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Abstract

This paper presents a systematic methodology aimed at rapid and cost-effective

re-engineering of distributed embedded systems. We define embedded system re-

engineering as an analysis and alteration of a legacy system to guarantee newly

imposed performance requirements such as throughput and input-to-output latency.

Our methodology pinpoints performance bottlenecks of a system and selectively

upgrades processing elements at the least cost. Inputs for our methodology include

a system design specified by a process network over a set of processing elements and

a new throughput requirement. The output is a set of scaling factors that represent

the ratios of the performance upgrades for processing elements.
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Our methodology works in two steps. First, it estimates the latency of each pro-

cess and identifies bottleneck processes. Second, it derives a system of constraints

with scaling factors being free variables and formulates an optimization problem.

Then, it solves the optimization problem for scaling factors with an objective of

minimizing upgrade cost. For this methodology, we propose an accurate latency

analysis technique for precedence-constrained tasks under preemptive fixed priority

scheduling. We also propose a k-level diagonal search algorithm that allows us to

trade optimality for search time. Our experimental results show the effectiveness of

the proposed re-engineering approach.
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1 Introduction

Due to the diversity and complexity of embedded systems and due to increased

competition in the associated industry, developers are under very stringent

requirements for increasing production speed. Many techniques and method-

ologies have been proposed to assist them in designing, analyzing, and test-

ing embedded systems [19,9,21,16,26,22]. Recently, component-based software

design approaches have been widely adopted for the rapid development of

application-specific embedded systems.

In these approaches, an embedded system can be prototyped by composing

reusable components. Such a development prototype is often subject to design

modification when it fails to meet a given performance specification. In that

case, the developer should locate performance bottlenecks in the prototype

system, explore design alternatives using component libraries, and replace the

bottleneck components with new ones at the least cost. Similar problems are

encountered in industry during the re-engineering of a legacy system, when a

product with additional features and enhanced performance is developed by

modifying an old design.

Generally, the re-engineering problem is defined as a sequence of activities

involving reverse engineering, system alteration, and forward engineering [9].

During a re-engineering process, the reverse engineering captures an under-

standing of the behavior and structure of the system, the system alteration

modifies the structure and components of the system for enhanced perfor-

mance, and the forward engineering creates new functionalities. Using this

terminology, we define the performance re-engineering of an embedded sys-
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tem as a specific instance of the re-engineering problem, such that the reverse

engineering corresponds to the bottleneck process analysis within the system,

and the system alteration performs the latency reduction of the system. Such

a performance re-engineering problem is of the utmost practical importance

during the production of embedded systems, since it can lead to significant

reduction in development time and cost.

Unfortunately, the performance re-engineering problem for an embedded sys-

tem poses serious challenges to developers. First, it is quite difficult to ac-

curately estimate the latency of an embedded system, since this requires ex-

tensive static timing analysis of the system. Because embedded systems often

consist of a network of processes that run on a heterogeneous distributed

multiprocessor platform composed of microprocessors, microcontrollers, dig-

ital signal processors, and application-specific instruction set processors, the

complexity of this task is considerable. Second, it is fairly difficult to eliminate

performance bottlenecks in the system since system resources are shared in a

complicated manner, thus minor changes in a single processor may affect the

synchronization and timing behavior of the entire system.

While there exist plenty of design techniques and software tools for embedded

systems which are based on real-time scheduling theory and formal methods

[8,5,20,18,2,6,7,25,22], relatively few approaches address the performance re-

engineering aspect of embedded systems. Without the help of systematic re-

engineering methodologies, developers often resort to the ad hoc iteration of

system analysis and re-design that often leads to over-optimization of the

system. It is fairly obvious that this approach will fail when the system to be

re-engineered becomes complex.
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In this paper, we present a systematic methodology that allows rapid and cost-

effective re-engineering of distributed embedded systems. A distributed em-

bedded system is modeled as a process network and task graphs, where tasks

are executed by a priority-based preemptive scheduler, as in many embedded

systems. A performance requirement is given as the throughput of the system.

For rapid performance re-engineering, our approach attempts to upgrade only

the processing elements that execute bottleneck processes, while leaving the

architecture and implementation intact. Inputs to our re-engineering problem

are as follows:

(1) A process network and task graphs representing the underlying system.

(2) Task allocation and priority assignment.

(3) A desired throughput requirement.

(4) Hardware upgrade cost tables at various performance profiles.

With the above inputs, the objective of our approach is to find speedup ratios

of processing elements that satisfy the new throughput requirement with min-

imal hardware upgrade costs. Our approach is based on latency analysis and

a cost-benefit optimization. We identify performance bottlenecks of the sys-

tem by estimating the latency of each process and eliminate such bottlenecks

by formulating and solving an optimization problem. To do so, our approach

employs the following two techniques:

(1) An accurate latency analysis technique that estimates the latency of each

process.

(2) An effective heuristic search algorithm that solves the optimization prob-

lem.
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Fig. 1. Overview of the approach.

The proposed re-engineering method works in two steps, bottleneck identifi-

cation, and bottleneck elimination, as shown in Figure 1. First, it estimates

the latency of each process and identifies bottleneck processes. Second, it de-

rives a set of latency constraints for each bottleneck process and formulates

an optimization problem with an objective of minimizing the re-engineering

cost. Then, it finds optimal speedup ratios for processing elements that need

speedups to improve the performance of bottleneck processes.

1.1 Related Work

Existing re-engineering methods primarily deal with functional and structural

analysis and modification of software systems [19,11,9] and hardware systems

[16,26]. Madisetti et al. [16] propose a systematic technique for rapidly upgrad-

ing electronic systems. They propose using virtual prototyping accompanied
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by their tools and libraries of simulatable models. Their approach is to evalu-

ate the cost and benefit of re-engineering while performing hardware/software

cosimulation. To facilitate electronic hardware re-engineering, Tummala and

Madisetti [26] show that the SoP (System on a Package) paradigm provides

more architectural flexibility than the SoC (System on a Chip) paradigm,

thus enabling rapid re-engineering via reusable libraries. The re-engineering

approaches in [16,26] are similar to ours in the sense that they adopt hardware

upgrades as a way of re-engineering.

