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Abstract 

The Software Communications Architecture (SCA) defined by Joint Tactical Radio Systems (JTRS) is the de 

facto standard middleware currently adopted by the Software Defined Radio (SDR) Forum, and is widely 

accepted as a viable solution to reconfigurable component-based distributed computing for adaptive wireless 

terminals and base stations. While SDR is heavily involved in real-time signal processing, the current SCA lacks 

QoS capabilities in terms of both QoS specification and enforcement. In this paper, we propose Q-SCA (QoS 

enabled SCA) to address this problem. Specifically, we present an application model for SDR waveform 

software, and then extend the SCA core framework for QoS specification and enforcement. Q-SCA supports QoS 

capabilities by (1) providing a QoS descriptor that is backward compatible with SCA’s original domain profiles, 

(2) offering services for admission control and resource allocation that are used throughout the application 

instantiation process, and (3) introducing a mechanism to enforce the result of the resource allocation. We have 

fully implemented Q-SCA and performed measurements to quantify its run-time performance. Our 

implementation clearly shows the viability of Q-SCA. 

Keywords: QoS, software communications architecture, software defined radio, resource allocation 

1. Introduction 

The convergence of the Internet and wireless communication technologies has created a huge demand for 

access to Internet services from wireless consumer devices such as smart phones, smart pads, and mobile home 

service robots. Unfortunately, this wireless connectivity is achieved by a disparate array of hardware 

implementing a number of different wireless protocols. World-wide, there already exist dozens of cellular and 

data communication standards, and several new wireless standards are currently waiting for approval. When a 
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new standard is put into use, consumers are forced to replace their wireless devices since support for the new 

standard requires a new modem. 

Software defined radio (SDR) is a viable solution to this problem since it is a software configurable modem 

that offers wireless Internet users with the ability to use a single terminal to access a wide range of wireless 

services by ensuring that handheld devices are modem-agnostic. Often, SDR modem hardware makes up a 

distributed platform consisting of heterogeneous microprocessors, microcontrollers, and digital signal processors 

interconnected by shared communication buses. To facilitate communication among these nodes, the SDR 

Forum approved the JTRS Software Communications Architecture (SCA) [1] as standard middleware for SDR. 

Figure 1 shows its overall structure. It consists of an operating environment and applications. The applications 

include signal processing and protocol processing code for RF communication. The operating environment has 

two layers: the COTS (commercial off the shelf) layer that controls CPU scheduling, resource allocation, and 

communication and the core framework layer that manages the life cycle of waveform applications. 

Unfortunately, SCA does not currently support any QoS guaranteeing features since it is focused only on run-

time reconfigurability via dynamic component deployment. For QoS support, the current SCA specification 

recommends using dedicated co-site mitigation hardware [2], defining a proprietary API that utilizes dedicated 

transfer mechanisms [3], or exploiting the QoS features of the underlying CORBA object request broker (ORB) 

[4] or real-time operating system (RTOS) in the COTS layer of the operating environment. However, we argue 

that the SCA core framework is the best candidate for supporting QoS capabilities since (1) applications and 

their components are totally specified in a set of XML profiles and (2) the domain management and service parts 

of the SCA core framework manage all resources available in a given distributed system. Motivated by this, we 

develop a QoS-enabled SCA, named Q-SCA, by extending the current SCA framework. It can provide time-
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Figure 1. Structure of SCA software (Gray-colored modules are Q-SCA components).



sensitive signal processing applications with QoS specification, admission control, and resource reservation. To 

do so, we develop a novel waveform model capable of describing SDR waveforms in a flexible way. We extend 

the core framework of SCA and its domain profiles to support our application model which is focused on 

wireless applications. As a result, Q-SCA supports QoS capabilities by (1) providing a QoS descriptor that is 

backward compatible with SCA’s original domain profiles, (2) offering services for admission control and 

resource allocation that will be used throughout the application instantiation process as shown in Figure 1, and 

(3) introducing a mechanism to enforce the result of the resource allocation. 

