with the assumption 
that executable code will be loaded from address 0, as 
in systems with MMU. However, because the target 
system lacks MMU, it is impossible to provide multiple 
virtual address spaces starting from address 0 for 
processes. Thus, the executable code image must have a 
data structure that enables the modification of symbol 
addresses that it uses. That data structure is a relocation 
table and is used by the loader when the executable code 
image is loaded. 

The created executable code images are merged 
together to create a CRAMFS image which is stored in 
flash memory. In flash memory, there resides not only 
the CRAMFS image, but also a bootloader and a 
compressed image of uClinux. The executable code 
images in CRAMFS may be either compressed or 
uncompressed according to the developer’s choice. In 
practice, most are compressed. 

An executable code image stored in flash memory is 
loaded into RAM by uClinux’s loader. In doing so, 
the loader calculates the symbols’ absolute addresses 
and modifies the code and data sections using the 
relocation table. 



3 Design Requirements and Solution 
Mechanisms 

As mentioned in previous sections, it is quite 
difficult to implement shared libraries in MMU-less 
embedded systems. Furthermore, we seek to reduce 
time and space overhead by avoiding dynamic data 
structures such as symbol tables, while maintaining 
compatibility with conventional static libraries so that 
existing applications need not be rewritten. To meet 
these design goals, it is necessary to modify the code 
generator of the gcc compiler [4], and the uClinux’s 
loader. We also have to implement a tool for creating 
pseudo-libraries that play the role of symbol tables used 
in conventional shared libraries. 

Before getting into these details, we first enumerate 
the design requirements for quasi-static shared libraries. 
In designing our schemes for memory-constrained 
MMU-less embedded systems, we have the following 
three design requirements in mind. 

C1. The libraries should operate regardless of their 
location, and their text sections should never be 
modified once they are loaded. (A shared library 
created with a specific, statically determined load 
address in RAM might cause a significant waste in 
memory usage; the memory space assigned to the 
library cannot be used for other purposes even 
though the library is not used by any other 
processes) 

C2. Multiple shared libraries should be usable by a 
single process. (Without this functionality, the 
shared library would be very restrictive to 
developers.) 

C3. The loader should operate without a symbol 
table. (We therefore avoid incurring the associated 
performance penalties and space overhead.) 

In Section 3.1, we describe the solution mechanisms 
to meet these requirements. Subsequently in Section 3.2, 
we show how these mechanisms are integrated 
coherently into the overall system. 

3.1 Solution Mechanisms 

To meet these requirements, a variety of techniques 
are employed. For condition C1, we rely on a data 
section base register (DSBR) and a global offset table 
(GOT) [3], as well as a form of position independent 
code specially enhanced for MMU-less systems. To 
meet condition C2, we devise the data section base table 
(DSBT) for storing the base addresses of multiple data 
sections for all loaded shared libraries in a process. 
Finally, to satisfy condition C3, we come up with 
quasi-static linking. In the following subsections these 
mechanisms will be explained in detail. 

3.1.1 Position Independent Code for Condition C1. 
Position independent code (PIC) is required for 
condition C1 because it can be executed from any 
location without modification. This is possible because 
PIC does not use absolute addresses when referring to 
symbols. PIC is used in most shared libraries, and a 
number of widely available compilers including the 
gcc are able to generate it. Since the addressing scheme 
used in PIC is closely related to other parts of our shared 
library scheme, we first explain in detail the PIC with 
MMU supports. 

In PIC generated by gcc, symbols can be generally 
classified into three categories depending on how their 

Table I. Hardware and software components of the target system. 