We are focusing on performance re-engineering of distributed embedded sys-

tems which requires strict latency analysis and efficient latency reduction tech-

niques. Since estimating accurate process latencies for distributed systems is

generally NP-hard as proven in [27], several heuristic algorithms were proposed

in the literature [23,4,24,27]. Tindell el al. [24] analyzed worst-case latencies in

tasks that are under preemptive fixed priority scheduling in distributed embed-

ded systems by extending time demand analysis for single processor systems

[13]. Sun [23] modeled precedence-constrained tasks as a chain of tasks and

proposed a schedulability analysis based on time demand analysis in order to

bound the latency of each task. However, his application model does not allow

for precedence constraints between two tasks in different task chains. Our ap-

plication model allows specifying general precedence constraints among tasks

in the form of a task graph where arbitrary but acyclic precedence relation-

ships can exist between any tasks. Yen and Wolf [27] considered the same

application model as ours and proposed an iterative method based on sepa-

ration analysis to compute upper bounds on the input-to-output latencies of

processes. While our analysis is based on Yen and Wolf’s separation analysis,
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it yields tighter bounds by introducing a new technique called interference

time analysis.

For latency reduction, most research attempts to reduce the schedule length of

critical paths by changing the task allocations and the schedule. Ahmad and

Kwok [1] propose an algorithm that can reduce the input-to-output latency

of a task graph that runs on a parallel and distributed platform via static

scheduling. The key idea of the algorithm is to reduce the schedule length

of the critical path in the system by duplicating selected tasks and allocating

them to other processing elements. This algorithm has an important weakness

in that it attempts to manipulate only the critical path. This may result in

excessive schedule length reduction and make other paths become new critical

paths. Unlike this approach, ours performs global optimization of all the paths

in the system and does not result in costly over-optimization.

Existing hardware/software co-synthesis approaches also address performance/cost

optimization problems similar to ours [28,29]. One of the major issues in co-

synthesis is the decision to either map functionalities into dedicated hardware

or to implement them on a general-purpose microprocessor. This choice, known

as hardware/software partitioning problem, should be based on achievable per-

formance estimation and implementation cost. However, our re-engineering

approach does not consider the movement of functionalities between hard-

ware and software, but focuses on straightforward hardware upgrades while

maintaining the original mapping of functionalities. The rationale behind this

is that many industrial product series are released with identical hardware

architectures and a high level of code reuse.
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Although we have not considered the hardware/software partitioning issue

in this work, we believe that our approach would be very useful during that

stage of hardware/softwar co-design. Once an initial design has been made,

our latency analysis can be used for precise performance estimation and our

algorithm can be used to determine the required level of performance increase.

This paper provides major extensions to our earlier work [17] in both theo-

retical and practical directions. Most importantly, we eliminate the inflexible

scheduling assumptions made in [17]. The previous approach [17] assumed

static and non-preemptive scheduling to make timing analysis simple. This

seriously restricted the applicability of the previous approach since many ex-

isting real-time systems use priority-based preemptive scheduling policies to

achieve increased flexibility. In this paper, we adopt fixed priority preemptive

scheduling and present a new timing analysis method to estimate process la-

tencies. In addition, we mathematically analyze the proposed algorithm. We

present a theorem that describes an essential property of the algorithm and

then proceed to prove the theorem.

This paper is organized as follows. Section 2 defines the application model of

a distributed embedded system along with its timing and performance con-

straints. Section 3 presents the latency analysis and the identification of bottle-

neck processes. Section 4 describes the derivation of linear latency constraints

for bottleneck processes and the formulation of an optimization problem. Sec-

tion 5 describes our heuristic algorithm for solving the optimization problem.

Section 6 illustrates some experimental results on the proposed algorithm to

show its effectiveness. Section 7 states our conclusions.
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2 System Model

In this section, we present an application model consisting of a process net-

work and task graphs, along with timing characteristics associated with the

application model. As a walk-through example throughout the paper, we have

chosen a digital copier since it possesses the timing constraints and design

problems of a typical distributed embedded system. We specify it with the

presented application model.

2.1 Application Model

As in many other embedded system models, we use a graphical model with

hierarchical abstraction [12]. Our framework renders a distributed embedded

system as both a process network (PN) and a set of task graphs. Our process

network is similar to Kahn’s process network [10], which is a computational

model where a number of concurrent processes communicate through unidi-

rectional FIFO channels [12]. In this paper, we generalize the notion of Kahn’s

process to support electro-mechanical functions as well as computational func-

tions. Our process network model is a direct acyclic graph G(P, E) such that

• P = {σ1, . . . , σu} is a set of processes. A process is a transformation of one

or more inputs to outputs of another form, where the inputs and outputs

represent computational data or physical objects.

• E ⊆ P ×P is a set of directed edges such that σi → σj denotes precedence

from σi to σj. Each process starts after it accepts inputs from all of its

immediate predecessors.
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Fig. 2. Process network and task graph.

Once initiated, a process consumes time, thus causing input-to-output latency.

The latency may include the additional time caused by the interference from

other processes due to the sharing of common hardware resources such as

processors. Also, each process has a period that is common among all the

processes in the system. Our process network model is similar to processor

pipelining where a process can be mapped to a single pipeline stage. Each

process runs in parallel with other processes producing outputs at a common

rate.

As shown in Figure 2, a process in a process network can be expanded into a

task graph, like processes σ3 and σ4. A task graph is given as a direct acyclic

graph G(V,E ′) such that

• V = {τ1, . . . , τv} is a set of tasks in a process.

• E ′ ⊆ V × V is a set of directed edges such that τi → τj denotes prece-

dence from τi to τj. Edges and tasks in a task graph have exactly the same

semantics as those in a process network.
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We consider a generic hardware platform that consists of heterogeneous pro-

cessing elements PE = {π1, . . . , πn}, which include microprocessors, micro-

controllers, DSPs, FPGA, ASIC, and electro-mechanical components. With

this hardware model, we assume that tasks have been partitioned and stati-

cally allocated to processing elements. Such task allocation is denoted by Π

that is a mapping of tasks onto the set PE such that Π : V �→ PE.

