Scheduler-Assisted Prefetching:
Efficient Demand Paging for Embedded Systems

Stanislav A. Belogolov', Jiyong Park', Jungkeun Park? and Seongsoo Hong'

'Real-Time Operating Systems Laboratory
Seoul National University, Seoul, Korea
{stas, parkjy, sshong}@redwood.snu.ac.kr

Abstract

Embedded systems tend to use demand paging in orvder
to provide more memory to applications in a cost-effective
manner. However, demand paging drastically degrades the
performance when the page fault rate is high. Prefetching
has been known as a common remedy for page fault
overhead. Although many prefetching mechanisms have
been proposed, they are either effective only for specific
page access patterns or too straight-forward to decrease a
page fault rate to an acceptable level. We propose a
scheduler-assisted prefetching mechanism which does not
have such fundamental defects. As a proof of concept, our
mechanism was completely implemented in Linux. We have
also conducted a series of experiments to show its
effectiveness. The experimental results showed a
significant improvement: the number of the major page
Sfaults and the scheduling latency decreased by 30% and
51%, respectively.

1. Introduction

Demand paging is becoming widely adopted in
embedded systems as embedded applications get larger in
memory footprint. Typical embedded systems used to store
code in NOR flash memory because it supports eXecute-
In-Place (XIP). However, an increasing number of
embedded systems come with only NAND flash memory
because they become subject to tighter memory budget
constraints and stronger limitations on a form factor.
Unfortunately, NAND flash memory cannot support XIP
since NAND flash memory allows only block data
transfers. This forces real-time operating systems to use
demand paging to dynamically load code pages from a
NAND flash memory-based storage device.

Demand paging, however, introduces unacceptable run-
time overheads caused by page faults. Page fault handling
incurs slow I/O data transfers from NAND flash memory
and suspends the faulted task until the required page is
properly loaded into RAM. As a result, the intensive

’Dept. of Aerospace Information Engineering
Konkuk University, Seoul, Korea
parkjk@konkuk.ac.kr

demand paging drastically decreases
throughput and response time.

Obviously, a real-time operating system could improve
applications performance if it could load the required
pages before they cause page faults. This is a widely
practised technique known as prefetching. The important
issues of prefetching are to decide which pages to prefetch
and when.

This paper introduces a scheduler-assisted prefetching
mechanism as a general solution to the page fault overhead
problem without limitations on hardware and task sets. Our
approach is to modify a scheduler to predict the task
sequence and modify the virtual memory manager so that
it accumulates recently faulted pages by monitoring page
faults. For each task, we have its accumulated pages
prefetched before it gets scheduled for execution.

As a proof of concept, we implemented our scheduler-
assisted prefetching into the Linux kernel and conducted a
series of experiments. The experiments showed significant
performance improvement in terms of page faults and
interactivity.

There have been many prefetching mechanisms in the
literature. The naive one-block look ahead prefetching [13]
is certainly useful for sequential access patterns but does
not work well for non-linear ones. Other works [10, 14, 15,
16, 17] focus on data cache prefetching in L2 by detecting
complex data access patterns. These approaches have
limited applicability because they are hardware-specific.
The mechanism suggested by Lin, et al. [12] substitutes
LRU-related caching by prediction-based prefetching.
Since such prediction is made possible in a limited and
predefined set of applications with known execution
traces, the approach can be applied only for a limited set of
embedded systems.

In 2001, Suh, et al. [1] and Chiou, et al. [2] suggested
to use a scheduler to predict a job sequence and prefetch
jobs just before they are scheduled for execution. Their
work showed the theoretical decrease in the number of
page faults. Using simulation, they also evaluated if it
would be practical to develop such a prefetching
mechanism. However, they did not present a complete
prefetching mechanism.

applications



It is also worth clarifying the difference between
scheduler-assisted prefetching and two recently created
prefetching mechanisms: SuperFetch [19] implemented
in Microsoft Widows Vista and Swap Prefetch [18]
implemented in -ck patches of Linux. Their main goal is
to resolve so called “after lunch syndrome.” When one
leaves working computer idle for some time during lunch
time and then finds it with all the tasks swapped out by
the background services like an antivirus or a search
indexer. That is why when one begins working again the
computer starts an intensive swapping in. SuperFetch and
Swap Prefetch are idle time prefetching techniques.
Unlike them, the scheduler-assisted prefetching attempts
to reduce the page fault rate when the system is under
heavy memory load and several tasks are competing for
the CPU simultaneously.