Main processor S5N8947 (ARM7/TDMI core, No MMU, 40MHz) 
ADSL processor S5N8950 ADSL DSP, S5N8951 AFE 
Memory 16MB SDRAM, 2MB Flash memory 

Hardware 

Interfaces ADSL × 1, Ethernet ×1, RS-232C × 1 
Bootloader ARMboot 1.0.2 
Operating system uClinux 2.4.17 (Linux for MMU-less processor) 
File-systems CRAMFS (mounted on flash memory, program storage, read-only)

Application programs shell, web server, NAT, firewall, IP filtering, DHCP server, SNMP 
server, system configuration CGI programs, and etc. (total 35) 

Libraries uClibc 0.9.15 (standard C library) 

Software 

Development tools gcc 3.2.1 (compiler), binutils 2.13.1 (linker, assemblers, and etc.), 
elf2flt (conversion tool from ELF to BFLT), and etc. 



addresses are dealt with: (1) local static functions, (2) 
local static data, and (3) global data and functions. 
Referencing local static functions is fairly trivial since 
they are contained within the same text section as the 
calling function. It is easily done through PC-relative 
addressing. In contrast, referencing local static data 
naturally involves locating the data section. Usually, in 
MMU-equipped systems, the data section of a routine is 
located at a known distance from the code section as 
shown in Figure 1.(a). Since this distance, denoted as a 
in Figure 1.(a), is fixed at linking time, the data section 
can be located in a PC-relative manner. The base 
address of the data section is loaded into a register 
called the data section base register (DSBR). Individual 
data symbols can then be located by adding an offset, 
denoted as b in Figure 1.(a), to the DSBR. On the other 
hand, referencing global data and functions is done 
through a global offset table (GOT) as shown in Figure 
1.(b). The GOT is a table that contains entries for all of 
global symbols referenced in a library. The absolute 
address of a global symbol is determined and recorded 
by the loader at loading-time. In order to refer to a 
global symbol later on, the compiler generates code that 
accesses the entry for that symbol in the GOT and 
fetching the absolute address recorded in that entry. 
Pseudo code for doing this is given in the text section in 
Figure 1.(b). The GOT is located at a fixed offset in the 
data section, usually at its beginning. Thus, once the 
data section of the library is located, both global 
symbols and local data can be referenced. In 
MMU-equipped systems, the compiler is responsible 

for generating an instruction to load the DSBR with the 
data section’s base address. 

Unlike the addressing schemes explained above, in 
MMU-less systems, the data section of a library and 
thus its GOT are located at a unknown distance away 
from its code section. Therefore, PC-relative addressing 
cannot be used to load DSBR. In our scheme, loading 
the DSBR is handled differently by the loader and 
compiler. Specifically, the DSBR is initialized by the 
operating system’s loader when a process is loaded for 
execution. In doing so, the loader determines the data 
section base addresses of the shared libraries used in the 
process and provides them for the process. The 
compiler-generated code of the process updates DSBR 
later on using the loader-provided addresses when a 
global library function is invoked. This requires that the 
uClinux loader and the code generator of the gcc 
compiler should be modified. Also, application 
programs should be compiled with an option that 
designates one of general purpose registers as the 
DSBR. This is needed to guarantee that the DSBR is not 
overwritten by application programs. We explain in 
detail the initialization and update of DSBR in what 
follows. 

3.1.2 Data Section Base Table for Condition C2. In 
a process that uses multiple libraries, there are multiple 
code and data sections, each of which is loaded at an 
arbitrary address. Thus, the DSBR of a process should 
point to different data sections as application-to-library 
or inter-library calls are invoked. This requires a 

Text section

Data section

add DSBR, PC, #a
add r0, DSBR, #b
str #3, [r0]

foo:

a

b

Text section

Data section

add DSBR, PC, #a
ldr r0, [DSBR, #c]
str #3, [r0]
ldr r0, [DSBR, #d]
mov pc, r0

bar:

a

c
&bar

&baz

d Global Offset 
Table (GOT)

baz:

Other library

(a) (b)  

Figure 1. Pseudo code for referencing symbols in MMU-equipped systems: (a) writing an integer constant to local 
static variable foo using PC-relative addressing and (b) writing an integer constant to global variable bar 

defined in the same library and then jumping to global function baz defined in the other library through GOT. 
Note that &bar and &baz in GOT represent the absolute addresses of bar and baz, respectively. 



runtime data structure called a data section base table 
(DSBT). The DSBT is a table that contains the data 
section base addresses of the libraries that are loaded for 
a process.  