We have already developed an SCA v. 2.2 compliant implementation called SNU-SCA and applied it to a 

military SDR handset. We exploit this experience in designing Q-SCA as an extension to SNU-SCA. We have 

completely implemented it and performed extensive measurements to quantify its run-time performance. Our 

implementation clearly shows the viability of Q-SCA. 

1.1. Related Work 

Our research is strongly motivated by recent advances in highly reconfigurable software radios and QoS-

enabled middleware technologies. The term software defined radio was coined in 1991 to describe radio devices 

implemented in software and running on generic hardware. Since then, SDR technology has evolved to offer 

improvements in flexibility and upgradability for software-programmable radio systems. It is now widely 

accepted as an enabling technology for fourth generation (4G) cellular wireless communications in that a single 

handset can operate with diverse wireless protocols using common general purpose hardware. At the heart of 

SDR technology lies an efficient, interoperable, and standardized software framework such as the Vanu software 

radio architecture [5][6], E2R beyond 3G systems [7], and JTRS SCA. All of these frameworks aim at fulfilling 

the functional and operational requirements of SDR. They invariably provide implementation independent 

description languages for specifying interfaces and configurations of waveform applications. They also offer 

mechanisms that translate the descriptions into implementation-specific operations while providing source-level 

portability. However, all of them lack support for QoS, thus passing to application programmers the full 

responsibility of guaranteeing QoS requirements. This will lead to poor resource utilization and more severely, 

deteriorated radio performance. To the best of our knowledge, Q-SCA is the first attempt to incorporate QoS 

issues into the SDR software framework. 

In the meantime, there have been numerous research results on middleware that supports QoS. Such examples 

include 2KQ [8], Agilos [9], TAO [10], and QuO [11]. Each of them provides a method for application 

programmers to describe QoS requirements along with a mechanism for enforcing those requirements. For 

example, in 2KQ and TAO, system-level QoS parameters are derived from high-level QoS requirements, and 

resources are allocated according to the derived parameters. Agilos is different in a sense that it uses a best-

effort scheduling policy instead of reserving resources. In QuO, application programs have the responsibility to 

enforce QoS. However, these middleware systems are mostly aimed at general purpose distributed applications 

and differ from Q-SCA which is specialized for dynamically reconfigurable real-time signal processing 



applications in the SDR domain. On the other hand, Q-SCA is complementary to these technologies since it can 

utilize the QoS enforcement and adaptation mechanisms developed in the context of multimedia applications. 

Specifically, Q-SCA relies on the real-time and QoS capabilities of TAO [10].  

The remainder of the paper is organized as follows. Section 2 overviews the original SCA specification and 

gives the implementation status of SNU-SCA. Section 3 proposes a formal design model for SDR waveform 

applications. Section 4 presents QoS descriptors to specify the QoS requirements of the proposed waveform 

model. It also explains the admission control and resource allocation mechanisms and their enforcement. An 

explanation of the modified application initiation process follows so as to show how these extensions can 

guarantee the desired QoS requirements of each application. In Section 5, we introduce our Q-SCA 

implementation and report on its run-time performance. We conclude this paper in Section 6. 

2. Overview of SCA and SNU-SCA 

To aid in understanding the rest of this paper, we present an overview of the original SCA and give the 

implementation status of SNU-SCA. SCA is defined in terms of a set of common interfaces for SDR waveform 

applications. These interfaces are grouped into two parts: (1) the standard waveform component interfaces and 

(2) the standard operating environment (OE) interfaces. The former defines APIs between signal processing 

components such as filters, modems, decoders, digitizers, etc. The latter defines APIs that developers use to 

dynamically deploy and control applications and to exploit services from underlying platforms. Since standard 

waveform component interfaces are made for ensuring interoperability among components, they have little 

relationship with QoS. Thus, we concentrate on the OE interfaces in making SCA aware of QoS. 