The rest of this paper is organised as follows. Section
2 introduces the main problems of the prefetching
technique in a formal way. Section 3 explains the
scheduler-assisted prefetching mechanism in the context
of an abstract operating system. Section 4 is devoted to
our implementation of the proposed mechanism on top of
the Linux kernel. Section 5 provides a detailed
description of the experimental set-ups, goals,
benchmarking tools and results. Finally, Section 6
summarizes and concludes this paper.

2 Problem Definition

Our general goal is to decrease the number of page
faults by prefetching pages which are currently absent
from memory and will be accessed after the next context
switch. We should address the following four issues in
order to make the prefetching efficient:

1. The correct moment for starting the prefetching
during the current job execution has to be
determined.

2. The task that will be executed after the next
context switch has to be determined.

3. The pages that will be accessed by the predicted
task have to be determined.

4. The pages in RAM that can be replaced by
prefetched pages without degradation of the
current task performance have to be determined.

In this section, we formally define a problem for each

of the issues to formulate our scheduler-assisted
prefetching mechanism.

2.1 Activation Moment Problem

The first problem is to determine the correct moment
for starting the prefetching. We call this moment — an
activation moment. We formulate the problem with a
boolean function defined as below.

NG :L[ 1, if the prefetching is required at time ¢
|0 , otherwise

This function tells us whether the current time is the
right moment for starting the prefetching or not.
Prefetching is activated only when the function returns 1.
The function should be defined in a way that the impact
on the performance is minimized. An early prefetching
may degrade the performance of the currently running
task by swapping out or discarding pages that are
currently used by the task. A late prefetching can degrade
the performance of the next task since there is not enough
time for loading pages into RAM.

2.2 Task Prediction Problem

Given a correct activation moment, the task that will
be executed after the next context switch must be
determined. Let ¢ be a given activation moment that
satisfies A(¢)=1 . Also, let T, denote a set of ready
tasks at activation moment ¢. Then we can predict next
task TE€T, using a scheduler function as below.

r=S(T,)
This function returns the task to be executed right after

the next context switch among the ready tasks according
to the given scheduling algorithm.

2.3 Page Selection Problem

Given selected task Tt predicted at activation
moment ¢, the next problem is to determine the pages to
be prefetched for task T . This problem can be
formulated as a function defined below.

P(T, t)=(p1, P>, )

This function gives a sequence of pages that will be

accessed by task T .

2.4 Page Replacement Problem

The last remaining problem is to determine the pages
that are replaced by the prefetched pages. Usually, an
operating system has a default page replacement policy
which is used by its implementation of the demand
paging. However, prefetching changes the normal page
access patterns. Therefore, we need to either ensure that
our prefetching does not cause harmful effect to the
default page replacement policy or suggest our own page
replacement policy. In other words, we are required to
answer the following questions:

1. How does the typical page replacement policy
behave when our prefetching mechanism is
enabled?

2. Can our prefetching mechanism cause
performance degradation if we use the default



1: Handle page fault(t,p)

2: Inform about page fault(T,
— Virtual MemoryManager pag (*p)
4 e: Prefetch(p) b: Check prefetchi
Prefetcher - eck prefetching(r)
Q
©
2| o Scheduler
f Load(p) 5 | @ 5
&3 2
2|8 =
kS % o . .
& 28 a: Process scheduling event()
n 1
<« — — =
Memory Pages Prefetching Lists Tasks

Figure 1: Scheduler-Assisted Prefetching Mechanism.

replacement policy?

By answering the first question, we analyse the
impact of our prefetching mechanism on the default page
replacement policy. The negative answer on the second
question ensures no performance degradation. However
if the answer on the second question is positive, then we
have to change the default page replacement policy in
order to avoid such regression.

3 Scheduler-Assisted Prefetching Mechanism

This section introduces the scheduler-assisted
prefetching mechanism. The main idea is that the
memory pages of a next scheduled task are loaded before
the context switch in parallel with execution of a
currently scheduled task. This requires computing
systems to be able to load data from the storage device in
parallel with another task execution. This is true for the
most computing systems because they usually have
integrated DMA controllers.