Figure 2 shows the structure of the DSBT. It has 256 
entries, each of which is four bytes long. Each entry is 
dedicated to a specific shared library and contains the 
data section base address of that shared library. For this 
purpose, each shared library is given a unique 
numerical library ID, ranging from 1 to 255, with 0 
reserved for the application program itself.  

When a process is loaded into memory for execution, 
the loader allocates the text and data section, among 
others, of the process. It also allocates the data sections 
of all the shared libraries used in the process. Then, it 
creates the DSBT by filling up its entries with the 
allocated data section base addresses and attaches it to 
the front of the process’s data section. It goes on 
replicating the DSBT and attaching its replica to the 
front of the data section of each shared library. Finally, 
it sets the DSBR to the data section base address of the 
process. We have modified the uClinux’s loader for 
this job. Figure 2 shows the configuration of DSBR and 
DSBT right after process loading. Under this scheme, 
an entry corresponding to a shared library with 
LIBRARY_ID can thus be easily located using a simple 
formula as below.  

ADDRESS = [DSBR – 4 * LIBRARY_ID – 4] 

We choose to replicate DSBT for all shared libraries 
at the expense of the increased memory space so as to 
allow a process to access both a data section and DSBT 
via a single DSBR regardless of the currently active 
data section. This way, we can avoid using an extra 
register for accessing DSBT. Note that general purpose 
registers are extremely valuable resource in enhancing 
the runtime performance of executable code. Moreover, 

the space overhead is relatively small in that the size of 
the DSBT can be configurable at build-time according 
to the number of shared libraries used by the system 
with a maximum of 255 shared libraries. For example, it 
would be 64 bytes per shared library if the number of 
shared libraries used in the system is 15, which is a 
relatively large number of libraries for a normal 
embedded system. Developers can even merge several 
distinct libraries at build-time to further reduce the table 
size. 

During the execution, when an 
application-to-library or inter-library call is made, the 
DSBR should be updated so that it points to the data 
section base address of the called library. To do so, the 
process should first obtain the library ID of the called 
library and then compute the address of the DSBT entry 
corresponding to that library. Since the library ID is 
statically determined at build-time, the compiler can 
generate an instruction that computes the address of that 
DSBT entry. After that, the process saves the original 
DSBR and set the DSBR to the address obtained from 
the DSBT entry. Conversely, when returning from an 
application-to-library or inter-library call, the process 
restores the original DSBR from the stack. We have 
modified the code generator of gcc so that it can 
produce appropriate instructions in the prologue and 
epilogue of globally defined library functions. 

As a concrete example, we provide below the code 
for the printf function contained in the uClibc 
library. This code is generated by the modified gcc and 
the library ID of uClibc is 1. Note that the gcc 
compiler uses sl register as DSBR in the ARM 
architecture. 
<printf>: 
(1) : mov     ip, sp 
(2) : stmdb   sp!, {r0, r1, r2, r3} 
(3) : stmdb   sp!, {sl, fp, ip, lr, pc} 
(4) : ldr     r3, [pc, #28] 
(5) : ldr     sl, [sl, -#8] 
(6) : ldr     r3, [sl, r3] 
(7) : sub     fp, ip, #20 
(8) : ldr     r0, [r3] 
(9) : ldr     r1, [fp, #4] 
(10): add     r2, fp, #8 
(11): bl      c28 ; vfprintf 
(12): ldmdb   fp, {sl, fp, sp, pc} 

The three shaded instructions are those generated by 
our modified compiler. Instruction (3) saves the original 
DSBR. Instruction (5) computes the address of the 
DSBT entry that corresponds to uClibc and sets 
DSBR accordingly. Instruction (12) restores the 
original DSBR. Obviously, these additional instructions 
cause performance overhead whenever an inter-library 
call is made. In Section 4.2, we show that this has 
negligible impact on overall performance. 