The OE consists of the core framework (CF) and the COTS software. Since the latter is composed of an 

RTOS and a CORBA ORB, most of the SCA specification is devoted to the CF. As such, to add QoS awareness 

to SCA, we extend only the CF while simply utilizing the real-time capabilities of the COTS software. The CF 

is composed of domain profiles and standard interfaces called CF interfaces. The rest of this section describes 

these two in detail. 

We begin with giving a brief explanation about the structural elements that the CF uses to model a SDR 

system and relationships between these elements. In SCA, an SDR system is modeled as a domain, which is a 

unit that distinguishes each SDR system uniquely. In a domain, there may exist multiple nodes and multiple 

applications. The nodes and applications respectively serve as units of hardware and software reconfigurability. 

Hardware reconfigurability is achieved by attaching or detaching a node to or from the domain. A node may 

have multiple logical devices, which act as device drivers for real hardware devices such as field programmable 

gate arrays (FPGA), digital signal processors (DSP), general purpose processors (GPP), or other proprietary 

devices. On the other hand, software reconfigurability is achieved by creating an instance of an application in a 

domain or removing the instance from a domain. An application consists of components, each of which is called 

a resource. A resource in turn exposes ports that are used for the communication to or from other resources. For 



communication between two components, a port of one component should be connected to a port of the other 

component where the former port is called a uses port and the latter is called a provides port. For ease of 

communication between resources and logical devices, the logical devices are modeled as a specialized form of 

a resource. 

CF interfaces consist of three groups of APIs as shown in Figure 2. (1) The base application interfaces are the 

interfaces that the CF internally uses to control each of the resources that compose an application. These 

interfaces include the functionalities, for example, of starting/stopping a resource and configuring the resource. 

(2) The CF control interfaces are the interfaces provided to control the SDR system. Controlling the SDR system 

includes activities such as installing/uninstalling an application, starting/stopping it, registering/unregistering a 

logical device, tearing up/down a node, etc. (3) The service interfaces are the common interfaces that are used 

by both the CF and applications. Currently, two services are provided: logging and a file system. We explain 

only the first two groups of interfaces in detail and do not touch upon the service interface group since it is not 

directly related to the topic of this paper. 

The main interfaces in the base component interfaces are Resource and Port. The former represents a 

waveform application component and the later represents a proxy object that abstracts the details of the 

communication channel to another component. Specifically, the former defines APIs for controlling and 

configuring a component. Most of its APIs are inherited from LifeCycle, PropertySet, TestableObject, and 

PortSupplier. Each of these interfaces defines operations for initializing/releasing, configuration/query 

parameters of the component, testing, and getting the port objects. The Port interface provides APIs for 
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Figure 2. Relationships among CF interfaces. 



creating/destroying a connection to another component. Optionally, the ResourceFactory interface is used to 

provide a non-standard procedure for creating and tearing down a Resource object. 

Similarly, the main interfaces in the base component interfaces are DomainManager, DeviceManager, 

ApplicationFactory, Application, and Device. They respectively represent a domain, a node, an installed 

application, a run-time instance of the application, and a logical device. There are three additional interfaces 

related with Device. LoadableDevice defines additional functionality for loading a component into it. Devices 

such as an FPGA are usually represented by this interface. It is again extended by ExecutableDevice which 

provides APIs for executing/terminating the loaded component. It usually represents a processor. 

AggregateDevice is used to control a composite device that has several devices in it. 

Following the CF interfaces, we explain the domain profiles. They describe properties of hardware and 

software in a domain. They consist of seven types of profiles as shown in Figure 3. (1) The device configuration 

descriptor (DCD) describes a hardware configuration and (2) the software assembly descriptor (SAD) describes 

a software configuration and the connections between two components. (3) These descriptors consist of one or 

more software package descriptors (SPD) each of which describes a software component or a hardware device. 