Figure 1 shows general overview of the scheduler-
assisted prefetching mechanism. This Figure illustrates
two activities which make up the scheduler-assisted
prefetching: accumulation of faulted pages references and
loading of pages used by the task, which is scheduled
next. The accumulation activity is numbered by Arabic
numbers starting from 1 and the page loading activity is
numbered by lower case English letters starting from ‘a’.
Also this Figure shows the multiplicity relationship
between memory pages, prefetching lists and tasks. Each

task has one prefetching list, which references multiple
memory pages.

As it was mentioned in the previous section, we have
four issues to design the prefetching system. These issues
are covered in the next subsections.

3.1 Activation Moment Calculation

The first issue we discuss is the moment when the
prefetching procedure is executed. Basically, we have
two approaches for prefetching activation:

1. Timer-based approach suggests setting up the
prefetching function as a handler for a timer. We
set up such a timer during rescheduling. This
timer will interrupt a current task some time
before it finishes its job to give the prefetcher a
chance to start loading pages for the next task.

2. Scheduler tick-based approach suggests to decide
prefetching initiation during a scheduler tick.
Usually, during a scheduler tick we can calculate
how much time left before the rescheduling
execution. Using this information we decide if it
is time to start prefetching.

The fundamental difference of these approaches is
that the first one calculates prefetching starting time
relative to a left border of the task execution period — the
moment when a job is released, while the last approach
puts that moment relative to a right border — the moment
when a task is suspended.

The disadvantage of the first method is that we need



to do complex and scheduler-dependant calculations of
the waiting time for each task. These calculations should
take into account priority system of an OS. For example,
Linux kernel has 40 priorities and a time unit of
execution is different not only for different priorities, but
also for the same priorities of different schedulers and
even for different versions of the same scheduler. The
second method does not have this disadvantage, but
assumes that scheduler is implemented using scheduling
ticks. In our implementation we used the tick-based
approach.

Now we will discuss how we calculate the right
moment for the prefetching activation. Let us introduce
variable parameter £€[0, 1] which determines what
fraction of a current task should be completed before we
start prefetching for the next task. Smaller values of &
corresponds to earlier prefetching, while £=1 means
that no prefetching is required. We can calculate each
moment of prefetcher activation using formula defined
below.

t=r,,+& (”sm_”j)

In this formula r,, is the release time of a current

cur

task and rg,, is the release time of the predicted task.

3.2 Task Sequence Prediction

In order to do prefetching as the Figure 2 shows, we
need to know the task which will be executed next after a
current task.

Task |

>

Task2 _ S >
Task 3 _:I_>
time

H Prefetching
Figure 2: Next task prefetching.

T JExecution

We modify the task scheduler, so that it calls original
scheduler two times to provide us with a task which is
predicted for execution next as it shown by activities a, b
and c. Predicted means that this task will be rescheduled
for execution unless some more important task appears in
a run-queue.

Usually, an operation of selecting the next task for
execution is as simple as selecting first element from a
certain collection. Every scheduling algorithm tries to
optimise such operation in order to decrease context
switch overhead, so this operation is not expensive. Our
approach suggests that this operation should be called
twice during one job execution: once for deciding which
task to prefetch and once to select next task during
context switch. When prefetcher is activated, it makes all
the pages, referenced in corresponding prefetching list,
present in memory as activities d, e and f'show.

Of course, at the rescheduling moment scheduler may
return a task which is different form the task selected for
prefetching because a new task has been started or a
temporally suspended high priority task was waken up. In
that case prefetching will not give any performance
boost, but will not degrade it as well for the reasons
discussed in Section 3.4.

In order to make performance even higher, we can
further modify task scheduler so that it always tries to
follow its earlier prediction. This ensures almost 100%
effectiveness of prefetching for the price of a less
responsive scheduler. We believe such approach can be
useful for the soft real-time and general-purpose
operating systems.

3.3 Prefetching Pages Accumulation

Trying to prefetch all pages of a given task is
impractical because the sum of the memory footprints of
a current and next task can exceed RAM size. Also
applications with large memory footprints usually
actively use only limited number of pages.