Entry for library 255

Entry for library 254

...

Entry for library 1

Entry for application program

Data section

Data Section Base Table 
(DSBT)

DSBR

255

254

...

1

0

Index

4 bytes  

Figure 2. Structure of DSBT and method for 
accessing its entries.  



Although we demonstrate our scheme for the ARM 
architecture, it is also effective for other architectures 
such as x86 that support multiple segment registers. 
Even in such architectures, DSBT is still needed if the 
number of shared libraries used in a process exceeds the 
number of available segment registers. 

3.1.3 Quasi-Static Linking for Condition C3. 
Finally, to fulfill condition C3, we present the 
quasi-static linking mechanism. Quasi-static linking is a 
novel linking mechanism that statically links an 
application with a library using a logical numeric 
address for a symbol and dynamically determines the 
absolute address of a symbol at loading-time using a 
simple address resolution formula. It permits a shared 
library to be loaded at an arbitrary address since the 
permanent address of a symbol is dynamically 
determined and it avoids a symbol table at loading-time 
since symbols are statically bound anyway.  

The two core components of the quasi-static linking 
mechanism are a pseudo-address and a pseudo-library. 

A pseudo-address is defined for a symbol as a logical 
numerical address that specifies the library the symbol 
belongs to and its offset inside the library. A 
pseudo-address, thus, consists of two fields, a library ID 
and an offset as shown in Figure 3.(a). The library ID 
and the offset are 8 bits and 24 bits wide, respectively. 
The offset is the distance from the start of the library to 
the definition of the symbol when the text section and 
the data section are contiguous. 

A pseudo-library is a library that contains only a 
symbol table but not any code or data. Thus, a 
pseudo-library cannot be used at runtime to bind the 
library code and data into an application. Instead, a 
normal shared library object with the symbol table 
stripped off is used. Each entry in the symbol table 
specifies symbols by their names and their 
corresponding pseudo-addresses. As an example, 
Figure 4 depicts the symbol table for the printf.o 
object contained in the pseudo-library of the uClibc 
library. In this library, the pseudo-address of printf 

 

Figure 3. (a) Format of a pseudo-address and (b) an example of converting pseudo address 0x03000200 
into an absolute address 0x200100. 

SYMBOL TABLE:
00000000 l    d  ._shared_lib_symbols_  00000000 
00000000 l    d  .text  00000000 
00000000 l    d  .data  00000000 
00000000 l    d  .bss 00000000 
00000000 l    d  .comment       00000000 
00000000 l    d  *ABS*  00000000 
00000000 l    d  *ABS*  00000000 
00000000 l    d  *ABS*  00000000 
00000000 l    df *ABS*  00000000 _gen_sym_base_.c
01011ff8 g       ._shared_lib_symbols_  00000000 printf  

Figure 4. Symbol table for printf.o in the pseudo-library of uClibc. 



is defined as 0x01011ff8: the function printf is 
defined in a shared library with the ID 1, and its entry 
address relative to the start of the shared library is 
0x00011ff8. 

Given a shared library and its pseudo-library, the 
quasi-static linking mechanism works as follows. 
Pseudo-libraries are statically linked to the application, 
a feat possible because they have the same format as a 
static library. As a result, pseudo-addresses from the 
pseudo-libraries are embedded in locations in the 
application where absolute addresses of global symbols 
are expected. Also, relocation entries are created 
accordingly in the relocation table of the application for 
those locations since pseudo-addresses are required to 
be fixed at loading time. A relocation entry is just an 
offset into the application of those locations where the 
pseudo-addresses are used. It is important to mention 
that there is no need to maintain a symbol table in the 
shared library since symbols are already resolved at 
linking time. At loading-time, the embedded 
pseudo-addresses are converted to absolute addresses 
by the loader after the shared libraries have been loaded 
into memory. 

