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Abstract. This paper presents an experimental evaluation of our scenario-based 
multithreading for real-time object-oriented models by the use of a case study 
of a Private Branch eXchange (PBX) system. The PBX system was taken from 
the industry and exhibits a number of characteristics found in real-world 
applications such as a highly reconfigurable dynamic structure and a typical 
layered architecture. The objective of this experimental study is to assess the 
improvements to 1) the modeling environment in terms of ease of use for 
designers and 2) the performance of the resultant executables. We show how 
our toolset was applied to the PBX system to model scenarios, as well as to 
generate a scenario-based multithreaded executable. The study clearly shows 
that our method can handle large-scale, complex models and that scenario-
based multithreading achieves the performance improvements for a real-world 
model. 

1. Introduction 

Real-time embedded systems are becoming increasingly sophisticated and complex, 
while at the same time experiencing a shorter time-to-market with greater demands on 
reliability. As a result, the need for systematic software development methods and 
tools for real-time embedded systems is now greater than ever.  

Recently, the Object Management Group (OMG) [17] initiated Model Driven 
Architecture (MDA) [16] as an approach to supporting model-to-code bridges. This 
clearly shows the high demand for the ability to generate executable applications 
directly from object-oriented models. MDA uses the upcoming revision of the Unified 
Modeling Language (UML) [22], UML 2.0, to allow modeling of executable 
architectures. Using this new revision of the industry standard modeling language, 
designers can raise the abstraction level and stop worrying about implementation level 
concepts like tasks and mutexes and instead focus on the desired behavior of their 
systems. 
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However, current modeling tools for object-oriented modeling, such as IBM 
Rational RoseRT [8], ARTiSAN Real-Time Studio [1], I-Logix Rhapsody [9], and 
IAR visualSTATE [7], lack in providing predictable and verifiable timing behavior 
and the automatically generated code is not always acceptable. For real-time 
embedded systems it is of the utmost importance to generate executables that can 
guarantee timing requirements with limited resources. Currently, designers must map 
design-level objects to implementation-level tasks in an ad-hoc manner. Because task 
derivation has a significant effect on real-time schedulability, tuning the system with 
this approach is often extremely tedious and time-consuming. 

In our previous work [11, 12], we have proposed a systematic, schedulability-
aware method of mapping object-oriented real-time models to multithreaded 
implementations. This is based on the notion of scenarios. A scenario is a sequence of 
actions that is triggered by an external input event, possibly leading to an output event 
[11]. In [12], we presented a multithreaded implementation architecture based on 
mapping scenarios to threads. This is contrary to the architecture found in current 
modeling tools that map a group of objects to a thread. In [14], we presented a 
complete tool set implementation of the scenario-based multithreading architecture 
for UML models as well as experimental results that validate this implementation. 
Our implementation exploits an established UML modeling tool, RoseRT [8], by 
designing a scenario-based run-time system that maintains backwards compatibility 
with the RoseRT run-time system. 

In this paper, we present an experimental evaluation of our scenario-based 
multithreading of real-time object-oriented models. The objective of this experimental 
study is to assess the improvements to the modeling environment in terms of ease of 
use for designers and performance of the resultant executables. For this study, we 
have chosen a Private Branch eXchange (PBX) system as our target embedded real-
time system. To show the benefits of our approach for a real world model, we 
acquired the model from an industry source. The PBX system model we adopted for 
the case study exhibits a number of characteristics found in real-world applications 
such as a highly reconfigurable dynamic structure and a typical layered architecture.  

We show how our tool simplifies modeling by achieving a distinct separation 
between design and implementation with respect to multithreading, while providing a 
method of modeling scenarios that is essentially associated with user-perceptible 
timing constraints. We also present experimental results that clearly demonstrate the 
performance improvements that can be gained by the scenario-based implementation 
generated by our tools. 

1.1. Related Work 

There have been several research efforts that have focused on the automated 
implementation of real-time object-oriented designs and associated schedulability 
analyses [4, 18, 20]. However, these approaches are applicable to a system design 
only after tasks have been completely identified, and do not address schedulability-
aware mapping of real-time object-oriented models to implementations. Thus, real-
time designers still need rigorous methods to efficiently achieve such mappings. 
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In [19], Saksena et al. addressed problems associated with automated code 
synthesis from real-time object-oriented models. As in our approach, they attempted 
to maintain a separation of design and implementation models. Though they presented 
a seminal approach for the automated implementation of real-time object-oriented 
designs, it was not comprehensive as they presented only guidelines and heuristics. 
Their approach is also different from ours in that they do not support scenario-based 
multithreading. 

