
Weaving Aspects into Real-Time Operating System Design  
Using Object-Oriented Model Transformation 

 
 

Jiyong Park, Saehwa Kim, and Seongsoo Hong 
School of Electrical Engineering and Computer Science 

Seoul National University, Seoul 151-742, Korea 
{parkjy, ksaehwa, sshong}@redwood.snu.ac.kr 

 
 

Abstract 
 
Despite of the proliferation of object-oriented and 

component technology, their application to real-time 
operating systems (RTOS) has been limited since most 
design concerns in RTOSes crosscut software components 
and these are critical to deliver required performance 
and functionality. Aspect-Oriented Programming (AOP) 
is a very effective means to solve the crosscutting problem. 
However, we have observed the following limitations of 
the current AOP framework: (1) the current text-based 
AOP languages cannot clearly show how aspects are 
weaved together, (2) their granularity is too coarse to 
capture all aspects in an RTOS, (3) it is difficult to control 
the weaving process, since aspect weavers are usually 
hard-coded. 

In this paper, we propose a new AOP framework that 
provides (1) a graphical aspect programming 
environment that visualizes aspects, crosscutting classes, 
and method structures, (2) a new aspect model that 
supports a sub-method level granularity where an aspect 
is defined as a set of classes, and (3) an aspect weaving 
process specified by an object-oriented meta-model 
transformation. Since our aspect-oriented programming 
framework improves the expressiveness of the 
crosscutting concerns of RTOSes and automates aspect 
weaver generation, it can enhance RTOS customization. 

 
 

1.  Introduction 
 
In order to meet the increasing demand for application-

specific embedded systems, embedded real-time operating 
systems (RTOS) need to be highly customizable to adapt 
to the varied applications’ needs. The usual solution was 
the use of object-oriented and component-based 
technology. In this approach, the features of an RTOS are 
modularized as components, and programmers can then 
customize the RTOS by selecting, configuring, and 
binding the needed components. Unfortunately, this 
approach does not provide full customizability, because 
object-oriented and component-based technology cannot 

modularize all of the features of the RTOS. This is 
because some features such as scheduling, 
synchronization, fault-tolerance, and path-specific 
optimizations crosscut other features. These crosscutting 
features are critical to deliver required performance and 
functionality. 

Using Aspect-oriented programming (AOP) [1], 
programmers can explicitly describe a crosscutting feature 
in a separate module called an aspect. The programmers 
describe the functional structure using an object-oriented 
language, and describe aspects using an aspect language. 
Then a code transformer called an aspect weaver applies 
the aspect code to the object-oriented language code and 
generates output source code that is also written in object-
oriented language. 

Unfortunately, we found that current AOP languages 
are not adequate for modularizing RTOSes. First, they are 
text-base languages, so they cannot clearly show how 
aspects are weaved together. Especially while designing 
an RTOS, it is necessary to see the program execution of 
woven code, and know which aspects are applied in which 
order at certain points without jumping between the code 
of various different aspects. Second, they provide only 
granularity at the level of a method, which is too coarse 
for separating aspects in an RTOS. The methods in an 
RTOS tend to be long and typically contain many features 
complexly intertwined. In order to modularize the deeply 
tangled code of features in an RTOS, granularity finer 
than the level of a method is needed. Third, most of the 
current AOP mechanisms are implemented in a dedicated 
language. This makes it hard to port an AOP mechanism 
to another language. 

In this paper, we provide a graphical aspect 
programming framework to be used for the design and 
implementation of RTOSes. In this programming 
framework, an aspect represents a feature, which can be 
turned on or off. In an aspect, programmers can define 
multiple classes and the merging of definitions from 
multiple aspects introduces a complete definition of a 
class. This idea was motivated from open classes [12, 13]. 
An open class is one to which new methods can be added 
without editing the class directly. To achieve sub-method 



level granularity, we view methods as consisting of basic 
blocks and each basic block can belong to a different 
aspect. Our programming framework visualizes the above 
relationships, thus it is very easy to see how aspects are 
weaved together, while achieving sub-method level 
granularity. 