Specifically, for every relocation entry in the 
relocation table, the loader first extracts the library ID 
field from the pseudo-address and then loads the 
corresponding shared library if it is not loaded yet. Next, 
it extracts the offset field from the pseudo-address and 
adds the offset to the base address of the text section. 
Note that the distance in memory between the text 
section and the data section should be added to this 
result if the offset is larger than the size of the text 
section, in other words, if the offset represents some 
location in the data section. Finally, the loader replaces 
the pseudo-address with the converted absolute address. 
Figure 3.(b) shows an example of extrapolating an 
absolute address from a pseudo-address. 

Using quasi-static linking via pseudo-addresses 
makes the dynamic linking process simpler and faster 
than true dynamic linking with only a shared library. 
However, quasi-static linking carries the following 
restrictions, which we believe are not critical limitations 
for a small embedded system. 

• Maximum number of libraries that can be in 
system is 255 (ID 0 is reserved for the application 
program). 

• Library size (including text and data sections) 
cannot exceed 16MB. 

• All application programs using a library should be 
re-linked with it whenever the library is updated 
because the offsets of the symbols inside the 
library might have changed. 

3.2 Putting It All Together 

Applying our proposed mechanisms to an embedded 
system involves modifying the gcc compiler [4] and 
the uClinux’s loader as explained above, as well as 
implementing the tool for creating pseudo-libraries. 
Table II summarizes the modified tool components and 
their added functions. When we developed a tool chain 
by integrating them, we put our emphasis on 
maintaining compatibility with conventional static 
libraries so that existing applications need not be 
rewritten. We explain how these mechanisms and 
corresponding tools are integrated coherently into the 
overall system development processes. 

Figure 5 shows our new process for building 
applications and libraries, as well as the components 
that participate in each step. As shown in the figure, an 
application is built through exactly same process as 
when conventional static shared libraries are used. Its 
source code is compiled, and the generated object files 
are statically linked with pseudo-libraries to create an 
executable binary as explained in Section 3.1.3. The 
resultant executable, of course, is converted to BFLT 
(Binary FLaT file format) [6] by the elf2flt tool, 
since they should be executed on the target system.  

However, the library building process is slightly 
different from that of the conventional static library 
scheme. As shown in Figure 5, our library building 
process accepts one or more library source files as its 
inputs and produces both a shared library and a 
pseudo-library as its outputs. In doing so, it temporarily 
generates a normal static library, since the tool creating 
the pseudo-library requires it as an input. The static 
library and the shared library are built following exactly 
the same process as in a conventional library system. 
First, our modified gcc compiler generates the object 

Table II. Modified components and added 
functionality. 

gcc - Has functionality to get library ID value 
from command argument. 

- Adds instructions in prologue and 
epilogue of global functions. 
Instructions include saving, setting, and 
restoring DSBR with the help of DSBT.

gensym - Creates pseudo-library which contains 
only symbol names and 
pseudo-addresses. 

loader - Creates and initializes DSBT 
- Converts pseudo-address to absolute 

address 
- Loads libraries for their dependencies 



files in PIC. This compilation step is controlled by a 
command line option (-mid-shared-library) 
added to the original compiler. With this option, as 
explained in Section 3.1.2, the code fetching the data 
section base address to the DSBR is generated at the 
prologue of each global function, and the code restoring 
the DSBR is generated at the epilogue. The 
programmer-supplied library ID is passed through a 
command line argument (-mshared-library-id 
<id>) that we have extended into the gcc compiler. 
Second, the linker links all the object files together to 
generate the shared library in ELF (Executable and 
Linking Format) [7]. The shared library is, in turn, 
transformed into BFLT so that it is loadable to the target 
system. Third, the archive utility (normally ar) collects 
the object files and produces the static library in ELF. 
As already explained, this is temporarily generated to 
create the pseudo library. 