As mentioned before, our major objective is to leave the system architec-

ture and implementation as intact as possible. The rationale behind this is

that many industrial product series are released with identical hardware ar-

chitectures and a high level of code reuse. Hence, our re-engineering approach

relies on straightforward upgrades of processing elements without remapping

tasks onto heterogeneous processing elements. For example, if some tasks are

found to be performance bottlenecks on a 200 MHz microprocessor, we merely

replace the processor with a 300 or 400 MHz version to gain a required perfor-

mance increase. To represent such various performance increase options, each

processing element πi is associated with the scaling factor Si that denotes

the scaled performance of πi. If there are mi options in upgrading πi, the

scaling factor Si can take mi discrete values Si,1,Si,2, . . . ,Si,j, . . . ,Si,mi
where

Si,1 < Si,2 < . . . < Si,j . . . < Si,mi
and Si,mi

= 1.0. The unit scaling factor

Si = 1.0 denotes the current processing element and Si < 1.0 denotes a faster

one. For each Si of πi, the cost function ci(Si) is associated and ci(Si) is a

decreasing function of Si. Thus, when a certain scaling factor Si,ji
is chosen

for processing element πi, the total hardware cost of the system is the sum of

ci(Si,ji
):

∑
πi∈PE ci(Si,ji

).
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Note that we may introduce new hardware implementations using FPGA or

ASIC into the legacy hardware platform. For instance, we can partition the

tasks on a bottleneck processor into a software part that will be kept running

on the processor and a hardware part that will be implemented through FPGA

or ASIC. However, we do not consider this approach in this work because it

requires a significant architectural change and also prevents the reuse of legacy

software code.

Each task can be released only after all of its predecessors complete. If co-

allocated tasks are simultaneously ready on the same processing element, the

processing element always executes the highest-priority ready task on a fixed-

priority basis. By τi � τj, we mean that τi’s priority is higher than τj’s priority.

Finally, the execution time ei of task τi is modeled by a bounded interval

[elower
i , eupper

i ] due to factors such as conditional behavior and the inaccuracy

of the WCET analysis techniques [3,14].

2.2 A Digital Copier Example

To show the expressive power of our application model, we specify a digital

copier in the PN format. A digital copier is a typical example of a distributed

embedded system that possesses various electro-mechanical components and

strict timing constraints. Its major components include a scanner, a laser-beam

printer, an organic photo-conductive (OPC) drum, paper feeders, and transfer

belts. The entire copying process can be broken down into five subprocesses

– feed-in, exposing, imaging, developing, and feed-out – as described in [17].

Figure 3 shows the PN of all copy processes and their timing characteristics.
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Fig. 3. (A) Process network and (B) timing characteristics of digital copier.

The throughput of the digital copier is defined as the number of copies per

minute and is determined by the common period of processes. From Fig-

ure 3(B), we see that the imaging process takes the longest time, 2s: it involves

compute-intensive digital image processing. In this example, the period is thus

2s and throughput is 60/2 = 30 cpm. If we want to improve the throughput up

to 40 cpm, we must reduce the latency of each process down to 60/40 = 1.5s.

3 Latency Analysis and Bottleneck Process Identification

In this section, we first describe a timing analysis for a given process network

model. Our timing analysis focuses on estimating the input-to-output latency

of a process that consists of periodic, precedence-constrained tasks under fixed-

priority assignment. We then show how to determine bottleneck processes by

using the result of the timing analysis.

3.1 Estimating Process Latencies

The latency of a process is defined as the time from the instant it is invoked to

the instant it completes. Since each process consists of precedence-constrained

tasks, its latency can also be viewed as the duration of time from the invocation
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of its first task to the completion of its last task. Thus, our analysis attempts

to compute the start and finish time of each task under precedence constraints,

and then determines the input-to-output latency of the process. Let si and fi

be the start and finish time of task τi, respectively. To keep notations simple,

we define si and fi to be relative values from the start of the period of the

process σj that possesses τi. According to this definition, if τi is the first task of

process σj, the start time of τi is si = 0. Let Pred(τi) be the set of tasks that are

predecessors of τi in a given task graph. The analysis begins with the following

recursive equation for task τi, which captures precedence relationships among

tasks and time demand generated by equal or higher priority tasks including

itself.

fi = si + Ii + ei (1)

where si = maxτj∈Pred(τi){fj} and Ii is the interference time generated by

equal or higher priority tasks on the same processing element Π(τi). Note that

if we know the interference time Ii for each τi in the above, we can determine

the input-to-output latency of a process by recursively applying the above

equation Eq.(1). Thus in the following discussion, we focus on finding a tight

upper bound on the interference time Ii.

To derive a tight bound on Ii, we iteratively apply two techniques, separation

analysis and interference time analysis. The separation analysis determines

which tasks can interfere with the target task τi, for which we are trying to

bound the interference time Ii. The interference time analysis then attempts

to accurately compute the delay caused by each interfering task.
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Separation Analysis: Let Iupper
i be the upper bound on the interference

time Ii for τi. A simple and safe computation of Iupper
i is to take the sum of

the execution times of all the independent equal or higher priority tasks on

the same processing element Π(τi).

Iupper
i =

∑
τj∈Φ(τi)

eupper
j (2)

Φ(τi) = {τj|τj � τi, Π(τj) = Π(τi), τi �↔ τj} (3)

where τi �↔ τj denotes τj �∈ Pred(τi) and τi �∈ Pred(τj). However, we observe

that some equal or higher priority tasks τj cannot interfere with τi if they

can never be activated simultaneously. For instance, it is not possible for τj

to delay τi if τj always completes before τi starts or τj always starts after τi

completes.