As UML has become the de-facto industry standard for software modeling, several 
research efforts have developed methods to design real-time embedded systems using 
UML [2, 3, 5]. These efforts are limited to exploiting UML at the design stage and 
fail to give solutions for generating code with desired timing behavior. There has also 
been research activities focused on model transformation in the UML framework [6, 
15] that provide various model transformation techniques where transformations are 
specified in UML. These techniques can be integrated with our approach to derive 
intermediate models of scenarios and logical/physical threads. 

 
The remainder of the paper is organized as follows. Sect. 2 summarizes UML 2.0 

that we chose as our real-time object-oriented language and presents an overview of 
our scenario-based multithreading, comparing it with traditional structured-class-
based multithreading. Sect. 3 describes the PBX system that we used as an example 
case study system. Sect. 4 explains how our toolset was applied to the model to 
generate a scenario-based multithreaded executable. Sect. 5 presents the results of our 
experimentation, comparing the performance of a structured-class-based 
implementation and our scenario-based implementation for the PBX model. The final 
section concludes the paper. 

2. UML 2.0 and Scenario-Based Multithreading 

In this section, we provide an overview of UML 2.0, our chosen real-time object-
oriented modeling language and our scenario-based multithreading. 

2.1 UML 2.0 Modeling Language 

UML 2.0 is a general purpose modeling language developed by the OMG, and 
contains corrections and new content based on user feedback on the UML 1.x 
modeling language. It has been developed to properly represent complex, event-
driven, potentially distributed real-time and embedded systems. 

The basic element of model construction in UML 2.0 is a structured class. A 
structured class represents an object within the system that communicates with other 
structured classes exclusively through interfaces called ports. A finite state machine, 
represented by a state diagram, represents the behavior of a structured class. 
Receiving messages via ports causes the state machine to make transitions, executing 
the logic contained in the structured class. 
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The full behavior of a system is defined by the composition of all structured 
classes, their connections, and their state machines. The structure of a structured class 
is defined in a structure diagram. In this diagram other classes can be used as parts of 
the composition. These are referred to as structured-class-parts. A structured-class-
part can be fixed, optional or plug-in. All fixed structured-class-parts contained in a 
system are instantiated when the system is initialized. Alternatively, a structured-
class-part can be marked as optional or plug-in and such a structured-class-part is 
instantiated dynamically according to the needs of designers. They are not instantiated 
at initialization but must be explicitly created and destroyed by a state transition. A 
plug-in structured-class-part is not an actual instance, but is a reference to an existing 
structured class instance in the model, and is created by importing a reference to an 
instance of an incarnated optional or a fixed structured-class-part. 

Another concept in UML is replication of structured-class-parts and ports. Each 
individual instance of a replicated structured-class-part can be accessed by using the 
replication index. In Fig. 1, the PhoneProxy is a replicated structured-class-part; 
there are multiple instances of PhoneProxy in ProxyManager, but it is modeled 
as one structured-class-part. Replicated ports can be understood in much the same 
way. A structured class may require multiple instances of one port and so the port is 
replicated. Messages may be sent from all of the port instances at once or they may be 
sent from one particular instance by specifying the port index. In Fig. 1, we can see 
that the port connecting the ProxyManager and OAMSubsystem structured-class-
parts is replicated so that each instance of PhoneProxy has a discrete connection to 
OAMSubsystem. 

For our toolset, we exploited IBM Rational Software Rose RealTime (RoseRT), 
which is a modeling tool that allows users to design object-oriented real-time systems 
using UML 2.0 and generate complete executables directly from these designs. 

2.2 Scenario-Based Multithreading 

In structured-class-based multithreading the entity which can be manipulated is a 
message. It is possible to map the incoming messages of a structured class to a certain 
thread, and possible to map a single message to a thread or assign it a priority. But in 
most cases the designer does not conceptualize in terms of individual messages, but in 
terms of message chains. It is more natural that an entire message chain would be 
mapped to a thread, or timing metrics would be considered from the start of a chain to 
the end. 

Also, it is not possible in structured-class-based multithreading for a message 
coming into a structured class to be processed on different threads in different 
situations. This imposes great limitations on the designer. Our scenario based 
multithreading allows the user to define priority and thread mapping for a complete 
message chain instead of individual messages. Structured classes will execute on 
different threads at different times depending on which scenario message sequence it 
is participating in at the moment. This not only is more akin to the way a designer 
would conceptualize a problem, but it also allows much greater flexibility in model 
design. 
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Moreover, structured-class-based multithreading may degrade the performance of 
real-time systems by extending blocking time unnecessarily. The sources of blocking 
in structured-class-based multithreading are 1) two-level scheduling, 2) message 
sending, and 3) run-to-completion semantics as addressed in [18]. Blocking due to 
two-level scheduling occurs when a message is handled by a lower priority thread. 
Blocking due to inter-thread message passing occurs because the per-thread message 
queue is accessed by multiple threads. Finally, blocking caused by run-to-completion 
semantics is due to the synchronization requirements of each state transition of a 
structured class. This last type of blocking can occur for each instance of inter-thread 
message passing. 