The final build step of the library build process is 

creating the pseudo-library. For this use, we developed 
a new tool named gensym. As depicted in Figure 5, 
gensym takes as inputs a static library and a shared 
library both in ELF. The pseudo-library is created by 
extracting the symbol tables from this static library and 
discarding the rest. Then, all symbols in the 
pseudo-library are redefined with pseudo-addresses 
generated from the library ID and the offsets provided 
in the shared library as explained in Section 3.1.3. 
Pseudo-libraries built throughout this process are 
placed in the development environment so that they can 
be quasi-statically linked with applications.  

4 Experimental Evaluation 

We have implemented the proposed quasi-static 
shared library scheme in a commercial ADSL home 
network gateway equipped with an MMU-less 
ARM7TDMI processor core, 2MB flash memory, and 
16MB SDRAM. We have conducted a series of 
experiments to measure its memory usage and evaluate 
its performance overhead. Before presenting the 
measured results, we give an overview of the target 
applications and libraries. 

The target system contains three classes of 
applications: system utilities such as cp and mount, 
modem utilities such as adsldmt, and communication 
utilities such as the boa web server. The applications 
use two libraries: the standard C library uClibc that is 
distributed with uClinux and the SNMP library 
UCD-SNMP. We applied the shared library scheme only 
to uClibc since UCD-SNMP is not shared among 
applications, but is used by only two SNMP-related 
utilities: snmpd and snmptrap. 

4.1 Measuring Memory Usage 

Since our overall aim is to reduce the power 
consumption and production cost of the system by 
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Figure 6.  Flash memory usage.
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Figure 5. Development process of quasi-static 
shared library. 



reducing the amount of flash memory and RAM used, 
the metrics of our experiments are obvious: the amount 
of flash memory usage and RAM usage. While the 
former is defined for each application and library, the 
latter is defined for each application only. The flash 
memory usage of an application is defined as the sum of 
its code and data sections. The RAM usage of an 
application is defined according to which scheme is 
being used. In a statically linked application, RAM 
usage is defined as the sum of the code, data and bss 
sections. But if the quasi-static shared library scheme is 
used, we must also include the size of the libraries’ data 
in calculating RAM usage. In calculating memory usage, 
we ignore the amount of memory consumed by 
relocation tables, headers of executable files, heaps, and 
stacks since they are constant regardless of library 
schemes.  

Figure 6 depicts the changes in flash memory usage 
after our shared library scheme is applied. It shows a 
35% reduction in flash memory usage from 1004KB to 
651KB. The reason behind this is clear: library code is 
not copied into the executable file of each application 
but is instead kept as a single shared file (libc.so in 
Figure 6).  

Figure 7 depicts the changes in the RAM usage. 
Overall RAM usage has been reduced 10% from 
2435KB to 2200KB. Compared to the decreases in the 
flash memory usage, this is not a large decrease. In fact, 
the amount of RAM usage in some applications actually 
increases. This happens because the data section of an 
entire library is allocated to a process when using a 
shared library, while only the data sections of specific 
library routines are allocated to a process when using a 
conventional static library. If the data section of an 
entire library is larger than the code and data that a 
certain application uses from the library, there is no 
advantage (in terms of RAM usage) to applying 
quasi-static linking to that application, and this is the 
reason why the RAM usages of some applications are 

increased with the quasi-static shared libraries. In our 
scheme, it is possible for developers to selectively 
choose whether each application is linked to quasi-static 
shared libraries or conventional static libraries. 
4.2 Measuring Performance Overhead 

The target system, an ADSL home network gateway, 
has two operational scenarios: the normal operational 
scenario in which the target system performs protocol 
conversions from ATM traffic to Ethernet traffic and 
vice versa, and the configuration scenario in which the 
user changes the configuration and monitors the status 
of the target system. In the normal operational scenario, 
applying our shared library scheme does not affect the 
performance of the target system, because all the 
protocol conversions are performed by the kernel, not 
by any user programs. We therefore turn our attention to 
the configuration scenario. 

