
Experimental Assessment of Scenario-Based
Multithreading for Real-Time Object-Oriented Models:

A Case Study with PBX Systems

Saehwa Kim1, Michael Buettner1, Mark Hermeling2, Seongsoo Hong1
1 School of Electrical Engineering and Computer Science,
Seoul National University, Seoul 10 52 80, South Korea

{ksaehwa, buettner, sshong}@redwood.snu.ac.kr
2 IBM Software Group, IBM Singapore Pte Ltd, 9 Changi

Business Park Central 1, Singapore 486072, Singapore
hermilin@sg.ibm.com

Abstract. This paper presents an experimental evaluation of our scenario-based
multithreading for real-time object-oriented models by the use of a case study
of a Private Branch eXchange (PBX) system. The PBX system was taken from
the industry and exhibits a number of characteristics found in real-world
applications such as a highly reconfigurable dynamic structure and a typical
layered architecture. The objective of this experimental study is to assess the
improvements to 1) the modeling environment in terms of ease of use for
designers and 2) the performance of the resultant executables. We show how
our toolset was applied to the PBX system to model scenarios, as well as to
generate a scenario-based multithreaded executable. The study clearly shows
that our method can handle large-scale, complex models and that scenario-
based multithreading achieves the performance improvements for a real-world
model.

1. Introduction

Real-time embedded systems are becoming increasingly sophisticated and complex,
while at the same time experiencing a shorter time-to-market with greater demands on
reliability. As a result, the need for systematic software development methods and
tools for real-time embedded systems is now greater than ever.

Recently, the Object Management Group (OMG) [17] initiated Model Driven
Architecture (MDA) [16] as an approach to supporting model-to-code bridges. This
clearly shows the high demand for the ability to generate executable applications
directly from object-oriented models. MDA uses the upcoming revision of the Unified
Modeling Language (UML) [22], UML 2.0, to allow modeling of executable
architectures. Using this new revision of the industry standard modeling language,
designers can raise the abstraction level and stop worrying about implementation level
concepts like tasks and mutexes and instead focus on the desired behavior of their
systems.

2 Saehwa Kim1, Michael Buettner1, Mark Hermeling2, Seongsoo Hong1

However, current modeling tools for object-oriented modeling, such as IBM
Rational RoseRT [8], ARTiSAN Real-Time Studio [1], I-Logix Rhapsody [9], and
IAR visualSTATE [7], lack in providing predictable and verifiable timing behavior
and the automatically generated code is not always acceptable. For real-time
embedded systems it is of the utmost importance to generate executables that can
guarantee timing requirements with limited resources. Currently, designers must map
design-level objects to implementation-level tasks in an ad-hoc manner. Because task
derivation has a significant effect on real-time schedulability, tuning the system with
this approach is often extremely tedious and time-consuming.

In our previous work [11, 12], we have proposed a systematic, schedulability-
aware method of mapping object-oriented real-time models to multithreaded
implementations. This is based on the notion of scenarios. A scenario is a sequence of
actions that is triggered by an external input event, possibly leading to an output event
[11]. In [12], we presented a multithreaded implementation architecture based on
mapping scenarios to threads. This is contrary to the architecture found in current
modeling tools that map a group of objects to a thread. In [14], we presented a
complete tool set implementation of the scenario-based multithreading architecture
for UML models as well as experimental results that validate this implementation.
Our implementation exploits an established UML modeling tool, RoseRT [8], by
designing a scenario-based run-time system that maintains backwards compatibility
with the RoseRT run-time system.

In this paper, we present an experimental evaluation of our scenario-based
multithreading of real-time object-oriented models. The objective of this experimental
study is to assess the improvements to the modeling environment in terms of ease of
use for designers and performance of the resultant executables. For this study, we
have chosen a Private Branch eXchange (PBX) system as our target embedded real-
time system. To show the benefits of our approach for a real world model, we
acquired the model from an industry source. The PBX system model we adopted for
the case study exhibits a number of characteristics found in real-world applications
such as a highly reconfigurable dynamic structure and a typical layered architecture.