We know that for every task the sets of pages used
during its current job and during its next job executions
differ insignificantly [20]. Usually, the working set
changes slowly and gradually as Figure 3 shows.

o ACCC | —  —  —
O 1 1
o

o

> — —
g (== [ 1 [ 1  —
gl:l [ ] [ ] [ 1

time quantum

Figure 3: Page access pattern.

We accumulate a list of recently faulted pages in
order to avoid them in the future as shown by activities 1
and 2 in Figure 1. The references to these pages are
stored in a list associated with memory descriptor of each
task. The reference to a page is added to the list when the
page is being faulted as represented by activity 3.

3.4 Replacement Policy Analysis

In this subsection we assume that a task set is big
enough to consume all available memory and every
request for a new memory page initiates swapping out or
discards a code page. Such conditions we will call a
heavy memory load.

The Least Recently Used (LRU) algorithm is known
to be the best page replacement algorithm. The idea of
LRU algorithm is that an operating system maintains a
list of all memory pages sorted by the last access time in
descending order. When a new page addition is required,
the last page in the list is swapped out or discarded, a



new page is allocated and added to the head of the list.
Since a plain implementation of this algorithm is
impractical, modern operating systems typically use
algorithms which mimic the LRU behaviour exploiting
different kinds of heuristics. That is why we will consider
the LRU algorithm as a memory replacement policy.

Analysing the LRU algorithm behaviour under a
heavy memory load, we found a very negative
implication which drastically degrades performance. The
problem is that all the pages of a given task are swapped
out or discarded just before this task execution is
resumed because at that moment these pages are actually
least recently used. Figure 4 illustrates such situation.
This example considers a system with 4 tasks and RAM
large enough for pages of only 3 tasks. Tasks are run in
the Round-Robin manner. The pages of each task come to
the beginning of the LRU list during this task execution
and then migrate towards end of the list as other tasks are
executed. Notice that the pages of a task are completely
forced out by the release time of its next job.

RAM CPU

EmTask WBETask [@—OTask [ITask
1 2 3 4

Figure 4: LRU under heavy memory load.

time

The extreme case of this situation, which is called
thrashing, is when a system progresses very slowly
because it is constantly handling page faults.
Reference [5] provides a detailed discussion of this
problem and suggests a workaround which eventually
was implemented in the Linux kernel.

The scheduler-assisted prefetcher addresses this
problem. Since it makes the pages, which are likely to be
accessed, be present in memory, these pages
automatically move to the beginning of the LRU list. The
more accurate approach is to artificially put prefetched
pages in the LRU list after the pages which were added
by the current task during its current time unit. In that
case we avoid situation when prefetched pages force out
pages of the current task, thus we will guarantee no
performance degradation. Figure 5 illustrates the LRU
page list behaviour when prefetching is on. Notice that
the scheduler-assisted prefetcher puts pages of the next
task after the pages of the current task.

115

RAM CPU

mETask mETask [ITask Task time
1 2 3 4

Figure 5: LRU behaviour with prefetching.

4 Implementation

The proposed mechanism was implemented in Linux
kernel version 2.6.23-rc2. In this section we discuss
Linux- and implementation-related issues of prefetching.
Since the Linux kernel is written in C, we provide our
algorithms in C. In order to avoid insignificant details of
the Linux API, we will use a simplified pseudo version
of this API. The implementation of the scheduler-assisted
prefetching required modification in two places of the
kernel:

1. Process Scheduler — sched_fair.c;

2. Virtual Memory — mm_types.h, memory.c;

This kernel uses a new scheduler — CFS (Completely
Fair Scheduler [11]). The prefetching was implemented
on top of the CFS. During every scheduling tick we
check which part of the time unit the current task has
already used. If it has used more than & of the time unit,
we find the next task and start prefetching for it as shown
in algorithm 1. The prefetching routine forces loading of
recently swapped out or discarded pages of the next task.
Algorithm 1 uses the following attributes and methods:

® rg->nr tasks —number of tasks in run queue;
® rg->curr — currently executing task;

® rg->curr->ex part —part of time unit already
consumed by current task;

® rg->get next to (x) —returns task nextto x in
run queue;

® next->prefetched - prefetching flag, which
states if prefetching for the task has already been
executed.

Algorithm 1: Prefetching part of the
scheduling tick routine.