To determine which tasks can delay τi, we introduce the notion of worst-case

execution window for each task. Let slower
i and fupper

i be the lower bound on

start time and the upper bound on finish time of task τi, respectively. The

worst case execution window Wi of τi is then defined as the time interval

[slower
i , fupper

i ], within which τi starts and completes.

slower
i = max

τj∈Pred(τi)
{f lower

j } (4)

fupper
i = supper

i + Iupper
i + eupper

i (5)

where f lower
j = slower

i + elower
i and supper

i = maxτj∈Pred(τi){fupper
j }. Here, the

lower bound slower
i can be interpreted as the earliest possible start time of τi

under precedence constraints. The upper bound fupper
i can be interpreted as

the latest possible finish time of τi.
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Initially, the worst-case execution window Wi can be obtained by applying

equation Φ(τi) = {τj|τj � τi, Π(τj) = Π(τi), τi �↔ τj} to set Π(τj). We then

repeatedly check for each task τi whether Wj and Wi overlap or not. If Wj

and Wi do not overlap, we can eliminate τj from the interfering task set Φ(τi).

To eliminate non-overlapping tasks, we define the set of interfering tasks as

follows:

Φ(τi) = {τj|fupper
j ≥ slower

i , fupper
i ≥ slower

j , τj � τi, Π(τj) = Π(τi), τi �↔ τj}
(6)

where fupper
j ≥ slower

i and fupper
i ≥ slower

j mean that Wj and Wi do not overlap.

Interference Time Analysis: This analysis attempts to give an accurate

bound on the interference time Ii caused by Φ(τi), which is determined by the

separation analysis. An important drawback of the computation of Iupper
i in

Eq.(2) is that it conservatively takes the sum of the bounds eupper
j , thus re-

sulting in unsatisfactory bounds on process latencies. However, in many cases,

we observe that the actual delay contributed by τj ∈ Φ(τi) can be less than

the maximum execution time eupper
j depending on the phasing of execution

windows and the length of window overlap. Based on this observation, the in-

terference time analysis derives tighter bounds on the interference times than

the separation analysis alone.

Figure 4 illustrates the need for the interference analysis in two cases of window

phasing. Example (A) of Figure 4 shows the first case where the execution

window of higher priority task τj starts earlier than that of lower priority task

τi. In this example, we see that the length of window overlap is 3 and the
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maximum execution time eupper
j of τj is 7. Since τj completes by 13 and τi can

start only after 10, τj can delay τi at most by 3, not by the eupper
j = 7. The

example (B) of Figure 4 shows the opposite case where the execution window

of higher priority task τj starts later than that of lower priority task τi. Our

observation is that if eupper
j is more than the length of window overlap, then

τj never preempts τi. We can prove this by contradiction. Suppose that τj

preempts τi at time 10 at which τi was executing. Since τj can delay τi by

eupper
j = 4, τi may complete later than fupper

i = 13. This is a contradiction

since fupper
i = 13 is the upper bound on the finish time of τi.

Let Iupper
i,j for τi be the upper bound on the delay contributed by τj ∈ Φ(τi).

Our interference time analysis can be described by

Iupper
i =

∑
τj∈Φ(τi)

Iupper
i,j (7)

where

Case A (slower
j < slower

i ): Iupper
i,j =




eupper
j if eupper

j < fupper
j − slower

i

fupper
j − slower

i otherwise

(8)

Case B (slower
j ≥ slower

i ): Iupper
i,j =




eupper
j if eupper

j < fupper
i − slower

j

0 otherwise

(9)

Walk-through Example: Consider the digital copier example described in

Section 2.2. As an illustration, we derive the upper bound on finish time of τ11
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Fig. 4. Interference time analysis examples: (A) Wj starts earlier than Wi

(slower
j < slower

i ) and (B) Wj starts equal to or later than Wi (slower
j ≥ slower

i ).

by applying the proposed analysis techniques. Task allocation with priority

assignment is given in Table 1 and execution times are given in Table 2.

Relevant task graphs are given in Figure 5 where the shaded area includes all

the tasks that share the same processing element π1 with τ11.

Initially, the interfering task set Φ11 for τ11 includes all the higher priority tasks

so that Φ11 = {τ1, τ3, τ5}. Hence, the initial value of Iupper
11 is eupper

1 + eupper
3 +

eupper
5 = 6, thus giving the initial upper bound fupper

11 = supper
11 + Iupper

11 + eupper
11 .

Since τ10 is the only predecessor of τ11, we have slower
11 = f lower

10 = elower
10 = 5.

Thus, it immediately follows that W11 = [5, 14].

Similarly, we can obtain W1 = [0, 2], W3 = [1.5, 6], and W5 = [1.5, 4] for

each task in Φ11 = {τ1, τ3, τ5}. If we apply the separation analysis, we can

eliminate τ1 and τ5 from the interfering task set Φ11 since their worst-case

execution windows do not overlap with τ11’s window. Thus, the interfering

task set Φ11 becomes {τ3} and Iupper
11 is reduced to 2. This upper bound Iupper

11

can be further tightened if we apply the interference time analysis. Since the

length of window overlap between τ3 and τ11 is fupper
3 − slower

11 = 6 − 5 = 1

which is less than eupper
3 = 2, the interference time caused by τ3 is reduced to

1. As a result, we have fupper
11 = supper

11 + Iupper
11 + eupper

11 = 6 + 1 + 2 = 9.

Table 3 shows the final results of the timing analysis for processes σ3 and σ4.
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Table 1
Priority assignment for each processing elements.

processing element allocated tasks and priority assignment

π1 τ1 � τ5 � τ3 � τ11 � τ8 � τ14 � τ9

π2 τ4 � τ2 � τ6 � τ7

π3 τ10 � τ12 � τ13

Table 2
Task execution times.

task τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10 τ11 τ12 τ13 τ14

elower
i 1.5 2 1.5 2.5 1.5 2 1 2.5 0.5 5 1.5 1.5 1.5 0.5

eupper
i 2 3 2 3 2 3 2 3 1 6 2 2 3 1

τ1

τ2 τ3 τ4 τ5

τ6 τ7 τ8

τ9

τ12

τ13

τ14

τ10

τ11

σ3 σ4

Fig. 5. Task graph of process σ3 and σ4.