(4) The properties descriptor (PRF) describes optional reconfigurable properties, initial values, and executable 

parameters that are referenced by other domain profiles. We omit explanations of the remaining three types of 

domain profiles such as the device package descriptor, domainmanager configuration descriptor, and software 

component descriptor since they are not related to the topic of this paper. 

We have implemented SNU-SCA, which is a full-featured C++ implementation of SCA version 2.2. Its 

accompanying COTS OE software is composed of Linux v. 2.4.20 and the TAO real-time ORB v 1.3.1 [10]. 

SNU-SCA uses only POSIX PSE52 [12] interfaces so any RTOS that conforms to the POSIX real-time 

controller profile works with SNU-SCA. SNU-SCA supports all mandatory parts, as well as additional, 

frequently used parts of the SCA core framework. Thus, it can dynamically install, connect, configure, start, and 
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tear-down any SCA-compliant wireless application. It also supports additional features like the automatic 

restoration of a deployment state after system boot-up. It can completely restore the deployment state of each 

node by exploiting the extended domain profile information [13]. 

3. Waveform Modeling in Q-SCA 

In SDR, waveform applications are frequently subject to QoS requirements. To constantly meet these QoS 

requirements at run-time, certain amounts of resources including CPU cycles, memory, and network bandwidth 

should be exclusively allocated to waveform applications. However, allowing each application to directly 

control resource allocation has several drawbacks. First of all, this requires having a priori knowledge about the 

run-time hardware on which the application will be deployed. This will also restrict the application to that 

specific target hardware. Secondly, resource allocation requests from different applications might lead to 

conflicts since there is no system-wide resource allocation decision. Finally, it is hard to adapt to changes in 

resource availability. To avoid these drawbacks, we, instead, decide to provide waveform applications with a 

mechanism to specify their QoS requirements through a specialized high-level application model. 

In this section, we focus on our model that can specify a wide spectrum of digital signal processing 

applications. We then give an example of its usage. The underlying mechanisms that are responsible for 

managing and allocating resources will be explained subsequently in Section 4. 

3.1. Q-SCA Waveform Model 

As in many other embedded system models, we use a graphical language with hierarchical abstraction. Our 

framework renders an application in a process network. Our process network is a special case of a synchronous 

dataflow (SDF) model [14][15] that has been widely used in signal processing applications such as those for the 

U.S. Navy’s Processing Graph Method (PGM) [16]. The SDF model is a computational model where a number 

of concurrent processes communicate through unidirectional FIFO channels, where writes to the channel are 

non-blocking, and reads are blocking. Specifically, the process network in our framework is a directed acyclic 

graph G(Γ, E) such that 

 

 Γ = {τ1, …, τn} is a set of processes. Each process τi has following attributes. 

− Ci:  worst-case execution time. Its unit varies depending on processing elements such as FPGA, DSP, 

and general purpose processors. For example, Ci is the maximum propagation delay per unit 

frequency (e.g., 1MHz) in FPGA while it is the worst-case instruction cycles in general purpose 

processors and DSPs. 

− Ti:  execution period. It is explicitly specified only for input processes that are processes with no 

incoming edges. In SDR systems, typical example input processes are sampling processes and 

modem processes. 



− Di:  maximum latency requirement. It is explicitly specified only for output processes that are 

processes with no outgoing edges. 

 E ⊆ Γ × Γ is a set of directed edges eij such that eij denotes a communication channel from τi to τ j. Each 

process starts after it accepts inputs from all of its immediate predecessors. Each edge eij has following 

attributes. 

− Pij:  The number of tokens that process τi produces in one invocation. 

− Qij:  The number of tokens that process τj consumes in one invocation. 