Input:

pref start - prefetching start
value rg - run queue
Output: none

if (rg->nr tasks > 2 &&
rg->curr->ex part > pref start) {
next = rg->get next to(rg->curr);
if (next->prefetched)
return;
forall (p in next->prefetch pages)
make present (p);

next->prefetched = true;



In order to store and manage a list of recently faulted
pages, we had to modify memory map structure and
routine responsible for its creation. These changes allow
us to accumulate a list of pages, which the prefetching
routine will try to make present later as shown in
algorithm 2. Algorithm 2 uses the following attributes
and methods:

® handle fault () — page fault handler, returns
page fault type;

® curr->prefetch pages->add - adding
operation of the prefetching list;

® count vm_event () — virtual memory events
counting operation;

® PF MAJOR — major page fault flag.

Algorithm 2: Prefetching part of the page
fault routine.

Input:

fp - faulted page

curr - currently executing task
Output: none
if (handle fault (fp, curr) == PF MAJOR) {

curr->prefetch pages->add(fp);

count vm event (PF_MAJOR) ;
}

Linux distinguishes several kinds of page faults due
to several possible reasons they are initiated and ways
they are handled. The page faults which induce I/O
operations are called major. The major page faults are the
longest to process, since they require slow I/O operations.
In contrast to major page faults, all other page faults take
little time to handle. However, they still consume some
processor time. We count page faults because we will
need this number during experiments.

Page Fault is not an exceptional situation in the Linux
kernel as it may seem. In fact, it takes more than 700 000
of them just to boot up our testing machine. Such
situation exists because Linux tends to use lazy
algorithms for its virtual memory management.
Normally, a number of the major page faults is a very
small fraction of total number of page faults.

5 Experiments

The goal of our experiments was to show that
prefetching gives actual performance boost. The expected
result was that the number of page faults would drop.
However, this fact alone does not guarantee performance
improvement because the prefetching overhead can be
too large. In order to check that prefetching overhead
does not degrade performance, we performed the
interactivity tests.

5.1 Benchmarking tools

We used two tools for the experiments called Stress
[8] and Interbench [9]. The first program was used to

emulate heavy memory load situation and the second — to
evaluate the impact on the interactivity.

We designed the Stress test in a way to simulate the
situation showed by the Figure 4. Performing the stress
tests, we were interested in the number of major page
faults and the overall number of page faults.

We used Interbench for the interactivity tests. This
benchmark was designed to emulate the CPU scheduling
behaviour of the interactive tasks. We can measure the
impact of prefetching on interactivity by comparing a
scheduling latency and amount of desired CPU time tasks
receive. The scheduling latency represents the time from
the sleep till the task gets scheduled.

5.2 Experimental Set-ups

The experiments were performed on emulated
machine of the following configuration:
e Single x86 CPU
® 32 or 64 MB of RAM
® 256 MB of Swap
® Gentoo Linux Minimal
An emulator process was executed with the highest
priority during every test to ensure no influence from the
host system. The prefetching list was limited with 1024
page references.
We used three kinds of the Linux kernel for testing:
1. A vanilla kernel' version 2.6.24-rc2.

2. The same kernel patched for prefetching after
75% of a time slice is used. We call it
prefetch-75.

3. The same kernel patched for prefetching after
50% of a time slice is used. We call it
prefetch-50.

During the stress test 5 virtual memory workers were
forked. Each worker allocates 8 MB and accesses
allocated memory periodically. Size of each page is 4
KB, thus prefetcher can prefetch up to 50% of memory
allocated by each task. The total amount of required
memory is 40 MB and it exceeds the amount of available
RAM on 32 MB machine. Since Linux mimics LRU
behaviour for the page replacement policy, each worker is
completely forced out from the memory before its next
iteration. We also conducted this experiment with 64 MB
of RAM to evaluate the effect of prefetching when a
system has enough memory for a given task set.