Note that τ9 and τ14 are the last tasks of σ3 and σ4, respectively. Thus, the

latency of σ3 is bounded by fupper
9 = 20 and the latency of σ4 is bounded by

fupper
14 = 16. By applying our timing analysis to each processing element of our

walk-through example, we can obtain the results reported in Figure 3 (B).

3.2 Identifying Bottleneck Processes

We present the identification of bottleneck processes using the latency analysis

results. For each process σi, let Li be the latency bound that is given by

our latency analysis. Also, let L be the system’s latency constraint that is

determined by its new throughput constraint. Then process σi is defined to be
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Table 3
Timing analysis result of processes σ3 and σ4.

task slower
i supper

i f lower
i fupper

i Φ(τi) Ii Wi

τ1 0 0 1.5 2 [0, 2]

τ2 1.5 2 3.5 8 τ4 3 [1.5, 8]

τ3 1.5 2 3 6 τ5 2 [1.5, 6]

τ4 1.5 2 4 5 [1.5, 5]

τ5 1.5 2 3 4 [1.5, 4]

τ6 3.5 8 5.5 14 τ4 3 [3.5, 14]

τ7 3.5 8 4.5 16 τ4, τ6 6 [3.5, 16]

τ8 4 5 6.5 12 τ3, τ11 4 [4, 12]

τ9 6.5 16 7 20 τ11, τ14 3 [6.5, 20]

τ10 0 0 5 6 [0, 6]

τ11 5 6 6.5 9 τ3 1 [5, 9]

τ12 5 6 6.5 8 [5, 8]

τ13 6.5 9 8 12 [6.5, 12]

τ14 8 12 8.5 16 τ8 3 [8, 16]

a bottleneck process if its latency Li is greater than the period (or latency)

constraint L. If we denote the set of bottleneck processes by PL
bottleneck, it is

defined by

PL
bottleneck = {σi ∈ P|Li > L}.

Walk-through Example: Recall the digital copier example. Suppose that

the new latency requirement L is 15 time units. From Figure 3 (B), we see

that the imaging process (σ3) and developing process (σ4) are bottlenecks for

the new design since they have the maximum latency of 20 and 16 time units

respectively, which exceeds the required latency.
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4 Optimization Problem Formulation

In this section, we first describe the derivation of linear latency constraints

for bottleneck processes. Then, we present the formulation of an optimization

problem with the objective of minimizing upgrade cost. The formulated opti-

mization problem makes an integer programming problem that is NP hard.

4.1 Deriving Latency Constraints

Once bottleneck processes σk are identified, we need to reduce their latency

bounds Lk to the required latency L by appropriately speeding up underly-

ing processing elements. Since our goal is to minimize the speedup cost, we

introduce performance scaling factors into our latency analysis and attempt

to find cost-effective values for them.

In order to derive latency constraints, we first calculate the latency of each

process with scaled execution times. Suppose that scaling factor Sp for pro-

cessing element Π(τi) can take mp discrete values Sp,1 < Sp,2 < . . . < Sp,q <

. . . < Sp,mp(= 1), which are given by the cost table. Then, the scaled execution

time of τi is represented by ei · Sp. We calculate the latency of each process by

replacing eupper
i with eupper

i · Sp in the latency estimation in Section 3. Thus,

the upper bounds on the start and finish times of τi are given by

supper
i = max

τj∈Pred(τi)
{fupper

j }. (10)

fupper
i = supper

i + Iupper
i + eupper

i · Sp (11)

To calculate Iupper
i by applying the separation analysis and the interference
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time analysis, we need to determine the constant worst-case execution window

for each task. For this reason, we use the minimum execution time elower
i · Sp,1

and the maximum execution time eupper
i · Sp,mp when determing worst-case

execution windows. Then, the worst-case execution window is described by

Wi = [slower
i , fupper

i ];

slower
i = max

τj∈Pred(τi)
{f lower

j } (12)

fupper
i = supper

i + Iupper
i + eupper

i · Sp,mp = supper
i + Iupper

i + eupper
i (13)

where f lower
j = slower

i + elower
i · Sp,1 and supper

i = maxτj∈Pred(τi){fupper
j }. Iupper

i is

also calculated by the separation analysis and the interference time analysis

with eupper
i · Sp,mp .

With this worst-case execution window, the separation analysis is described

by

Φ(τi) = {τj|fupper
j ≥ slower

i , fupper
i ≥ slower

j , τj � τi, Π(τj) = Π(τi), τi �↔ τj}
(14)

Also, the interference time analysis is described by

Case A (slower
j < slower

i ): Iupper
i,j =




eupper
j Sp if eupper

i · Sp,1 < fupper
j − slower

i

fupper
j − slower

i otherwise

(15)

Case B (slower
j ≥ slower

i ): Iupper
i,j =




eupper
j Sp if eupper

i · Sp,1 < fupper
i − slower

j

0 otherwise

(16)
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Note that in Eq.(15), we have chosen Sp,1 to ensure that eupper
i · Sp is always

less than fupper
j − slower

i for any choice of Sp,q. Similarly, we have chosen Sp,1

in the condition check eupper
i · Sp,1 < fupper

i − slower
j in Eq.(16).

By iteratively applying the above separation analysis and interference time

analysis, we can derive upper bounds on process latencies with scaling factors

being free variables. Since the latency bound Lk for each bottleneck process σk

should be made no greater than the required latency L, the latency constraint

for Lk has the following form.

Lk = g(S1,S2, . . . ,Sp, . . .) ≤ L (17)

Note that one or more equations are obtained for a single task if it has one or

more immediate predecessors. This is because the max operation in Eq.(10)

involves comparison of unknown values fupper
i . Also note that all the equations

Eq.(11) - Eq.(16) have linear forms with respect to the scaling factor Sp. As a

result, we end up with a set of linear constraints for each bottleneck process

σk. The following example illustrates how to apply the analysis techniques and

derive such linear constraints for the digital copier example.

