
Modeling Scenarios in Scenario-Based Multithreading for
Real-Time Object-Oriented Modeling

Saehwa Kim

School of EE and CS
 Seoul National

University
Seoul 151-742, Korea

ksaehwa@redwood.snu.ac.kr

Michael Buettner
School of EE and CS

 Seoul National
University

Seoul 151-742, Korea
buettner@redwood.snu.ac.kr

Mark Hermeling
IBM Software Group

IBM Singapore Pte Ltd
Singapore 486072,

Singapore.
hermelin@sg.ibm.com

Seongsoo Hong
School of EE and CS

 Seoul National
University

Seoul 151-742, Korea
sshong@redwood.snu.ac.kr

 The work reported in this paper is supported in part by MOST (Ministry of Science and Technology) and MOCIE (Ministry of

Commerce, Industry and Energy) under the SystemIC 2010.

Abstract – The paper presents our scenario modeling
framework in scenario-based multithreading for object-
oriented real-time modeling. Our modeling toolset allows
scenario modeling by transforming a given UML 2.0
model to a scenario model. Our toolset provides for
extended notion of scenarios that supports (1)
concatenated scenarios, (2) mutually non-concurrent
scenarios, (3) ports or structured classes with multiple
cardinality, (4) message buffering, and (5) dynamic
structures. Scenario models are intermediate models
acting as bridges to gradually lead to the desired
implementation. Consequently, our scenario modeling
framework not only helps designers to more easily
understand the model but also enable the identification of
a feasible task set in a systematic way.

Keywords: Real-time object-oriented modeling, UML
2.0, design methodology, embedded software, real-time
systems, model transformation, scenario-based modeling.

1 Introduction
 Embedded systems become extremely complex and
sophisticate due to the widen application domain as well
as the increased demand for safety, reliability, and
performance requirements. As a result, it becomes
inevitable for embedded system designers to rely on
systematic software development methods and tools for
system design, synthesis, and tuning at various stages of
system development.

 Object-oriented modeling tools for embedded
systems allow developers to take advantage of not only
efficient tool-based development but also the benefits of
object-oriented technology such as encapsulation,
polymorphism, and inheritance. However, current
modeling tools for object-oriented modeling, such as IBM
Rational RoseRT [4], ARTiSAN Real-Time Studio [1], I-
Logix Rhapsody [5], and IAR visualSTATE [3], lack in
providing predictable and verifiable timing behavior and
the automatically generated code is not always acceptable.

For real-time embedded systems it is of the utmost
importance to generate executables that can guarantee
timing requirements with limited resources. Currently,
designers must map design-level objects to
implementation-level tasks in an ad-hoc manner. Because
task derivation has a significant effect on real-time
schedulability, tuning the system with this approach is
often extremely tedious and time-consuming.

 In our previous work [7][8][9], we have proposed a
systematic, schedulability-aware method of mapping
object-oriented real-time models to multithreaded
implementations. This is based on the notion of scenarios.
A scenario is a sequence of actions that is triggered by an
external input event, possibly leading to an output event
[7]. In [8], we presented a multithreaded implementation
architecture based on mapping scenarios to threads. This
is contrary to the architecture found in current modeling
tools that map a group of objects to a thread. In [9], we
presented a complete tool set implementation of the
scenario-based multithreading architecture for UML
models as well as experimental results that validate this
implementation. Our implementation exploits an
established UML modeling tool, RoseRT, by designing a
scenario-based run-time system that maintains backwards
compatibility with the RoseRT run-time system.

 In this paper, we present our scenario modeling
framework in our scenario-based toolset for object-
oriented real-time modeling. Enabled by our scenario-
based multithreading, our modeling toolset allows
scenario modeling by transforming a given UML 2.0
model to a scenario model. This intermediate scenario
model not only helps designers to more easily understand
the model but also enable the identification of a feasible
task set in a systematic way, acting as bridges to gradually
lead to the desired implementation. Designers can also
refine the intermediate scenario model. Specifically, each
scenario can be associated with timing constraints such as
period and deadline.

 Motivated by our case study of real-world models
such as PBX systems [6], we have extended the notion of
scenarios found in our original method. Specifically, we
extend the notion of scenarios so that it can support (1)
concatenated scenarios, (2) mutually non-concurrent
scenarios, (3) ports or structured classes with multiple
cardinality, (4) message buffering, and (5) dynamic
structures. We extended our tool to support such scenario
modeling functionality. Scenario modeling enables the
systematic identification of a feasible task set since
scenario models act as bridges to gradually lead to the
desired implementation. Our tool also allows designers to
browse visualized scenario models.

 The notion of using scenario models as intermediate
models for better output generation was inspired by model
transformation technique. There also has been research
activities focused on model transformation in the UML
framework that provide various model transformation
techniques where transformations are specified in UML
[2][10]. These techniques can be integrated with our
approach to derive intermediate models of scenarios and
logical/physical threads.