 

We impose a constraint on the token producing and consuming rates of an edge eij as in equation (1) below. That 

is, for each edge, its token producing rate should be equal to its token consuming rate; otherwise, overflows 

might occur with a finite buffer size as explained in [14] and [16]. 

 
j

ij

i
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T
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T
P
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Note that except input or output processes, Ti and Di of a process are not specified by programmers but 

derived by our framework. Each process τi gets executed only after it accepts all inputs from its immediate 

predecessor processes where its execution period Ti represents an imaginary period such that there must be only 

one task invocation every Ti.  

Figure 4 shows an example process network composed of four processes and three edges. In this example, 

process τ1 and process τ4 are the input and output processes, respectively. Input process τ1 has its execution 

period T1 of 25ms. Output process τ4 has maximum latency requirements D4 of 300ms. Each edge has the 

number of tokens produced by its source process and the number of tokens consumed by its destination process 

in one invocation of each process. For example, in one invocation, process τ1 produces 64 tokens to edge e12 and 

process τ2 consumes 16 tokens from edge e12. Each process also has its worst-case execution time in units of 

MFLOP (mega floating point operations). For example, process τ1 requires 2MFLOP in one invocation. 



Our waveform model allows programmers to specify three types of QoS requirements: (1) the worst-case 

execution time of each process, (2) the execution period of an input process, and (3) the maximum latency of an 

output process. We explain each of these requirements and then briefly explain how waveform applications 

receive a reserved set of resources to meet these QoS requirements. 

First, for each process τi, the worst-case execution time Ci is derived a priori and specified in our model. In 

Figure 4, MFLOP was used as a unit, which is typical of general purpose processors or DSPs. When a target 

processor is determined later on, the worst-case execution time will be converted into actual processing time, for 

instance, in msec. 

Second, the execution period Ti of process τi can be derived from its input processes following the data 

dependency chain since input processes are explicitly associated with predetermined periods. Using equation (1), 

we can determine Ti by taking the following equation: 

 { }.processofprocessrpredecessoais, ijk
ki

ki
i jkT

P
QT ττ∈∀⋅=  (2) 

Finally, each output process τi is associated with maximum latency requirement Di. A process network may 

contain one or more acyclic path ζk from an input process to an output process. For each recognized path ζk in 

process network G whose output process is τi, the following equation should be satisfied. 
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Figure 4. An example process network. 



Waveform applications should receive a reserved set of resources to meet imposed QoS requirements. It is 

important for them to secure a sufficient amount of resources with appropriate types. We consider such 

resources as CPU cycles and memory that are provided by loadable and executable devices. The loadable and 

executable devices in a system are specified with a set of processing elements. Each processing element is 

associated with a set of matching properties and a set of allocatable properties. Matching properties of a 

processing element are a set of constraints that waveform software components should satisfy to be deployed on 

that processing element. If a component does not fit any of matching properties associated for a processing 

element, its deployment is denied by that processing element. Examples of matching properties include the 

name and version of an operating system and architecture types such as ARM, PPC, and X86. Allocatable 

properties are the amounts and/or portions of resources allocatable to a process being deployed. Thus, they 

denote the maximum resource capacity allocatable to a process. Worst-case floating point operations per second 

and maximum propagation delay per unit frequency are examples of these properties. 

3.2. Example Model 

We demonstrate the utility and expressibility of the proposed waveform model with a simple application that 

has two dataflows. Figure 5 depicts its graph model annotated with components to show the relationships of 

processes to components. As shown in the figure, one component may consist of more than one process: 

Component1 consists of processes τ1 and τ5 and Component4 consists of processes τ4 and τ8. Each dataflow is 
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Figure 5. Q-SCA model of an example waveform application. 



composed of four processes that are connected in series. In each data flow, processes τ1 and τ8 are the input 

processes while processes τ4 and τ5 are the output processes.  