Walk-through Example: Revert to the digital copier example. We derive

latency constraints for the bottleneck processes σ3 and σ4 found in Section 3.

The bottleneck processes σ3 and σ4 are hosted by three processing elements

π1, π2, and π3 as shown in Figure 5. Their scaling factors and corresponding

cost values are given in Table 4.

As an illustration, we derive the latency constraints for τ9. By applying Eq.

(11) and (10), we can write
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Table 4
Cost tables for π1, π2, and π3.

S1,i1 S1,1 S1,2 S1,3 S1,4

scaling factor 0.4 0.5 0.6 1.0

cost 100 50 20 0

S2,i2 S2,1 S2,2 S2,3 S2,4

scaling factor 0.5 0.6 0.8 1.0

cost 150 70 30 0

Cost table of π1 Cost table of π2

S3,i3 S3,1 S3,2 S3,3 S3,4 S3,5 S3,6

scaling factor 0.4 0.5 0.6 0.7 0.9 1.0

cost 300 200 150 100 50 0

Cost table of π3

fupper
9 = supper

9 + Iupper
9 + eupper

9 · S1

= max{fupper
6 , fupper

7 , fupper
8 } + Iupper

9 + eupper
9 · S1. (18)

To compute Iupper
9 in the equation above, we first determine the worst-case

execution window for each task using Eq.(12 - 13). We then apply the analysis

techniques in Eq.(14 - 16) to find tight windows. After finding all the worst-

case execution windows, we can obtain Φ(τ9) = {τ3, τ11, τ14} and Iupper
9 =

(eupper
3 + eupper

11 + eupper
14 ) · S1. Thus, the latency constraint for τ9 is written as

follows:

fupper
9 = max{fupper

6 , fupper
7 , fupper

8 }
+ (eupper

3 + eupper
11 + eupper

14 ) · S1 + eupper
9 · S1 ≤ L.

Since the max operator in the equation above involves free variables, we can

split the constraint to eliminate max{·}, as follows:

fupper
6 + (eupper

3 + eupper
9 + eupper

11 + eupper
14 ) · S1 ≤L

fupper
7 + (eupper

3 + eupper
9 + eupper

11 + eupper
14 ) · S1 ≤L

fupper
8 + (eupper

3 + eupper
9 + eupper

11 + eupper
14 ) · S1 ≤L.
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By recursively computing upper bounds on finish times of tasks in a reverse

topological order, we have the following inequalities.

8S1 + 14S2 ≤ 15, 12S1 + 8S2 ≤ 15, 15S1 + 3S2 ≤ 15,

17S1 ≤ 15, 14S1 + 9S3 ≤ 15, 8S1 + 11S3 ≤ 15

4.2 Formulating Optimization Problem

After latency constraints are derived for bottleneck processes, we formulate

an optimization problem with the objective of minimizing the total hardware

cost given by C(S1,S2, . . . ,Sn) =
∑

πi∈PE ci(Si). Let Γ be an n-dimensional

column vector of scaling factors [S1,S2, . . . ,Sn]T that satisfies the latency

constraints. Since every scaling factor Si takes discrete values, each value

can be represented by relabeling Si with ji in an increasing order. Let Λ

be an n-dimensional column vector [j1, j2, . . . , jn]T that is associated with

[S1,j1 ,S2,j2 , . . . ,Sn,jn ]T by Γ = S(Λ). Suppose that we have n scaling factors

and m latency constraints which are derived from our latency analysis. The

problem can then be transformed into the following integer programming form:

minimize C(S(Λ))

subject to (latency constraint) AS(Λ) ≤ B, and

subject to (range constraint) L ≤ Λ ≤ U ,

where C(S(Λ)) decreases with respect to every ji, A is an m×n matrix whose

entries are the coefficients of scaling factors in the derived latency constraints,

B is an n×1 matrix whose entries are the same as the required latency L, L is

an n-dimensional column vector whose entries are the lower bounds of ji, and

U is an n-dimensional column vector whose entries are the upper bounds of
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ji. Thus, AS(Λ) ≤ B is a matrix expression for the set of latency constraints

and L ≤ Λ ≤ U is a matrix expression for the range constraint of ji.

Walk-through Example: Revert to the digital copier example in Sec-

tion 2.2. The latency constraints derived in the previous section give the la-

tency constraint matrices A and B:

A =




8 12 15 17 14 8

14 8 3 0 0 0

0 0 0 0 9 11




T

and B =




15 15 15 15 15 15




T

.

The cost function C(·) is determined by the cost tables given in Table 4. For

example, Λ = [2, 2, 3]T maps to C(S(Λ)) = C([0.5, 0.7, 0.6]T ) = 50+70+150 =

270. The cost tables also give the range constraint matrices L and U ;

L =




1 1 1




T

and U =




4 4 6




T

.

5 Heuristic Search Algorithm

The formulated optimization problem is an integer programming problem that

is NP-hard. We may solve the problem by transforming it into a nonlinear pro-

gramming problem and by applying nonlinear programming techniques such

as the Lagrange method [15]. However, the solutions obtained by such tech-

niques must be rounded off, thus yielding nearest integer suboptimal solutions.

In many cases, rounding the results can even lead to infeasible solutions [15].

A possible approach to finding an optimal solution is to compute the cost of

every feasible solution and select the one with the minimum cost. But this ap-
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proach requires examining all possible combinations of scaling factors. If each

scaling factor Si can take mi values, the search space is enormous possessing

m1 × m2 × . . . × mn elements.

In this section, we present a heuristic search algorithm called the k-level diag-

onal search algorithm to solve the optimization problem. Since our algorithm

employs the divide-and-conquer strategy, we first describe two heuristics used

in that strategy. Then, we provide a complexity analysis for the algorithm.