 The remainder of the paper is organized as follows.
Section 2 summarizes UML 2.0 that we chose as our real-
time object-oriented modeling language. Section 3
presents an overview of our scenario-based
multithreading, comparing it with traditional structured-
class-based multithreading. Section 4 explains our
scenario modeling environments with extended notion of
scenarios. Section 5 presents how our tool supports the
visualization of scenario models. The final section
concludes the paper.

2 Overview of UML 2.0
 UML 2.0 [13] is a general purpose modeling
language developed by the OMG [11], and contains
corrections and new content based on user feedback on
the UML 1.x modeling language. One of the important
additions in UML 2.0 is the concept of structured classes.
This concept makes it possible to define the run-time
structure of a class as the composition of multiple
structured classes connected together. It has been
developed to properly represent complex, event-driven,
potentially distributed real-time and embedded systems.
The additions to UML 2.0 are inspired by ROOM [12];
another object-oriented modeling technique for real-time
systems.

 The basic element of model construction in UML
2.0 is a structured class. A structured class represents an
object within the system that communicates with other
structured classes exclusively through interfaces called
ports. Structured classes connected together define the
run-time structure and communication channels of an

application. A finite state machine, represented by a state
diagram, represents the behavior of a structured class.
Receiving messages via ports causes the state machine to
make transitions, executing the logic contained in the
structured class.

 For our toolset, we exploited IBM Rational Software
Rose RealTime (RoseRT), which is a modeling tool that
allows users to design object-oriented real-time systems
using UML 2.0 and generate complete executables
directly from these designs.

3 Scenario-based multithreading of
UML 2.0 models

 In structured-class-based multithreading the entity
which can be manipulated is a message. It is possible to
map the incoming messages of a structured class to a
certain thread, and possible to map a single message to a
thread or assign it a priority. But in most cases the
designer does not conceptualize in terms of individual
messages, but in terms of message chains. It is more
natural that an entire message chain would be mapped to a
thread, or timing metrics would be considered from the
start of a chain to the end.

 Also, it is not possible in structured-class-based
multithreading for a message coming into a structured
class to be processed on different threads in different
situations. This imposes great limitations on the designer.
Our scenario based multithreading allows the user to
define priority and thread mapping for a complete
message chain instead of individual messages. Structured
classes will execute on different threads at different times
depending on which scenario message sequence it is
participating in at the moment. This not only is more akin
to the way a designer would conceptualize a problem, but
it also allows much greater flexibility in model design.

 Moreover, structured-class-based multithreading
may degrade the performance of real-time systems by
extending blocking time unnecessarily. We have shown
performance evaluation results for this in [6][9].

4 Scenario modeling
 We have extended the notion of scenarios to support
(1) concatenated scenarios, (2) mutually non-concurrent
scenarios, (3) ports or structured classes with multiple
cardinality, (4) message buffering, and (5) dynamic
structure. In this section, we explain how we have
extended our tool to support such scenario modeling
functionality.

4.1 Concatenated scenarios

 In some cases, the basic concept of a scenario that
begins with an external message and continues until the
end of the message chain may not be flexible enough to
meet the needs of designers. There may be situations
where the designer’s concept of what should be a scenario
extends beyond the end of a message chain.

 For example, in a soccer robot system, designers
may wish to model as a scenario the execution chain
initiated by a timeout event in a motor structured class,
and flowing through the transitions associated with
adjusting the speed and direction of the motor, and
processing an acknowledge message sent back from the
motor on a hardware communication port. Our tool would
identify two scenarios that make up this chain; one
beginning at the timeout in the motor acknowledge and
continuing until the new speed and direction information
is sent to the motor structured class, and one beginning
when the motor structured class receives the acknowledge
message.

 In order to model the entire chain as a single
scenario, there must be a mechanism for concatenating
these two message chains. Our tool allows designers to
indicate any number of scenarios which should be
concatenated, and designers can then manipulate the
entire chain as one scenario. With this, timing constraints
are assigned to the entire concatenated chain, and the
component scenarios are assumed to be mutually non-
concurrent.

4.2 Mutually non-concurrent scenarios

 A set of mutually non-concurrent scenarios is a
group of scenarios which will never execute concurrently.
When designers designates a set of scenarios as mutually
non-concurrent, this indicates that all the scenarios in the
set may be mapped to the same thread and no member of
the set need preempt any other member of the set. By thus
grouping scenarios our model transformer is able to limit
the number of threads while still providing the necessary

level of concurrency, and so reduces context switch
overhead and static memory requirements.

4.3 Multiple cardinality support

 Because structured classes and ports may be
replicated in UML 2.0, it is necessary to differentiate
between the multiple instances of a replicated structured
class or port when identifying scenario initiation signals.
Currently in RoseRT it is not possible to map messages
from a replicated port to different threads depending on
the replication index.

 Our tool considers each replication index as separate,
which enables the mapping to different threads of
scenarios that are initiated by the same signal sent from
different replication indices. With this, it is possible to
have concurrency and a priority hierarchy between
scenarios that are started from different replication indices
of the same port or structured class.