We show how our tool simplifies modeling by achieving a distinct separation
between design and implementation with respect to multithreading, while providing a
method of modeling scenarios that is essentially associated with user-perceptible
timing constraints. We also present experimental results that clearly demonstrate the
performance improvements that can be gained by the scenario-based implementation
generated by our tools.

1.1. Related Work

There have been several research efforts that have focused on the automated
implementation of real-time object-oriented designs and associated schedulability
analyses [4, 18, 20]. However, these approaches are applicable to a system design
only after tasks have been completely identified, and do not address schedulability-
aware mapping of real-time object-oriented models to implementations. Thus, real-
time designers still need rigorous methods to efficiently achieve such mappings.

Experimental Assessment of Scenario-Based Multithreading for Real-Time Object-Oriented
Models: A Case Study with PBX Systems 3

In [19], Saksena et al. addressed problems associated with automated code
synthesis from real-time object-oriented models. As in our approach, they attempted
to maintain a separation of design and implementation models. Though they presented
a seminal approach for the automated implementation of real-time object-oriented
designs, it was not comprehensive as they presented only guidelines and heuristics.
Their approach is also different from ours in that they do not support scenario-based
multithreading.

As UML has become the de-facto industry standard for software modeling, several
research efforts have developed methods to design real-time embedded systems using
UML [2, 3, 5]. These efforts are limited to exploiting UML at the design stage and
fail to give solutions for generating code with desired timing behavior. There has also
been research activities focused on model transformation in the UML framework [6,
15] that provide various model transformation techniques where transformations are
specified in UML. These techniques can be integrated with our approach to derive
intermediate models of scenarios and logical/physical threads.

The remainder of the paper is organized as follows. Sect. 2 summarizes UML 2.0

that we chose as our real-time object-oriented language and presents an overview of
our scenario-based multithreading, comparing it with traditional structured-class-
based multithreading. Sect. 3 describes the PBX system that we used as an example
case study system. Sect. 4 explains how our toolset was applied to the model to
generate a scenario-based multithreaded executable. Sect. 5 presents the results of our
experimentation, comparing the performance of a structured-class-based
implementation and our scenario-based implementation for the PBX model. The final
section concludes the paper.

2. UML 2.0 and Scenario-Based Multithreading

In this section, we provide an overview of UML 2.0, our chosen real-time object-
oriented modeling language and our scenario-based multithreading.

2.1 UML 2.0 Modeling Language

UML 2.0 is a general purpose modeling language developed by the OMG, and
contains corrections and new content based on user feedback on the UML 1.x
modeling language. It has been developed to properly represent complex, event-
driven, potentially distributed real-time and embedded systems.

The basic element of model construction in UML 2.0 is a structured class. A
structured class represents an object within the system that communicates with other
structured classes exclusively through interfaces called ports. A finite state machine,
represented by a state diagram, represents the behavior of a structured class.
Receiving messages via ports causes the state machine to make transitions, executing
the logic contained in the structured class.

4 Saehwa Kim1, Michael Buettner1, Mark Hermeling2, Seongsoo Hong1

The full behavior of a system is defined by the composition of all structured
classes, their connections, and their state machines. The structure of a structured class
is defined in a structure diagram. In this diagram other classes can be used as parts of
the composition. These are referred to as structured-class-parts. A structured-class-
part can be fixed, optional or plug-in. All fixed structured-class-parts contained in a
system are instantiated when the system is initialized. Alternatively, a structured-
class-part can be marked as optional or plug-in and such a structured-class-part is
instantiated dynamically according to the needs of designers. They are not instantiated
at initialization but must be explicitly created and destroyed by a state transition. A
plug-in structured-class-part is not an actual instance, but is a reference to an existing
structured class instance in the model, and is created by importing a reference to an
instance of an incarnated optional or a fixed structured-class-part.

Another concept in UML is replication of structured-class-parts and ports. Each
individual instance of a replicated structured-class-part can be accessed by using the
replication index. In Fig. 1, the PhoneProxy is a replicated structured-class-part;
there are multiple instances of PhoneProxy in ProxyManager, but it is modeled
as one structured-class-part. Replicated ports can be understood in much the same
way. A structured class may require multiple instances of one port and so the port is
replicated. Messages may be sent from all of the port instances at once or they may be
sent from one particular instance by specifying the port index. In Fig. 1, we can see
that the port connecting the ProxyManager and OAMSubsystem structured-class-
parts is replicated so that each instance of PhoneProxy has a discrete connection to
OAMSubsystem.