We also present the detailed design of our aspect 
model and a description of the aspect weaving process. 
Current aspect weaving processes have the following 
limitations. (1) Because the aspect weaver is usually hard 
coded, programmers have no control over the aspect 
weaving process. (2) If programmers need to modify the 
weaver, they cannot avoid the complexity of the target 
language, such as C++ or Java. (3) Modifying the aspect 
weaver is difficult, tedious, time-consuming, and error-
prone. 

From these observations, we have decided to make the 
aspect weaving process modifiable and language 
independent. This idea is motivated by object-oriented 
model transformation that was introduced in [5]. In our 
framework, (1) an aspect weaver is automatically 
generated from specifications written by programmers. 
Thus, programmers can easily customize the aspect 
weaving process to meet their own needs. 2) The 
generated aspect weaver yields as its output a general 
object-oriented model that can be specified with UML 
[10]. Then this UML model can be transformed into the 
target source code via a commercial tool such as RoseRT 
[11]. 

The rest of this paper is structured as follows. In 
Section 2, we describe the design of our graphical aspect 
programming framework. In Section 3, we describe the 
design of our aspect model in detail. In Section 4, we 
specify the aspect weaving process using object-oriented 
model transformation. Finally, we conclude this paper in 
Section 5. 

 
1.1 Related work 

 
Previous attempts to modularize features of operating 

systems were introduced in [2, 6, 8]. In their work, they 
modularize four features; waking the page daemon, 
prefetching for mapped files, enforcing quotas for disk 
usage, and tracing blocked processes in device drivers in 
the FreeBSD operating system. For this purpose, they 
used aspectC [4], and showed that aspectC can modularize 
the features without altering other code, and the 
performance penalty caused by AOP is negligible.  

Other research has attempted to represent aspects using 
UML [7, 9, 14]. In [9], they showed that the current UML 
specification was insufficient for modeling aspects, so 
they added the new modeling elements, pointcut and 
aspect.  Unfortunately, their notation could not describe 
an open class, which is a very powerful AOP mechanism. 
They also did not support sub-method level granularity.  

Our work was greatly motivated by [15]. This work 
introduced the notion of visual separation of concerns 
(VSC). VSC presents separate views of crosscutting 
aspects, allowing programmers to read and edit an aspect 
in isolation, while leaving the semantic structure of the 
system untouched.  

 
2.  Graphical aspect programming 

framework 
 
In this section, we describe the design of our aspect 

programming framework that includes four diagrams: (1) 
aspect diagram, (2) crosscutting class diagram, (3) class 
structure diagram, and (4) method structure diagram. The 
first diagram provides the highest-level view and the last 
diagram provides the lowest-level view. 

When programmers add an aspect to an operating 

file system

ext3 ntfs
cramfs

mm system

mmap support

mmap support for cramfs

sub-aspect

 

file system

cramfs

mmap support for cramfs

inode file

cramfs_inode cramfs_file

cramfs_inode cramfs_file

mmap support

mm_block

mm_block

inheritance

crosscutting

 
Figure 1. Aspect diagram. Figure 2. Crosscutting class diagram. 



system, they start from the aspect diagram and proceed to 
lower level diagrams. The aspect diagram shows the entire 
system as a collection of aspects and their dependencies. 
Programmers can add, activate, and deactivate aspects in 
the diagram. 

Then, the crosscutting class diagram magnifies the 
view by grouping aspects that have a direct relationship 
with a certain aspect. In this diagram, the programmers 
specify which classes the aspect crosscuts. After 
specifying that, the programmers can construct a class in 
the class structure diagram. In that diagram, attributes and 
methods are added to the class.  

Finally, the method structure diagram shows the 
internal structure of a method as a collection of blocks. In 
this diagram the programmers can freely change the 
structure of a method by adding code to the individual 
blocks. By dividing methods into blocks, sub-method 
level granularity is achieved. In the following section, we 
will explain each diagram beginning with the highest-level 
view first. 

 
2.1 Aspect diagram and crosscutting class 

diagram 
 
In our programming framework, an aspect represents a 

feature. Networking, ARM CPU support, logging, and the 
enforcement of file system quotas are examples of aspects. 
RTOSes consist entirely of aspects. Programmers can 
customize an RTOS by turning aspects on or off. An 
aspect also can have sub-aspects that can be turned on 
only when all its parent aspects are turned on. For 
example, a networking aspect can have the TCP/IP 
protocol stack, the BSD socket interface and Packet 
filtering as sub-aspects. Likewise, the TCP/IP protocol 
stack sub-aspect also can have TCP, UDP, and IP 
protocols as its sub-aspects. Inside an aspect, 
programmers can define multiple classes. If another aspect 

also defines the same class, the two definitions are merged 
into one class definition. 