Blocking due to two-level scheduling can be eliminated if thread priorities are 
dynamically changed according to the priorities of the handled messages, and 
blocking due to message passing can be bounded as once for each task if IIP 
(Immediate Priority Inheritance Protocol) [10, 13] is adopted. However, blocking due 
to run-to-completion semantics can be neither eliminated nor bounded as once in 
structured-class-based multithreading. Consequently, scenario-based multithreading 
performs better than structured-class-based multithreading since it 1) eliminates the 
blocking due to inter-thread message passing that cannot be avoided in structured-
class-based multithreading and 2) bounds as once the blocking due to run-to-
completion semantics that may occur whenever messages are delivered between 
threads. In scenario-based multithreading, priority inversion has an upper bound of 
the duration of the processing of a single message by the scenario causing blocking. A 
more in depth discussion of our scenario-based multithreading approach can be found 
in [12]. 

3. PBX System: An Example Case Study System 

As a case study, we made use of a Private Branch eXchange (PBX) phone system for 
servicing cell phones. We were fortunate to have the chance to perform our case study 
on a model acquired from an industry source. One of the uses of a PBX is to allow in 
house calling for an office or building without the need to use outside lines. This is 
achieved by mapping a telephone number to an extension, which is a physical device 
or jack. When a user picks up a phone connected to one of these extensions and dials 
a number, the PBX system identifies which extension is associated with the dialed 
number and connects the two extensions. 

Our PBX system model exploits 29 structured classes and a high level of 
functionality. It is a typical layered model where the bottom hardware layer processes 
external inputs. The model consists of four top level structured classes: 
ProxyManager, DeviceManager, OAMSubsystem, and CallController, as in Fig. 1. 

The ProxyManager manages a group of interfaces, PhoneProxies, between the 
physical phone devices and the PBX, while the DeviceManager maintains a group of 
representations of the physical phones. The OAMSubsystem is responsible for storing 
the mappings between telephone numbers and extensions, and is the mechanism used 
to check if a phone number is valid. The CallController maintains representations of 
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calls that are currently active in the system, and these act as communication channels 
between Phone instances when a call is in progress.  

A call is established as follows. When a phone powers on, the power on signal is 
received by the ProxyManager associated with the phone and is forwarded to the 
DeviceManager which creates a Phone instance which will act as the internal 
representation of the powered on phone. When the phone dials a number, the digits 
are buffered by the PhoneProxy until the send signal recalls the complete dialed 
number and sends it to the associated Phone instance, which then makes use of the 
OAMSubsystem to check if the dialed number is valid. If it is, the Phone instance will 
send a message to CallController requesting a new Call instance to be created. The 
created Call instance will then contact the Phone instance which represents the dialed 
phone. If the dialed Phone instance is not busy, the Call instance will cause the dialed 
phone to ring. If the dialed phone answers the call, a communication channel is 
established between the caller and the called phone and notification of the connected 
call is sent to the two PhoneProxy instances.  

If an error occurs at any of these steps, for example the number is invalid or the 
dialed phone is busy, appropriate messages are sent to the related PhoneProxies. 
When a phone sends the signal to end the call, the two Phone instances are returned to 
a waiting state and the Call instance that was mediating the call is destroyed. When a 
phone is powered off, the corresponding Phone instance is destroyed. 

4. Application of Our Scenario-Based Tool Chain 

Our scenario-based tool chain exploits an established UML 2.0 modeling tool, 
RoseRT, and is facilitated by 1) the RoseRT IDE where the PBX system model is 
integrated with our test harness, 2) our analyzer tool that derives a scenario model 
from code generated from RoseRT, 3) our code modifier that converts the single 
threaded source code into scenario-based multithreaded code, and 4) our customized 
scenario-based run-time system based on the original RoseRT run-time. 

Our analyzer tool analyzes the model by parsing the generated source code to 
derive a new model of the application. It detects scenario starting points and 
recognizes each replication of a port as separate, which allows us to map signals from 
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Fig. 1. Simplified structure diagram of our PBX system 
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different replication indices to different threads. We used this capability to model 
scenarios from lower indexed phones as having lower priorities than scenarios from 
higher indexed phones. The generated model represents the system as scenarios in a 
tree structure that depicts the possible executions or actions of the scenarios. The 
designer must assign priorities to each of the scenarios in the scenario model. 
Assigning viable priorities is the responsibility of the designer. This process can be 
aided by profiling tools that calculate or estimate worst-case execution time and 
analyze schedulability [11]. 

