
State Machine Based Operating System Architecture
for Wireless Sensor Networks

Tae-Hyung Kim1 and Seongsoo Hong2

1 Department of Computer Science and Engineering, Hanyang University, Ansan, Kyunggi-
Do, 426-791, South Korea

tkim@cse.hanyang.ac.kr
2 School of Electrical Engineering and Computer Science, Seoul National University, Seoul

151-741, South Korea,
sshong@redwood.snu.ac.kr

Abstract. A wireless sensor network is characterized as a massively distributed
and deeply embedded system. Such a system requires concurrent and asyn-
chronous event handling as a distributed system and resource-consciousness as
an embedded system. State machine based software design techniques are ca-
pable of satisfying exactly these requirements. In this paper, we present how to
design a compact and efficient operating system for wireless sensor nodes
based on a finite state machine. We describe how this operating system can op-
erate in an extremely resource constrained sensor node while providing the re-
quired concurrency, reactivity, and reconfigurability. We also show some im-
portant benefits implied by this architecture.

1 Introduction

Sensor networks consist of a set of sensor nodes, each equipped with one or more
sensing units, a wireless communicating unit, and a local processing unit with small
memory footprint [1]. In recent advancement of wireless communication and embed-
ded system technologies, the wireless and distributed sensor networks become a
prime technical enabler that can provide a way of noble linkage between the compu-
tational and the physical worlds. Since the precise delivery of real-time data on the
spot is an essential basis for constructing a context-aware computing platform, the
recent advancement of low-cost sensor node provides an important opportunity to-
wards the new realm of ubiquitous computing. Positioned at the very end-terminal
from the computational world side, wireless sensor nodes convey unique technical
challenges and constraints that are unavoidable to system developers, which can be
characterized by three aspects. First, they bear extremely limited resources including
computing power, memory, and supplied electric power. Nonetheless, a sensor net-
work can be perceived as a traditional distributed computing platform consisting of
tens of thousands of autonomously cooperating nodes. Third, the computing platform
does not allow recycling of the network, thus is disposable without having re-
programmability.

Such characteristics of a networked sensor node call for a unique operating system
architecture that can not only run on an extremely lightweight device with very low
power consumption but can also support dynamic reconfigurability to cope with
changing environments and applications. Such an operating system should also pos-
sess concurrent and asynchronous event handling capabilities and support distributed
and data-centric programming models. In order to meet such seemingly contradictory
requirements, we propose a state machine based operating system architecture, rather
than following a traditional structure of an operating system and adopting it for sen-
sor nodes like TinyOS [2]. To provide re-programmability, TinyOS employs the
bytecode interpreter called Maté that runs on it. In a state machine based operating
system like ours, each node is allowed to simply reload a new state machine table.
Moreover, the state machine based software modeling offers a number of benefits: (1)
it enables designers to easily capture a design model and automatically synthesize
runtime code through widely available code generation tools; (2) it allows for con-
trolled concurrency and reactivity that are needed to handle input events; and (3) it
enables a runtime system to efficiently stop and resume a program since the states are
clearly defined in a state machine. In this paper, we explore a state machine based
execution model as an ideal operating system design for a networked sensor node and
present the end result named SenOS.

2 State Machine Based Execution Environment

While many embedded applications should exhibit a reactive behavior, dealing with
such reactivity is considered to be the most problematic. To cope with the complexity
of designing such systems, Harel introduced a visual formalism referred to as state-
charts [3]. Since then, a state machine has been recognized as a powerful modeling
tool for reactive and control-driven embedded applications. Sensor network applica-
tions are one of those applications that can mechanize a sequence of actions, and
handle discrete inputs and outputs differently according to its operating modes. Being
in a state implies that a system reacts only to a predefined set of legal inputs, pro-
duces a subset of all possible outputs after performing a given function, and changes
its state immediately in a mechanical way. Formally, a finite state machine is de-
scribed by a finite set of inputs, outputs, states, a state transition function, an output
function, and an initial state. When a finite state machine is implemented, a valid
input (or event) triggers a state transition and output generation, which moves the
machine from the current state to another state. A state transition takes place instanta-
neously and an output function associated with the state transition is invoked.

A state machine based program environment is not only suitable for modeling sen-
sor network applications but also can be implemented in an efficient and concise way.
Since sensor node functionalities are limited, although multi-functional, all those
possible node functionalities are defined statically in a callback function library in
advance. All we need to do as a programmer is simply to define a legal sequence of
actions in tabular forms. To this end, SenOS has four system-level components: (1)
an event queue that stores inputs in a FIFO order, (2) a state sequencer that accepts an
input from the event queue, (3) a callback function library that defines output func-

tions, and (4) a re-loadable state transition table that defines each valid state transition
and its associated callback function. Each callback function should satisfy the “run-
to-completion” semantics to maintain the instantaneous state transition semantics.