For our toolset, we exploited IBM Rational Software Rose RealTime (RoseRT),
which is a modeling tool that allows users to design object-oriented real-time systems
using UML 2.0 and generate complete executables directly from these designs.

2.2 Scenario-Based Multithreading

In structured-class-based multithreading the entity which can be manipulated is a
message. It is possible to map the incoming messages of a structured class to a certain
thread, and possible to map a single message to a thread or assign it a priority. But in
most cases the designer does not conceptualize in terms of individual messages, but in
terms of message chains. It is more natural that an entire message chain would be
mapped to a thread, or timing metrics would be considered from the start of a chain to
the end.

Also, it is not possible in structured-class-based multithreading for a message
coming into a structured class to be processed on different threads in different
situations. This imposes great limitations on the designer. Our scenario based
multithreading allows the user to define priority and thread mapping for a complete
message chain instead of individual messages. Structured classes will execute on
different threads at different times depending on which scenario message sequence it
is participating in at the moment. This not only is more akin to the way a designer
would conceptualize a problem, but it also allows much greater flexibility in model
design.

Experimental Assessment of Scenario-Based Multithreading for Real-Time Object-Oriented
Models: A Case Study with PBX Systems 5

Moreover, structured-class-based multithreading may degrade the performance of
real-time systems by extending blocking time unnecessarily. The sources of blocking
in structured-class-based multithreading are 1) two-level scheduling, 2) message
sending, and 3) run-to-completion semantics as addressed in [18]. Blocking due to
two-level scheduling occurs when a message is handled by a lower priority thread.
Blocking due to inter-thread message passing occurs because the per-thread message
queue is accessed by multiple threads. Finally, blocking caused by run-to-completion
semantics is due to the synchronization requirements of each state transition of a
structured class. This last type of blocking can occur for each instance of inter-thread
message passing.

Blocking due to two-level scheduling can be eliminated if thread priorities are
dynamically changed according to the priorities of the handled messages, and
blocking due to message passing can be bounded as once for each task if IIP
(Immediate Priority Inheritance Protocol) [10, 13] is adopted. However, blocking due
to run-to-completion semantics can be neither eliminated nor bounded as once in
structured-class-based multithreading. Consequently, scenario-based multithreading
performs better than structured-class-based multithreading since it 1) eliminates the
blocking due to inter-thread message passing that cannot be avoided in structured-
class-based multithreading and 2) bounds as once the blocking due to run-to-
completion semantics that may occur whenever messages are delivered between
threads. In scenario-based multithreading, priority inversion has an upper bound of
the duration of the processing of a single message by the scenario causing blocking. A
more in depth discussion of our scenario-based multithreading approach can be found
in [12].

3. PBX System: An Example Case Study System

As a case study, we made use of a Private Branch eXchange (PBX) phone system for
servicing cell phones. We were fortunate to have the chance to perform our case study
on a model acquired from an industry source. One of the uses of a PBX is to allow in
house calling for an office or building without the need to use outside lines. This is
achieved by mapping a telephone number to an extension, which is a physical device
or jack. When a user picks up a phone connected to one of these extensions and dials
a number, the PBX system identifies which extension is associated with the dialed
number and connects the two extensions.

Our PBX system model exploits 29 structured classes and a high level of
functionality. It is a typical layered model where the bottom hardware layer processes
external inputs. The model consists of four top level structured classes:
ProxyManager, DeviceManager, OAMSubsystem, and CallController, as in Fig. 1.

The ProxyManager manages a group of interfaces, PhoneProxies, between the
physical phone devices and the PBX, while the DeviceManager maintains a group of
representations of the physical phones. The OAMSubsystem is responsible for storing
the mappings between telephone numbers and extensions, and is the mechanism used
to check if a phone number is valid. The CallController maintains representations of

6 Saehwa Kim1, Michael Buettner1, Mark Hermeling2, Seongsoo Hong1

calls that are currently active in the system, and these act as communication channels
between Phone instances when a call is in progress.