5.1 Two Search Heuristics

The proposed algorithm employs two heuristics to find feasible solutions to the

optimization problem while effectively reducing search time. The first heuristic

exploits the monotonicity of the cost function: the cost increases as the scaling

factor decreases. This leads to the geometric property that the local optimum

is found at the end of a diagonal line traversing an n-dimensional rectangular

parallelepiped (hyperbox) space. As shown in Figure 6 (A), the search starts

from the origin and incrementally examines each point along the diagonal

until any of the linear constraints is violated. This diagonal search can greatly

reduce the search time since it explores a one-dimensional line without visiting

all possible points in the n-dimensional hyperbox space.

The diagonal search can, however, examine only a hyperbox space while the

problem space is arbitrary. To cover the entire space, the outer space of the

hyperbox is split into disjoint subspaces and the diagonal search is iteratively

applied to each subspace. The second heuristic makes use of the tangent planes

of the hyperbox to partition the outer space of the hyperbox. As shown in
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Figure 6 (B), the remaining space is cut by each tangent plane parallel to

Si = 0, yielding n subspaces. Note that generated subproblem spaces are of

the identical form as the original problem since each cutting plane is parallel

to Si = 0.

S3

S1

S2

Local Optimum

S2
Subspace 2

Subspace 1

Subspace 3

S1

S3

Hypercube

(A) (B)

Fig. 6. (A) Diagonal search and (B) partition by tangent planes.

5.2 K-Level Diagonal Search Algorithm

Our algorithm iteratively applies the diagonal search and subproblem par-

titioning. This divide-and-conquer strategy generates a tree of subproblems,

thus yielding several choices for the tree traversal policy. We use a breadth-

first search that explores subproblems level by level in the problem tree since

the breadth-first search allows us to trade between the search time and the

optimality by limiting the search level: deeper searches will return more op-

timal solutions but will suffer from longer search times. We call this search

algorithm k-level diagonal search because it limits the search depth to k levels.

Figure 7 shows the complete pseudocode of the k-level diagonal search algo-

rithm. Let Gp,q be the qth subproblem space generated at the pth level and

let Lp,q ≤ Λp,q ≤ Up,q be the range constraint for Gp,q. For a given k and an
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original problem space G1,1, the algorithm applies diagonal search procedure

P1 and subproblem partitioning procedure P2 to each subproblem space until

it finds a k-level suboptimal solution. On line 6, the outermost loop increases

the search level p from 1 to k in order to traverse the problem tree in the

breadth-first order. On lines 9 to 26, the inner loop performs procedure P1

and P2 for each pth level subproblem space Gp,q. Procedure P1 is described on

lines 10 to 13. On lines 12 to 13, index vector Λ is increased in the direction of

the unit diagonal vector E = E1+E2+ . . .+En = [1, 1, . . . , 1] and it is checked

for the latency constraint AS(Λ) ≤ B. This procedure finds the maximum in-

crement δp,qE for the index vector Λ. Procedure P2 is described on lines 20 to

26. It calculates range constraint vectors L and U for each subspace. On lines

16 to 19, the algorithm calculates the minimum cost Cmin among the local

optimums that have been found so far.

There are two conditions for stopping subproblem generation at a problem

node. The first condition is δp,q �≥ 0 (the condition on line 14). This implies that

there exist no feasible solutions in Gp,q and the algorithm does not generate

any subproblems of Gp,q. The second condition is Lp,q �≤ Up,q, which indicates

that Gp,q is empty. The outermost loop terminates when p exceeds k or when

no further subproblems are left (the condition on line 7). After terminating

the outermost loop, the algorithm returns an optimal or a k-level suboptimal

solution vector, if it has found one (lines 27 to 33).

We revert to our walk-through example. If we apply the k-level diagonal search

to the integer programming problem found in Section 4, the algorithm stops

at level 8 and the optimal solution is derived in subproblem G3,6 at level 3.
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Algorithm: K-Level Diagonal Search
begin

1: k: maximum search level
2: n: number of processing elements
3: Gp: set of pth level subproblem spaces
4: let G1 = {the original problem space G1,1}
5: let Cmin = ∞
6: for p = 1 to k
7: if Gp is empty
8: break
9: for each subproblem space Gp,q ∈ Gp

10: /* diagonal search */
11: δp,q = −1
12: while AS(Lp,q + (δp,q + 1)E) ≤ B and Lp,q + (δp,q + 1)E ≤ Up,q

13: δp,q = δp,q + 1
14: if δp,q < 0
15: continue
16: Λ = Lp,q + δp,qE
17: if C(S(Λ)) < Cmin

18: Γ = S(Λ)
19: Cmin = C(Γ)
20: /* subproblem partitioning */
21: Gp+1 = φ
22: for j = 1 to n
23: Lp+1,n(q−1)+j = Lp,q + (δp,q + 1)Ej

24: Up+1,n(q−1)+j = Up,q − ∑j−1
i=1 (UT

p,q − LT
p,q)EiEi + δp,q

∑j−1
i=1 ET

p,qEiEi

25: if Lp+1,n(q−1)+j ≤ Up+1,n(q−1)+j

26: Gp+1 = Gp+1 ∪ {Gp+1,n(q−1)+j}
27: if Cmin �= ∞
28: if Gp is empty
29: return Γ is an optimal solution vector
30: else
31: return Γ is a k-level suboptimal solution vector
32: else
33: return no feasible solution

end

Fig. 7. K-level diagonal search algorithm.

5.3 Analysis of K-Level Diagonal Search Algorithm

The running time of the k-level diagonal search algorithm largely depends on

the number of checks for the latency constraints AS(Λ) ≤ B (multiplication
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and comparison of matrices). From this viewpoint, the approximate running

time can be represented by
∑k

p=1

∑np

q=1(δp,q + 1) where (δp,q + 1) is the number

of checks for latency constraints. The worst case occurs when every diagonal

search fails to explore a hypercube space and examines only one point, i.e.,

δp,q = 0. This case generates the largest problem tree and the algorithm ex-

haustively examines candidates one by one. By substituting δp,q = 0, we can

show that the complexity of the k-level diagonal search is O(nk). Although

this is an exponential function of k, we can control the search time by limiting

k. If search time is critical and a suboptimal solution is acceptable, we can

choose a small value of k. While a large value for the search level k improves

the solution, k is bounded from above if the problem space is finite. To com-

pute the upper bound on k, we define a metric M that can capture the size

of the problem space. Let Mp,q be a metric for the size of the problem space

Gp,q, which is defined as below.