In order to evaluate the performance penalty caused 
by our schemes in the configuration scenario, we 
measured the response time for configuring the target 
system. In our system, a user configures the gateway 
using a web browser. The configuration request is 
serviced by the adsl.cgi program via a boa web 
server. In order to apply the changes in the 
configuration, the adsl.cgi program invokes other 
system utilities such as sh, ifconfig, and 
iptables several times (8 times for sh, 7 times for 
ifconfig, and 1 time for iptables). Table III 
shows the result with the response time representing the 
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Figure 7. RAM usage. 

Table III.  Response time of configuring the target 
system via a web browser. 

 with conventional 
static library 

with quasi-static 
shared library 

response 
time 957 ms 994 ms 



time taken for the execution of adsl.cgi. The result 
shows that the performance penalty for the shared 
library is only 3.4 %. 

5 Conclusions 

In this paper, we have presented the quasi-static 
shared library scheme as a means of reducing both the 
dynamic and static memory requirements of heavily 
optimized, resource-constrained embedded systems 
lacking MMU. The proposed scheme is based on our 
quasi-static linking mechanism in which global symbols 
referenced in a library are bound to pseudo-addresses at 
linking time and the actual physical addresses are bound 
at loading time. Quasi-static linking is distinct from 
existing shared library schemes that rely on either 
normal static linking or dynamic linking because it 
utilizes static linking only partially for 
pseudo-addresses and does not employ a symbol table 
as dynamic linking does. Avoiding symbol tables 
allows our scheme to incur only a small amount of time 
and space overhead. This is possible because 
pseudo-addresses stored in pseudo-libraries keep the 
information required for symbol binding, and absolute 
addresses can be computed via a very simple address 
resolution formula involving only simple integer 
operations. Our scheme maintains compatibility with 
conventional shared libraries so that existing 
applications need not be rewritten. These characteristics 
make our scheme appropriate for COTS-based 
embedded systems that are subject to stringent 
performance and resource constraints. 

We have realized our scheme by emulating the 
memory-mapping feature of MMU with a DSBR and 
DSBTs. This required us to modify the gcc code 
generator and uClinux’s loader and create a new tool 
named gensym. We have implemented the entire 
scheme in a commercial ADSL home network gateway 
and created a tool chain for building and deploying 
shared libraries. We have performed extensive 
measurements to analyze the RAM and Flash memory 
requirements of the home network gateway and to 
evaluate its performance overhead. The results are 
drastic: a 35% reduction in flash memory usage and a 
10% reduction in RAM usage. These results were 
achieved with only a negligible performance penalty of 
less than 4%. 

There are two research directions along which our 
scheme can be extended. First, we are developing a tool 
that automatically divides a shared library into several 
smaller shared libraries by inspecting the usage patterns 
of given applications. We expect that this tool, if used in 
the quasi-static library scheme, will help to reduce 
RAM usage more effectively since unrelated portions of 

the original shared library do not have to be linked. 
Because the original shared library is not linked in its 
entirety, valuable space in RAM is freed up with the 
only drawback being a slight increase in the number of 
DSBT entries due to the increased number of shared 
libraries. Because the DSBT is capable of holding a 
maximum of 255 entries, this scheme should be feasible 
for the vast majority of embedded systems. The second 
direction for our future work is to extend our framework 
to support eXecution-In-Place (XIP) [12]. XIP is a 
technique whereby a program stored in ROM or flash 
memory is run directly from the location where it is 
stored. With XIP, the text section of a program does not 
have to be loaded into RAM. Thus, XIP can effectively 
reduce RAM usage. In order to execute an application 
program in place, it should operate regardless of its 
location and its text section should never be modified 
for the execution. Note that our shared libraries fulfill 
these conditions, meaning that the same mechanisms 
used in our shared library scheme are also very effective 
in implementing XIP. The results look promising. 
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