Now we focus on a dataflow from process τ1 to process τ4 and analyze its resource requirements. Since the 

execution period T1 of process τ1 is 25ms, the execution periods T2, T3, and T4 are derived as 6.25ms, 25ms, and 

25ms from equation (2), respectively. The maximum latency requirement D4 annotated for output process τ4 

designates that any data produced by process τ1 should be finally consumed by process τ4 within 300ms after 

being processed by the intermediate processes τ2 and τ3. Each process τi has its worst-case execution time Ci in 

MFLOP. From a simple calculation (C1/T1 + C2/T2 + C3/T3 + C4/T4), one can determine that 480MFLOPS 

(MFLOP per second) is required to be allocated in total. Thus, if this application is to be deployed on one 

processing element, the processing element should be able to process at least 480MFLOPS with its remaining 

capacity. 

4. Q-SCA: QoS-enabled SCA 

 We extend SCA to incorporate the waveform model described in the previous section. More specifically, (1) 

we extend domain profiles to allow for resource and QoS requirement specification; (2) we add services 

providing admission control and resource allocation to the SCA core framework; and (3) we extend the software 

communication bus based on the real-time ORB following the RT-CORBA v.2.0 specification [17] for the 

enforcement of the resource allocation result. These extensions are transparently integrated into the application 

instantiation process. Since RT-CORBA provides static/dynamic priority scheduling disciplines and prioritized 

communications in addition to the features provided by CORBA, we exploit these features for the admission 

control and resource allocation of core framework components to meet QoS requirements as described in the 

application’s domain profile. 

4.1. QoS Descriptors for Extended Domain Profiles 

Our extended SCA (Q-SCA) allows application developers to achieve desired QoS guarantees by simply 

specifying their requirements in extended domain profiles. In doing so, application developers are responsible 

for describing their application structure and participating components in a dedicated XML descriptor called the 

software assembly descriptor (SAD) described in Figure 3. Since a legacy SCA SAD describes only connections 

or flows of messages between components, we extend various fields in the SAD to specify QoS-related 

information such as an execution period for an input process and a maximum tolerable delay for an output 

process. 

Waveform component developers should specify in the extended fields of XML descriptors processes 

constituting the component, matching properties, expected computational resource requirements, and the 

number of produced or consumed tokens for each port. Such XML files are the software package descriptor 

(SPD) and software component descriptor (SCD) as explained in Figure 3. Along with this, developers should 



implement a predefined set of configurable property operations that the Q-SCA framework invokes to deliver 

the results of resource allocation. For the implementation of configurable property operations, Q-SCA provides 

a skeleton component implementation from which QoS-aware components will be derived. 

Figure 6 depicts a simplified and graphically represented domain profile for the example given in Figure 5. 

This figure shows how the information in a Q-SCA application model is decomposed and totally described in 

our extended domain profiles. As shown in the figure, the matching properties and processes constituting the 

component are described in SPD while the execution periods of input processes and the maximum latency 

requirements of output processes are described in SAD. Each process in SPD is described with its worst case 

number of floating point operations and its uses and provides ports. Each port is also annotated with the number 

or tokens. As such, only two document type definitions (DTD) related to SPD and SAD need to be modified for 

our purpose. 

4.2. Admission Control and Resource Allocation Mechanism 

In order to guarantee the desired QoS described in the domain profiles, a certain amount of resources needs to 

be allocated to each application based on current resource availability and this must be enforced throughout the 

lifetime of the application. This involves admission control, resource allocation, and resource enforcement. 

Following the design philosophy of SCA, we rely on the COTS layer of the operating environment for 

resource enforcement. Since we utilize the RT-CORBA ORB as the operating environment of our Q-SCA 

framework, we can provide the real-time scheduling service that conforms to the RT-CORBA v.2.0 dynamic 

scheduling specification [17]. Since the scheduling service of the RT-CORBA specification requires scheduling 
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parameters such as task priorities from application components, the Q-SCA core framework should provide a 

mechanism to derive the scheduling parameters from an application’s QoS requirements. This problem is well 

studied in most QoS middleware systems such as 2KQ [8], Agilos [9], and QuO [11], and thus any result from 

the literature [18] [19] [20] [21] [22] [23] can be used. After scheduling parameters are derived, Q-SCA should 

deliver them to each application component. For this purpose, the Q-SCA core framework uses the existing 

PropertySet interface described in Section 2.  