A call is established as follows. When a phone powers on, the power on signal is
received by the ProxyManager associated with the phone and is forwarded to the
DeviceManager which creates a Phone instance which will act as the internal
representation of the powered on phone. When the phone dials a number, the digits
are buffered by the PhoneProxy until the send signal recalls the complete dialed
number and sends it to the associated Phone instance, which then makes use of the
OAMSubsystem to check if the dialed number is valid. If it is, the Phone instance will
send a message to CallController requesting a new Call instance to be created. The
created Call instance will then contact the Phone instance which represents the dialed
phone. If the dialed Phone instance is not busy, the Call instance will cause the dialed
phone to ring. If the dialed phone answers the call, a communication channel is
established between the caller and the called phone and notification of the connected
call is sent to the two PhoneProxy instances.

If an error occurs at any of these steps, for example the number is invalid or the
dialed phone is busy, appropriate messages are sent to the related PhoneProxies.
When a phone sends the signal to end the call, the two Phone instances are returned to
a waiting state and the Call instance that was mediating the call is destroyed. When a
phone is powered off, the corresponding Phone instance is destroyed.

4. Application of Our Scenario-Based Tool Chain

Our scenario-based tool chain exploits an established UML 2.0 modeling tool,
RoseRT, and is facilitated by 1) the RoseRT IDE where the PBX system model is
integrated with our test harness, 2) our analyzer tool that derives a scenario model
from code generated from RoseRT, 3) our code modifier that converts the single
threaded source code into scenario-based multithreaded code, and 4) our customized
scenario-based run-time system based on the original RoseRT run-time.

Our analyzer tool analyzes the model by parsing the generated source code to
derive a new model of the application. It detects scenario starting points and
recognizes each replication of a port as separate, which allows us to map signals from

Phone
Proxy

Phone

Call

ProxyM anagerDeviceM anager

CallController O AM Subsystem

Phone
Proxy

Extension

Extension

Session

Session

fixed

optional

plug-in

Fig. 1. Simplified structure diagram of our PBX system

Experimental Assessment of Scenario-Based Multithreading for Real-Time Object-Oriented
Models: A Case Study with PBX Systems 7

different replication indices to different threads. We used this capability to model
scenarios from lower indexed phones as having lower priorities than scenarios from
higher indexed phones. The generated model represents the system as scenarios in a
tree structure that depicts the possible executions or actions of the scenarios. The
designer must assign priorities to each of the scenarios in the scenario model.
Assigning viable priorities is the responsibility of the designer. This process can be
aided by profiling tools that calculate or estimate worst-case execution time and
analyze schedulability [11].

After the scenario model is generated, our modifier tool adapts the application
source code generated by RoseRT for scenario-based multithreading. This integration
modifies the scenario starting points to exploit our runtime system and inserts code
for thread construction and destruction. Also, each of the capsules is assigned a
priority ceiling to ensure proper scheduling for the system.

When the modified source code is compiled and linked with our customized run-
time system, it generates an executable conforming to our scenario-based threading.
Our customized version of the RoseRT run-time system support scenario-based thread
execution with IIP as described in Sect. 3.1 [10, 13]. We used the RoseRT run-time
system 2001.03.00 compiled with GCC 2.95.3. The target environment was Sun
Solaris 9 (SunOS 5.9) on a Sun Microsystems Sun Blade 1000. The structured-class-
based multithreaded implementation was adapted from the single-thread model and
the mapping of structured classes to threads was done based on the guidelines
described in [18].

5. Experimental Performance Results

In this section we report experimental performance results from our case study to
show the performance improvements, compared to structured-class-based

Blocking Times of Call Request/Receive Scenarios (bSend)

0

5

10

15

20

25

30

35

1 2 3 4 5

Phone

T
im
e
 (
1
0
0
m
s)

Scenario-based: Avg
Structured-class-based: Avg

Scenario-based: Max
Structured-class-based: Max

Response Times of Call Request/Receive Scenarios (bSend)

0

10

20

30

40

50

60

1 2 3 4 5

Phone

T
im
e
 (
1
0
0
m
s)

Scenario-based: Avg
Structured-class-based: Avg

Scenario-based: Max
Structured-class-based: Max

(a)

(b)

Fig. 2. (a) Blocking times and (b) response times for call request/receive scenario

8 Saehwa Kim1, Michael Buettner1, Mark Hermeling2, Seongsoo Hong1

multithreading, that can be achieved with our scenario-based multithreading. Our
results clearly show an improvement in performance with respect to blocking time
and also scenario response times.