SenOS exposes another important opportunity for developers. There exist quite a
few CASE tools that help designers capture state machine based system models and
automatically synthesize executable code for them. UML-RT is one such tool widely
used in the embedded systems industry [4]. Under our state machine based operating
system, application programmers can take advantage of high-level CASE tools like
UML-RT to synthesize executable code for a sensor node.

3 Implementing SenOS Architecture

The SenOS kernel architecture is comprised of three components: the Kernel consist-
ing of a state sequencer and an event queue, a state transition table, and a callback
library. The Kernel continuously checks the event queue for event arrivals; if there
are one or more inputs in the queue, it takes the first one out of the queue and triggers
a state transition if the input is valid. It then invokes an output function associated
with the state transition. To do so, the Kernel keeps track of the state of the machine
and guards the execution of a callback function with a mutex that can guarantee the
run-to-completion semantics. The callback library provides a set of built-in functions
for application programmers, thus determining the capability of a sensor node. The
Kernel and callback library should be statically built and stored in the flash ROM of a
sensor node whereas the state transition table can be reloaded or modified at runtime.
The SenOS can host multiple applications by means of multiple co-existing state
transition tables and provide concurrency among applications by switching state tran-
sition tables. Note that each state transition table defines an application. During pre-
emption, the Kernel saves the present state of the current application, restores the
state of the next application, and changes the current state transition table. The SenOS
architecture also contains a runtime monitor that serves as a dynamic application
loader. Considering the sheer number of sensor nodes, this is essential to dynamically
reconfigure a new sensor network management scheme like dynamic power manage-
ment. When the SenOS receives an application reload message via an interrupt from a
communication adapter, the Monitor puts the Kernel into a safe state, stops the Kernel,
and reloads a new state transition table. Note that the Monitor is allowed to interrupt
the Kernel at any time unless it is in state transition. Since state transition is guarded
by a mutex, the safety of a state machine is not compromised by such an interruption.

We have implemented our SenOS on 8-bit MCU AT89S8252 equipped with Radi-
ometrix’s BIM433 RF module that has a reliable 30m in-building range. A sensor
node has four independent memory banks, each of which has 32KB flash memory as
shown in Fig. 1. In our experimental implementation, we hire three sensor nodes and
one sink node (PC). The SenOS is downloaded onto the sensor node that is directly
connected to the host PC via a serial communication initially, and then all other nodes
obtain the same OS via wireless RF communication. The SenOS was written in about
700 C lines of code, and compiled using Keil 8051 v7.0 compiler, which is compact
enough to reside in a 32KB memory bank. We used four FSM tables (FSM_Serial,

8051 Board Specifications
• ATMEL89S8252
• 8 KB Flash ROM, 2 KB EEPROM
• 32KB SRAM
• Serial Port Interface

RF Module (BIM433) Specifications
• 433.92 MHz (ETS 300-220)
• FM Transmission at -6dBm ERP
• -107dBm receive sensitivity
• Half duplex data at up to 40 kbit/s
• Reliable 30m in-building range
• Single 4.5 to 5.5 V < 15mA

Fig. 2. Sensor node module used for our implementation and its specifications

FSM_Network, FSM_Timer, FSM_Sensor) and defined nine output functions for
wireless and serial communications, sensor and timer operations, and network man-
agement in our implementation. We confirmed the compactness and efficiency of a
state machine based operating system by this implementation.

4 Conclusion

We have presented SenOS, a state machine based operating system for a wireless
sensor node. Programmers can easily write a SenOS application via techniques on
state machines and load the executable code at runtime using the Monitor as an agent.
SenOS offers a number of benefits. First, its implementation is very compact and
efficient since it is based on a state machine model. Second, it supports dynamic node
reconfigurability in a very effective manner using replaceable state transition tables
and callback libraries. Third, it can be extended to implement a sensor network man-
agement protocol, which is one of the largely untouched regions of sensor network
research. Without having reconfigurability, the sensor network boils down to a hard-
wired system because it is hard to reprogram that many nodes manually. These bene-
fits render SenOS ideal for a networked sensor node. The associated tools with Se-
nOS are underway and we further explore the applicability of reconfiguration.

References

1. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., and Pister, K.: System Architecture
Directions for Networked Sensors. Proceedings of International Conference on Architecture
Support for Programming Languages and Operating Systems (2000)

2. Levis, P. and Culler, D.: Maté: A tiny virtual machine for sensor networks. Proceedings of
International Conference on Architecture Support for Programming Languages and Operat-
ing Systems (2002)

3. Harel, D.: Statecharts: A Visual Formalism for Complex Systems, The Science of Computer
Programming, pp. 231-274 (1987)

4. IBM (former Rational Software): http://www.rational.com

http://www.rational.com/