For admission control and resource allocation, we add the ResourceAllocator component. Its interface 

definition is given in Figure 7. It keeps track of the availability of resources in the system and stores it in the 

deviceCapacities attribute. Upon a request for the creation of an application, it checks the schedulability of the 

system for the application and assigns a loadable/executable device to each component of the application. It 

performs resource allocation via the createAssignments operation. At run-time, the RT-CORBA scheduling 

service is responsible for the enforcement of resource allocations. 

4.3. Modified Application Initiation Process 

In designing Q-SCA, we should modify the application initiation process since QoS parameters in the 

extended domain profiles are read, admission control is made, and resources are reserved in this process. Figure 

8 depicts the modified application initiation process. It shows that such extensions are transparently integrated 

into the original SCA. We elaborate on the components shown in the figure. An application in the SCA domain 

is created by the ApplicationFactory component, which belongs to the SCA domain management part and is in 

charge of instantiating a specified type of application. When ApplicationFactory instantiates an application in 

Q-SCA, it ascertains its QoS requirements from the domain profile and then passes the information to the 
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Figure 7. Interface definition of ResourceAllocator 
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ResourceAllocator. This action corresponds to step 3 in Figure 8. If the application is admissible, the 

ResourceAllocator generates the resource allocation for the application based on current resource availability.  

The ApplicationFactory component performs the resource allocation generated by ResourceAllocator in the 

following steps: it deploys all components onto the loadable/executable devices as designated in the plan (in 

step 4 in Figure 8), and then it delivers scheduling parameters to each component (in step 5). To accept the 

scheduling parameters from the ApplicationFactory, application components should implement the PropertySet 

interface (in step 11). 

5. Performance Evaluation of Q-SCA 

In evaluating Q-SCA, it is important to quantify its run-time performance since it is built upon the COTS 

software layer containing the RT-CORBA ORB. To do so, we have completely implemented Q-SCA and 

constructed an Ethernet-based telephony application using Q-SCA components and interfaces. As introduced in 

Section 3.2, this application exchanges voice data over an Ethernet connection. We have conducted experiments 

to measure message propagation delay between application components. In this section, we report on our run-

time performance evaluation of Q-SCA. 

5.1. Experimental Setup 

Our Q-SCA was implemented using Linux v. 2.4.20 and the TAO [10] real-time ORB 1.3.1 on a hardware 

platform consisting of two embedded CPU boards. Each of them was equipped with a 1GHz Intel-compatible 

VIA processor and 256Mbytes DDR SDRAM. They were connected via 10Mbps Ethernet interfaces. One of the 

boards was also connected to the Internet via another 10Mbps Ethernet interface. The other has a soundcard with 

a microphone and a speaker connected. Although this configuration is not as complicated as actual wireless 

handsets, it has all the components required to measure the performance of Q-SCA without incurring various 

secondary effects that could otherwise be seen in a wireless environment. 

The Ethernet-based telephony application was constructed with two Q-SCA devices NetDevice and 
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PCMAudio as shown in Figure 9. These devices abstract the Internet and the soundcard, respectively. The 

application maintains two dataflows simultaneously: a downstream dataflow from NetDevice to PCMAudio and 

an upstream dataflow in the opposite direction. For the upstream dataflow, audio samples captured by the 

PCMAudio component from the microphone are compressed and encrypted by Compressor and Cipher, 

respectively, and finally transmitted by NetDevice to the peer SDR device. Similarly, for the downstream 

dataflow, voice data received by NetDevice is decrypted and decompressed by Decipher and Decompressor, 

respectively, and finally played by PCMAudio. 