We performed experiments varying the number of phones from 5 to 100,
measuring blocking times and response times for each scenario. Response time is the
time from when the initiating external message is enqueued, until the last message in
the execution chain is processed. Blocking time is the time that a scenario must wait
for tasks to execute that have a lower or equal priority. We present the results for the
call request/receive (bSnd) scenario and omit the results for other scenarios since
they show similar results. Because the PBX system showed similar behavior with a
various number of phones, we present blocking and response times for a system with
five phones. We also show results for a varying number of phones to compare the
scalability of the two implementations.

5.1. Blocking and Response Times

Fig. 2 shows the average and maximum blocking times (Fig. 2a) and response times
(Fig. 2b) for the call request/receive scenarios. As shown in the figure, the
blocking/response duration is generally shorter than for the structured-class-based
implementation, especially considering maximum blocking/response times. The
blocking/response time incurred by the structured class implementation increases with
a higher priority, but this is simply due to the fact that for a high priority task, there
are a greater number of tasks with a lower priority. Since the structured class
approach processes messages in a first-in-first-out manner, a greater number of lower
priority tasks create more blocking time. In scenario-based multithreading, a high
priority task will always execute before a low priority task, so the blocking times do
not significantly increase as priority increases.

Fig. 2b shows that the maximum response times for the structured class version are

Average Blocking Times of Call
Request/Receive Scenarios

0

5

10

15

20

25

30

5 10 20

Number of Phones

T
im
e
 (
1
0
0
m
s
)

Scenario-based
Actor-based

Maximum Response Times of the Highest
Priority Call Request/Receive Scenarios

0

20

40

60

80

100

120

140

160

180

5 10 20

Number of Phones

T
im
e
 (
1
0
0
m
s
)

Scenario-based
Actor-based

 (a) (b)

Fig. 3. (a) Average blocking times and (b) maximum response times of the highest priority
scenarios

Experimental Assessment of Scenario-Based Multithreading for Real-Time Object-Oriented
Models: A Case Study with PBX Systems 9

fairly consistent for all priorities, with some variation. On the other hand, for the
scenario based-implementation the maximum response times drop consistently as
priority increases. These results show that response times for the scenario-based
implementation are nearly always lower than for the structured class implementation,
and higher priority tasks benefit enormously from our scenario-based approach.

5.2. Scalability

To compare the scalability of the two multithreading approaches, we show the
average blocking times (Fig. 3a) and maximum response times (Fig. 3b) results for
bSnd scenarios for a varying number of phones. Other results such as maximum
blocking times and average response times are omitted because they vary as would be
expected from the results of Sect. 5.1.

As shown in Fig. 3a and 3b, the times for scenario-based multithreading are nearly
constant as the number of phones increases, while those for structured-class-based
multithreading increase dramatically. These results clearly show that scenario-based
multithreading scales far better than the structured-class-based approach.

6. Conclusion

We have presented a case study to experimentally evaluate our scenario-based
multithreading of UML 2.0 models. For this we used a PBX model from an industry
source as a real-world example. We first described our UML PBX system model
focusing on its structural and behavioral design. Then, we showed how our toolset
was applied to the model to generate scenarios, as well as to generate a scenario-based
multithreaded executable.

This study clearly showed that our method can handle large-scale, complex models
and that scenario-based multithreading achieves the performance improvements in a
real-world model. The study also showed the improvements to the modeling
environment in terms of ease of use for designers, as we were able to quickly generate
executables with the desired behavior without modifying the original model.