For the interactivity test we used the gaming work
simulation with the memload background. The gaming
work simulation corresponds to 100% CPU utilization,
when the memload corresponds to a heavy memory and
swap pressure by repeatedly accessing 110% of available
ram and moving it around and freeing. Reference [9]
provides complete description of Interbench work

1 Vanilla kernel — the Linux source tree released by Linus Torvalds
without any other modifications.



Major Page Faults
180 168
160

140
120
100
80
60

# of major faults

40
20

32 64
RAM (MB)

W 2.6.24-rc2 W 26.24-rc2- [026.24-rc2-
prefetch-75 prefetch-50

Figure 6: Number of major page faults.

simulations and loads.
5.3 Experimental Results

The results of the Stress test are showed by Figures 6
and 7. The Figure 6 shows that both prefetchers
significantly reduce the number of the major page faults.
The prefetch-50 reduces number of the major page faults
stronger. This result is predictable because the earlier we
start prefetching pages, the more pages we managed to
load into memory before a context switch happens.
Obviously, starting prefetching just after a context switch
would give maximum effect on the number of the major
page faults.

However, starting too early negatively influence the
overall number of page faults. In case of prefetch-50, the
overall number of page faults has increased by 40% and
is almost twice as large comparing to prefetch-75.
Figure 7 shows this negative effect. Of course, non-major
page faults require much less handling time, but still they
interrupt execution of a task. It also worth noticing that
memory reduce from 64 MB to 32 MB results in only
29% increase of overall page fault for prefetch-50, while
without prefetching this number is 72%.

Table 1 summarises the impact of prefetching during
the stress test. As one can see, earlier prefetching has a
strong negative impact on the total number of page faults
when the prefetching done at the right time can
significantly decrease both number of the major page
faults and the total number of page faults.

Overall Page Faults

1
8000 16287
16000
14000
12000 11588
£ 10000
I
o 8000 675567006706
[
— 6000
o
* 4000
2000
0
32 64
RAM (MB)
W 26.24-rc2 W 2.6.24-rc2- [0 2.6.24-rc2-
prefetch-75 prefetch-50
Figure 7: Overall number of page faults.
Table 1: Change of PF rate after prefetching.
Kernel Mjr. PF Change (%) | Total PF Change (%)
Prefetch-75 -30 -25
Prefetch-50 -37 +40

The interactivity tests showed noticeable reduction in
both average and standard deviation values of the
scheduling latency. Smaller scheduling latency means
smoother playback of multimedia and better
responsiveness on user actions. Also the percentage of
time unit used by tasks has increased from 61.3% to
76.5% for prefetch-75 and 74.4% for prefetch-50. The
table 2 summarises the impact of prefetching during the
interactivity test.

Table 2: Interactivity benchmark results.

Measurement No prefetching | Prefetch-75 | Prefetch-50
Avg. Latency (ms) | 63.1 30.7 344
Latency SD (ms) |90.1 60.3 61.1
% of Desired CPU |61.3 76.5 74.4

During our tests, we did not try to find an optimal
moment for prefetching because this value heavily
depends on a task set, memory size and storage device
throughput. We are going to address this issue in our
future work.



6 Conclusions

In this paper we discussed a problem of performance
degradation because of a high page fault rate. The main
reasons is a page fault handling overhead. When the
number of page faults is high, so is the handling
overhead.

The suggested solution of the problem is to use the
scheduler-assisted prefetching. The decision which pages
to prefetch is made with the assistance of a task scheduler
and page faults monitoring. We suggest a scheme that can
be used for implementation of our prefetching for a given
operating system. This scheme deals with the four main
problems of prefetching.

First, we address the activation moment problem by
choosing a fraction of time unit after the execution of
which the prefetching should be activated. The task
prediction problem can be addressed by extra call of
scheduler at prefetching moment. As a solution of the
page choosing problem, we suggest to accumulate limited
list of last faulted pages for each task. Finally, analysis of
the page replacement problem showed that LRU with few
modifications can be applied.

Our solution follows “do no harm” and “best effort”
approaches. This means that our prefetching can not
guarantee zero number of page faults but can avoid
performance degradation. The implication is that our
scheduler-assisted prefetching does not guarantee
improvement of schedulability but will not hurt it as well.
This is an important issue for the real-time systems.

In order to measure performance improvement, we
have implemented prefetching on top of the Completely
Fair Scheduler of Linux and have performed
experiments. We conducted two kinds of experiments:
Stress test of the virtual memory and Interactivity
experiment. The Stress experiment showed a noticeable
drop of page faults numbers: 30% for major page faults
together with 25% for overall page faults. The
Interactivity  experiment showed the following
improvement of the system interactivity: the scheduling
latency average decreased by 51%, the standard deviation
— 33%. Thus, our experiments confirm feasibility of the
scheduler-assisted prefetching.