 Each of the components comprising the application must be allocated with a specified amount of CPU 

resources for processing. For example, one invocation of Decipher takes 4 mega floating point operations in the 

worst case and consumes 16 tokens produced by the predecessor component, NetDevice, as seen in Figure 9. 

Both dataflows are expected to be initiated every 25ms as specified by the minimum execution period. Note that 

the Decipher and Cipher components need to be executed 4 times more often than other components. There are 

also QoS requirements to be met: both dataflows have a 300ms maximum latency requirement, meaning that the 

time taken for the total processing of any voice data should not exceed 300ms. 

5.2. Performance Evaluation of Q-SCA 

In order to quantify the run-time performance overhead incurred by Q-SCA, we measured the delay incurred 

by transferring voice data between two application components deployed on two different nodes, and compared 

them with the case where Q-SCA is not used. If Q-SCA is not present, we assume that TCP/IP is directly used 

instead of the RT-CORBA ORB.  

Figure 10 shows the distribution of latencies incurred to transfer voice data from Compressor to Cipher using 

TCP/IP and the RT-CORBA ORB. The Compressor and Cipher components are selected among the others since 
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Figure 10. Distribution of latencies between Compressor and Cipher components.



they are the components that our Q-SCA implementation deploys separately on different nodes. The average 

latency is about 70.5ms when we use Q-SCA, while it is 65.0ms when TCP/IP is used instead. Thus, the 

overhead incurred by Q-SCA is less than 10%. These results show that Q-SCA can provides applications with 

QoS guarantees with a relatively small overhead. 

6. Conclusions and Future Work 

In this paper, we have proposed QoS-enabled SCA for SDR real-time waveform software and presented its 

complete implementation as an extension to our SNU-SCA. Q-SCA explicitly addresses the shortcomings of the 

current SCA specification. Even though SCA is the de facto standard middleware for SDR systems and widely 

accepted as a viable solution for reconfigurable, component-based distributed computing for adaptive wireless 

terminals and base stations, it lacks QoS capabilities in terms of both QoS specification and enforcement. The 

Q-SCA solves this problem using the PGM-based waveform application model and an extended SCA core 

framework. The contributions of our Q-SCA are threefold: (1) it provides a QoS descriptor that is backward 

compatible with SCA’s original domain profiles; (2) offers services for admission control and resource 

allocation that are used throughout the application instantiation process; and (3) introduces a mechanism to 

enforce the result of the resource allocation. In designing these mechanisms, we have focused only on the core 

framework of SCA since we could simply utilize the real-time and QoS capabilities of the COTS software 

including POSIX-compliant real-time operating systems and CORBA ORBs, as the SCA specification 

recommends. As a result, Q-SCA deals mostly with QoS specification and resource allocation during the 

application instantiation process. This renders Q-SCA clearly delineated from the original SCA and allows for 

easy and fast implementation. We have demonstrated its use via an Ethernet-based telephony application. This 

shows that Q-SCA can help developers effectively capture waveform applications and their QoS requirements 

and deploy them while satisfying the imposed constraints. Our measurements also show that its run-time 

performance penalty is relatively small. 

There exist several research directions along which Q-SCA can be extended. Currently, we are looking to 

extend its application domains by covering diverse QoS constraints other than real-time signal processing.  

Particularly, we are applying it to networked service robots where reactivity constraints co-exist with stream-

based multimedia constraints. They form a very attractive application domain for Q-SCA since they are 

extremely complex distributed real-time systems with stringent real-time constraints and a high degree of 

software reconfigurability requirements. Also, we are attempting to integrate with Q-SCA the QoS monitoring 

and adaptation capabilities of the COTS software layer in order to make it more adaptive to dynamically 

changing QoS requirements. Finally, it is also important to provide developers with a GUI-based XML tool that 

can automatically generate the extended domain profiles and skeleton code for waveform components. We are 

currently developing such tools. 
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