4.4 Scenarios from buffered messages

 Most modeling tools allow for the deferring of
messages to a later time and then, when some condition is
met, those messages are recalled. Example conditions that
trigger the recall of messages are receiving some special
message that flushes deferred messages, such as a
timeout-event, or the deference of a desired number of
messages. When such a condition occurs, the deferred
messages are recalled and the actual event processing is
started. In such a case, designers may not want to model
the event flows initiated by each individual message as
separate scenarios. Instead, they may wish to model as a
scenario only the flow that is initiated by the recall. To
support this, our tool detects the recall function as a
scenario starting point. This allows designers to model a

AND OR

Transition Bridge

O2::A3 O1::A2 O2::A4 O2::A3 O1::A3

O3::A1O1::A2

O2::A1 O2::A2

O1:A1

Node Types

Figure 1. An example AND-OR transition tree

……
Figure 2. An example XML document for scenario

visualization

group of external messages that are recalled together as
one scenario.

4.5 Dynamic structure support

 Dynamic structures offer little complication for our
toolset. A scenario is defined by its starting point and the
body of the scenario is determined by following the
message chain until it reaches a point where no further
message is sent.

 Our toolset considers all possible branches in the
message chain, so a scenario consists of all possible
execution paths. At run time the message chain of a
scenario may end at any number of points depending on
conditional statements, as well as on what structured class
instances have been incarnated or imported.

5 Visualizing scenarios
 For the visualization of scenario models, our toolset
supports AND-OR transition tree like Figure 1. In Figure
1, Ox:Ay represents transition y of structured class x. A
node denotes either a transition or a conjunction or
disjunction of messages, and an edge denotes message
flow. Transition nodes are classified into AND-Transition
and OR-Transition. An AND-Transition must send out all
of its outgoing messages in the left-to-right order. An OR-
Transition sends only one of its outgoing messages
depending on the condition within the transition. When a
transition has nested conjunctions or disjunctions among
its outgoing messages, bridge nodes are used. They are
classified into AND-Bridge and OR-Bridge nodes.

 Our toolset generates XML documents for AND-OR
transition trees. For example, Figure 2 shows such an
XML document displayed by an XML viewer.

6 Conclusions
 We have presented our scenario modeling
framework in scenario-based multithreading for object-
oriented real-time modeling. Enabled by our scenario-
based multithreading, our modeling toolset allows
scenario modeling by transforming a given UML 2.0
model to a scenario model. Motivated by our case study
of real-world models, we have extended the notion of
scenarios found in our original method. Specifically, we
extend the notion of scenarios so that it can support (1)
concatenated scenarios, (2) mutually non-concurrent
scenarios, (3) ports or structured classes with multiple
cardinality, (4) message buffering, and (5) dynamic
structures.

 We extended our tool to support such scenario
modeling functionality. Scenario modeling enables the
systematic identification of a feasible task set since
scenario models act as bridges to gradually lead to the

desired implementation. Our tool also allows designers to
browse visualized scenario models. Consequently, our
scenario modeling framework not only helps designers to
more easily understand the model but also enable the
identification of a feasible task set in a systematic way.

 In the future, we will continue our research based on
other real-world applications including support for
distributed systems. We are also considering the potential
application of quality of service concepts or models to our
research.

References
[1] ARTiSAN Software Tools Incorporation. Real-Time
Studio, http://www.artisansw.com

[2] W. Ho, J. Jézéquel, A. Guennec, and F. Pennaneac'h,
“UMLAUT: an extendible UML transformation framework,”
Proc. of Automated Software Engineering (ASE'99), 1999.

[3] IAR Systems Incorporation, visualSTATE,
www.iar.com

[4] IBM Rational Software Corporation. Rational Rose
RealTime User Guide: Revision 2001.03.00, 2000.

[5] I-Logix Incorporation. Rhapsody tools.
http://www.ilogix.com

[6] S. Kim, M. Buettner, M. Hermeling, and S. Hong,
“Experimental assessment of scenario-based multithreading
for real-time object-oriented models: a case study with PBX
systems,” Proc. of International Conference on Embedded
and Ubiquitous Computing (EUC), 2004.

[7] S. Kim, S. Cho, and S. Hong, “Schedulability-aware
mapping of real-time object-oriented models to multithreaded
implementations,” Proc. of International Conference on Real-
Time Computing Systems and Applications, 2000.

[8] S. Kim, S. Hong, and N. Chang, “Scenario-based
implementation architecture for real-time object-oriented
models, Proc. of IEEE International Workshop on Object-
oriented Real-time Dependable Systems,” 2002.

[9] J. Masse, S. Kim, and S. Hong, “Tool set
implementation for scenario-based multithreading of UML-
RT models and experimental validation,” Proc. of IEEE Real-
Time/Embedded Technology and Applications Symposium,
2003.

[10] D. Milicev, “Automatic model transformations using
extended UML object diagrams in modeling environments,”
IEEE Transaction on Software Engineering, Vol. 28, No. 4,
2002.

[11] Object Management Group (OMG).
http://www.omg.org.

[12] B. Selic, G. Gullekson, and P. T. Ward, “Real-time
object-oriented modeling,” John Wesley and Sons, 1994.

[13] Unified Modeling Language (UML).
http://www.uml.org.