After the scenario model is generated, our modifier tool adapts the application 
source code generated by RoseRT for scenario-based multithreading. This integration 
modifies the scenario starting points to exploit our runtime system and inserts code 
for thread construction and destruction. Also, each of the capsules is assigned a 
priority ceiling to ensure proper scheduling for the system. 

When the modified source code is compiled and linked with our customized run-
time system, it generates an executable conforming to our scenario-based threading. 
Our customized version of the RoseRT run-time system support scenario-based thread 
execution with IIP as described in Sect. 3.1 [10, 13]. We used the RoseRT run-time 
system 2001.03.00 compiled with GCC 2.95.3. The target environment was Sun 
Solaris 9 (SunOS 5.9) on a Sun Microsystems Sun Blade 1000. The structured-class-
based multithreaded implementation was adapted from the single-thread model and 
the mapping of structured classes to threads was done based on the guidelines 
described in [18]. 

5. Experimental Performance Results 

In this section we report experimental performance results from our case study to 
show the performance improvements, compared to structured-class-based 
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Fig. 2. (a) Blocking times and (b) response times for call request/receive scenario 
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multithreading, that can be achieved with our scenario-based multithreading. Our 
results clearly show an improvement in performance with respect to blocking time 
and also scenario response times. 

We performed experiments varying the number of phones from 5 to 100, 
measuring blocking times and response times for each scenario. Response time is the 
time from when the initiating external message is enqueued, until the last message in 
the execution chain is processed. Blocking time is the time that a scenario must wait 
for tasks to execute that have a lower or equal priority. We present the results for the 
call request/receive (bSnd) scenario and omit the results for other scenarios since 
they show similar results. Because the PBX system showed similar behavior with a 
various number of phones, we present blocking and response times for a system with 
five phones. We also show results for a varying number of phones to compare the 
scalability of the two implementations. 

5.1. Blocking and Response Times 

Fig. 2 shows the average and maximum blocking times (Fig. 2a) and response times 
(Fig. 2b) for the call request/receive scenarios. As shown in the figure, the 
blocking/response duration is generally shorter than for the structured-class-based 
implementation, especially considering maximum blocking/response times. The 
blocking/response time incurred by the structured class implementation increases with 
a higher priority, but this is simply due to the fact that for a high priority task, there 
are a greater number of tasks with a lower priority. Since the structured class 
approach processes messages in a first-in-first-out manner, a greater number of lower 
priority tasks create more blocking time. In scenario-based multithreading, a high 
priority task will always execute before a low priority task, so the blocking times do 
not significantly increase as priority increases. 

Fig. 2b shows that the maximum response times for the structured class version are 
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fairly consistent for all priorities, with some variation. On the other hand, for the 
scenario based-implementation the maximum response times drop consistently as 
priority increases. These results show that response times for the scenario-based 
implementation are nearly always lower than for the structured class implementation, 
and higher priority tasks benefit enormously from our scenario-based approach. 

5.2. Scalability 

To compare the scalability of the two multithreading approaches, we show the 
average blocking times (Fig. 3a) and maximum response times (Fig. 3b) results for 
bSnd scenarios for a varying number of phones. Other results such as maximum 
blocking times and average response times are omitted because they vary as would be 
expected from the results of Sect. 5.1. 

As shown in Fig. 3a and 3b, the times for scenario-based multithreading are nearly 
constant as the number of phones increases, while those for structured-class-based 
multithreading increase dramatically. These results clearly show that scenario-based 
multithreading scales far better than the structured-class-based approach. 

6. Conclusion 

We have presented a case study to experimentally evaluate our scenario-based 
multithreading of UML 2.0 models. For this we used a PBX model from an industry 
source as a real-world example. We first described our UML PBX system model 
focusing on its structural and behavioral design. Then, we showed how our toolset 
was applied to the model to generate scenarios, as well as to generate a scenario-based 
multithreaded executable. 

This study clearly showed that our method can handle large-scale, complex models 
and that scenario-based multithreading achieves the performance improvements in a 
real-world model. The study also showed the improvements to the modeling 
environment in terms of ease of use for designers, as we were able to quickly generate 
executables with the desired behavior without modifying the original model. 

The performance results clearly showed a significant improvement in response 
times and a reduction in blocking times with scenario-based multithreading. We also 
noted that performance improvements over the structured-class-based architecture are 
more prominent in large-scale systems with a larger number of threads. These results 
show that our scenario-based multithreading is not only viable as a means to eliminate 
the manual thread assignment required in structured-class-based architectures, but 
also provides significant performance gains. 

In the future, we will continue our research based on other real-world applications 
including support for distributed systems. We are also considering the potential 
application of quality of service concepts or models to our research. 
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