There are two issues we would like to address in our
future work. First, we want to develop a formal theory of
our prefetching for a real-time scheduling, so that it could
be used by the hard real-time systems. If the scheduling
is absolutely predictable and the memory footprints of
tasks are known, then our mechanism can decrease
WCET and thus enhance schedulability. Second, we are
intended to develop an algorithm for smooth on-line
variation of the activation moment depending on the
memory size and utilization.

References

[17 Ed Suh, et al., “Job-Speculative Prefeetching: Eliminating
Page Faults From Context Switches in Time-Shared
Systems,” MIT Computation Structures Group Memo 442,
2001.

[2] Derek Chiou, et al., “Scheduler-Based Prefetching for
Multilevel Memories,” MIT Computation Structures
Group Memo 444, 2001.

[3] Mel Gorman, Understanding the Linux Virtual Memory
Manager, Prentice Hall PTR, 2004.

[4] Daniel P. Bovet, Marco Cesati, Understanding the Linux
Kernel, 3rd Edition, O’Reilly, 2005.

[5]1 Song Jianga, Xiaodong Zhangb, “Token-ordered LRU: an
effective page replacement policy and its implementation
in Linux systems,” Performance Evaluation, 60, 5-29,
2005.

[6] Cao, P. Felten, E. W. Karlin, A. R. Li, K., “A Study of
Integrated Prefetching and Caching Strategies,”
Performance Evaluation Review, Vol. 23, No. 1, 1995.

[7] Patterson, R. H. Gibson, G. A. Ginting, E. Stodolsky, D.
Zelenka, J., “Informed Prefetching and Caching,”
Operating Systems Review, Vol. 29, No. 5, 1995.

[8] Amos Waterland, Stress benchmarking tool,
http://weather.ou.edu/~apw/projects/stress/

[9] Con Kolivas, Interbench,
http://members.optusnet.com.au/ckolivas/interbench/

[10] Ronald G. Dreslinsky, Ali G. Saidi, Trevor Mudge, Steven
K. Reinhardt, “Analysis of Hardware Prefetching Across
Virtual Page Boundaries,” CF’07, May 7-9, 2007.

[11] Ingo Molnar, “Completely Fair Scheduler Design,”
http://people.redhat.com/mingo/cfs-scheduler/sched-
design-CFS.txt

[12] Jian-Hong Lin, Yuan-Hao Chang, Jen-Wei Hsieh, Tei-Wei
Kuo, Cheng-Chih Yang, “A NOR Emulation Strategy over
NAND Flash Memory,” RTCSA’07, August 21-24, 2007.

[13] N. P. Jouppi, “Improving direct-mapped cache
performance by the addition of a small fully-associative
cache and prefetch buffers,” In Proc. 17th Ann. Int’l Symp.
on Computer Architecture, pages 364-373, 1990.

[14] J. W. C. Fu, J. H. Patel, B. L. Janssens, “Stride directed
prefetching in scalar processors,” 25th Ann. Int’l Symp. on
Microarchitecture, pages 102—-110, 1992.

[15] S. Kim, A. V. Veidenbaum, “Stride-directed prefetching for
secondary caches,” International Conference on Parallel
Processing, pages 314-323, 1997.

[16] K. J. Nesbit, A. S. Dhodapkar, J. E. Smith, “Ac/dc: An
adaptive data cache prefetcher,” Proc. 13th Ann. Int’l
Conf. on Parallel Architectures and Compilation



Techniques, pages 135-145, 2004.

[17] K. J. Nesbit, J. E. Smith “Data cache prefetching using a
global history buffer,” Proc. 10th Int’l Symp. on High-
Performance Computer Architecture (HPCA), page 96,
2004.

[18] Con Kolivas, “Swap Prefetch,” Linux kernel mailing list
<linux-kernel@vger.kernel.org>.

[19] Mark Russinovich, “Inside the Windows Vista Kernel:
Part 2,7 TechNet Magazine, March, 2007.

[20] Abraham Silberschatz, Peter Galvin, Greg Gagne, Applied
Operating Systems Concept, John Wiley & Sonsm Inc.,
pages 325-328, 2000.