The performance results clearly showed a significant improvement in response
times and a reduction in blocking times with scenario-based multithreading. We also
noted that performance improvements over the structured-class-based architecture are
more prominent in large-scale systems with a larger number of threads. These results
show that our scenario-based multithreading is not only viable as a means to eliminate
the manual thread assignment required in structured-class-based architectures, but
also provides significant performance gains.

In the future, we will continue our research based on other real-world applications
including support for distributed systems. We are also considering the potential
application of quality of service concepts or models to our research.

10 Saehwa Kim1, Michael Buettner1, Mark Hermeling2, Seongsoo Hong1

References

1. ARTiSAN Software Tools Incorporation. Real-Time Studio, http://www.artisansw.com
2. B. P. Douglass. Doing Hard Time: Developing Real-Time Systems with UML, Objects,

Frameworks and Patterns, Addison-Wesley, 1999.
3. B. P. Douglass. Real-Time UML: Developing Efficient Objects for Embedded Systems,

Addison-Wesley, 1999.
4. D. Gaudrean and P. Freedman. Temporal analysis and object-oriented real-time software

development: A case study with ROOM/objectime. In Proceedings of IEEE Real-Time
Systems Symposium, 1996.

5. H. Gomaa. Designing Concurrent, Distributed, and Real-Time Applications with UML,
Addison-Wesley Longman, 2000.

6. W. Ho, J. Jézéquel, A. Guennec, and F. Pennaneac'h. UMLAUT: an extendible UML
transformation framework. In Proceedings of Automated Software Engineering (ASE'99),
1999.

7. IAR Systems Incorporation, visualSTATE, www.iar.com
8. IBM Rational Software Corporation. Rational Rose RealTime User Guide: Revision

2001.03.00, 2000.
9. I-Logix Incorporation. Rhapsody tools. http://www.ilogix.com
10. Institute for Electrical and Electronic Engineers. IEEE Std. 1003.1c-1995 POSIX Part 1:

System Application Program Interface-Amendment 2: Threads Extension, 1995.
11. S. Kim, S. Cho, and S. Hong. Schedulability-aware mapping of real-time object-oriented

models to multithreaded implementations, In Proceedings of International Conference on
Real-Time Computing Systems and Applications, 2000.

12. S. Kim, S. Hong, and N. Chang. Scenario-based implementation architecture for real-time
object-oriented models, In Proceedings of IEEE International Workshop on Object-oriented
Real-time Dependable Systems, 2002.

13. S. Kim, S. Hong, and T.-H. Kim. Perfecting preemption threshold scheduling for object-
oriented real-time system design: from the perspective of real-time synchronization, In
Proceedings of ACM SIGPLAN Conference on Languages, Compilers, and Tools for
Embedded Systems. 2002.

14. J. Masse, S. Kim, and S. Hong. Tool set implementation for scenario-based multithreading
of UML-RT models and experimental validation. In Proceedings of IEEE Real-
Time/Embedded Technology and Applications Symposium, 2003.

15. D. Milicev. Automatic model transformations using extended UML object diagrams in
modeling environments. In IEEE Transaction on Software Engineering, vol. 28, no. 4, 2002.

16. J. Mukerji and J. Miller. Model Driven Architecture (MDA) Guide Version 1.0.1 OMG
Document Number: omg/2003-06-01, 2003.

17. Object Management Group (OMG). http://www.omg.org.
18. M. Saksena, P. Freeman, and P. Rodziewicz. Guidelines for automated implementation of

executable object oriented models for real-time embedded control systems, In Proceedings
of IEEE Real-Time Systems Symposium, 1997.

19. M. Saksena, P. Karvelas, and Y. Wang. Automatic synthesis of multi-tasking
implementations from real-time object-oriented models. In Proceedings of IEEE
International Symposium on Object-Oriented Real-Time Distributed Computing, 2000.

20. M. Saksena, A. Ptak, P. Freedman, and P. Rodziewicz. Schedulability analysis for
automated implementations of real-time object-oriented models. In Proceedings of IEEE
Real-Time Systems Symposium, 1998.

21. B. Selic, G. Gullekson, and P. T. Ward. Real-time object-oriented modeling. John Wesley
and Sons, 1994.

22. Unified Modeling Language (UML). http://www.uml.org