Mp,q = ||Up,q − Lp,q|| = (UT
p,q − LT

p,q)E (19)

This metric Mp,q determines the upper bound on k. One of the important ad-

vantages of the k-level diagonal search is that it always diminishes the metric

value as the iteration proceeds, Mp,q > Mp+1,n(q−1)+r. The following theorem

proves this assertion.

Theorem 1. For metric Mp,q of Gp,q and metric Mp+1,n(q−1)+r of any sub-

problem Gp+1,n(q−1)+r generated by the k-level diagonal search algorithm,

Mp+1,n(q−1)+r ≤ Mp,q − (δp,q + 1) (20)
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Proof. From the definition of metric Mp,q in Eq. (19), we have

Mp+1,n(q−1)+r = ||Up+1,n(q−1)+r − Lp+1,n(q−1)+r||

By replacing Up+1,n(q−1)+r and Lp+1,n(q−1)+r according to the k-level diagonal

search procedure P2, and using properties ||A+B|| = ||A||+ ||B|| and ||Ei|| =

1, we obtain

Mp+1,n(q−1)+r = ||Up,q −
r−1∑
i=1

(UT
p,q − LT

p,q)EiEi + δp,q

r−1∑
i=1

Ei − Lp,q − (δp,q + 1)Er||

= ||Up,q − Lp,q|| −
r−1∑
i=1

(||(UT
p,q − LT

p,q)EiEi|| − δp,q) − (δp,q + 1)

Since ||(UT
p,q − LT

p,q)EiEi|| − δp,q ≥ 0, we get the inequality (20). �

According to the Theorem 1, the metric always decreases by at least one as the

search level increases. The k-level diagonal search eventually terminates when

metric Mp,q becomes zero, which implies an empty space where Lp,q = Up,q.

Thus, the upper bound on k for the original problem G1,1 is (M1,1 + 1), since

a problem with a zero metric requires at least one level of search. We refer to

this upper bound as a guarantee level in that it guarantees finding the optimal

solution if the search level is increased up to (M1,1 + 1). However, the k-level

diagonal search algorithm can terminate earlier than the guarantee level if δp,q

is not zero. If δp,q is 1 at every search level, the algorithm terminates at a

depth of half the guarantee level.
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6 Performance Evaluation

We have evaluated the effectiveness of the proposed search algorithm through

a series of simulations with randomly generated workloads. For performance

comparison, we have implemented the k-level diagonal search algorithm (KD)

and a brute-force search algorithm (BF). The BF algorithm exhaustively ex-

amines all candidate solutions.

Test problem sets were synthesized based on a random number generator for

distinct dimension variables (the number of PEs) ranging from 3 to 8. It is

necessary to limit the number of PEs below 9 since the BF algorithm needs

to perform an extremely time consuming exhaustive search. For each number

of PEs, the problem sets were generated as below.

• The entries of latency constraint matrices (A and B) were chosen in range

[1, 1000000].

• Cost tables were obtained by sorting random numbers in range [1, 100] to

meet the monotonicity condition.

To assess the average case performance, two performance metrics were used:

(1) the number of checks for latency constraints and (2) the maximum search

level for finding optimal solutions. We measured the two performance metrics

while running the three algorithms.

• The first performance metric was chosen as a measure to represent the

running time of the algorithm. Figure 8 (A) shows that the KD algorithm

greatly outperforms the BF algorithm. While the running time of the BF

algorithm exponentially increases as the workload gets heavier, the running
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time of the KD algorithm increase much more slowly and even decreases

when the number of PEs exceeds eight. This anomaly can occur because

the performance of the KD algorithm depends more on the shape of the

feasible solution space than on the size of the problem. Due to the diagonal

search strategy, the KD algorithm finds the optimal solution faster if the

shape of the feasible space is closer to a hyperbox.

• The second performance metric is the maximum search level required for a

complete search. Figure 8 (B) shows the comparison between the maximum

search levels of the KD algorithm and the guarantee levels. Guarantee levels

were computed by using Eq. (19). On the average, the actual search levels of

the KD algorithm were around half of the guarantee level. This confirms our

analysis result that the search level cannot exceed the guarantee level. The

search level does not necessarily increase as the number of PEs increases.

When the number of PEs is nine, the KD algorithm finds an optimal so-

lution with a shallower search than when the number of PEs is eight. This

result also support our assertion that the performance of the KD algorithm

depends dominantly on the shape of the feasible space.
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Fig. 8. (A) Performance comparison between KD algorithm and BF algorithm and
(B) guarantee level by KD algorithm vs. maximum search level.
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7 Conclusions

We have formulated the problem of distributed embedded system re-engineering

as performance optimization of the system and presented a systematic solu-

tion approach. The proposed formulation adopts general distributed embed-

ded system model where fixed priority preemptive scheduling is used. Since

preemptive scheduling incurs arbitrary interleaving of task instances, it is ex-

tremely difficult to estimate latencies of processes. Motivated by the work done

by Yen and Wolf [27], we have proposed an algorithm that can yield tight la-

tency bounds by iteratively applying separation analysis and interference time

analysis. Our algorithm outperforms [27].

The proposed solution approach pinpoints performance bottlenecks of the sys-

tem and selectively upgrades processing elements at the least cost. Unlike other

re-engineering approaches based on critical path optimization, our approach

does not lead to excessive optimization since it relies on the trade-off analysis

between cost and performance. It appears that our approach can be employed

even at the early stage of system design due to its capability of prototyping

and systematic global latency analysis.

Although in this paper we have primarily focused on hardware upgrades, our

formulation can be easily generalized to incorporate software upgrades when

appropriate cost tables are given. In particular, our approach is well suited

to the component-based design of an application-specific embedded system

in that a system is built by composing software components selected from

a predefined component library. We are currently extending our approach to

designing a component-based real-time operating system and the result is
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promising.
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