The aspect diagram in Figure 1 shows how to add the 
mmap support for cramfs aspect. Initially, there 
are two top-level aspects that we are interested in, file 
system and mm system, which represent the file 
system and memory management system features. The 
file system aspect contains various file systems as 
sub-aspects, such as cramfs, ntfs, and ext3. The mm 
system also has the mmap support sub-aspect, which 
is the memory mapping feature. Aspects that have dotted 
lines are inactive aspects. They are turned off. We can add 
the mmap support for cramfs aspect as a sub-
aspect of both mmap support aspect and cramfs 
aspect, because our new aspect depends on both the two 
aspects.  

The crosscutting class diagram in Figure 2 shows 
aspects that have a relationship with the new aspect. In 
this figure, we can see how the new aspect extends 
multiple classes through multiple aspects. The new aspect 
mmap support for cramfs defines the 
cramfs_inode, cramfs_file and mm_block 
classes. Note that those classes are also defined in the 
other aspects cramfs and mmap support.  

The complete definition of such a class is the union of 
all class definitions. So, we can regard the classes that 
belong to two or more aspects as having a crosscutting 
relationship. This relationship has no direction, whereas 
an inheritance relationship is directional. Class definitions 
linked together with a crosscutting relationship form a 
complete class definition. 

 
2.2 Class structure diagram 

 
As mentioned above, multiple aspects may crosscut a 

class. As mentioned above, multiple aspects may crosscut 
a class. In our example, two aspects, cramfs and mmap 

mm_block

mmap support

mmap support for cramfs

int size
void *address
int refcount
int mmap(…)
int munmap(…)
int mm_exit(…)

int mapped_to_file
struct inode *mmapped_inode;
struct file *mmapped_file;
int mmap(…)
int munmap(…)
int mm_exit(…)

mm_block

int mmap(…)
int munmap(…)
int mm_exit(…)

int size
void *address
int refcount
int mapped_to_file
struct inode *mmapped_inode;
struct file *mmapped_file;

 

Figure 3. Class structure diagram (definition of 
mm_block class). 

Figure 4. Class structure diagram (complete 
definition of mm_block class). 



support for cramfs, crosscut the cramfs_file 
class. These two aspects define each attribute and method 
inside the class.  

Figure 3 shows the definition of class mm_block, 
which is crosscut by the mmap support for 
cramfs and mmap support aspects. Figure 4 shows 
the     complete class definition created by merging these 
two aspects. Initially the mmap support aspect defines 
three attributes and three methods. The three attributes are 
the size, address, and reference count of a memory 
mapped block. The three methods are for mapping a block, 
un-mapping a block, and un-mapping whole blocks 
belonging to a process. The new aspect, mm support 
for cramfs adds three additional attributes.  The first 
records whether this mm_block is mapped to a file.  If it 
is mapped, the two remaining attributes record the 
location of the inode and the file where this mm_block is 
mapped to. 

 
2.3 Method structure diagram 

 
Just as multiple aspects can crosscut a class, multiple 

aspects also can crosscut a method. This allows the 
internal structure of a method to be modified by aspects, 
thus achieving granularity finer than the level of a method. 
A method consists of basic blocks connected together. We 
have defined two types of basic blocks: code blocks and 
conditional blocks. A code block is a sequence of code 
that does not contain a conditional branch statement, and a 
conditional block is a conditional branch statement. The 

control flow of a method is structured by basic blocks and 
their connections. 

Figure 5 shows an example of basic blocks inside the 
mmap() method of the mm_block class. Each basic 
block is tagged with the aspect that it belongs to. A basic 
block can be represented by simple comments about its 
function. Programmers can expand a basic block and see 
the actual code in it and from here they can edit the basic 
block. Usually, the programming framework ignores the 
code inside a block. However, if the programming 
framework detects a conditional statement inside a block, 
that conditional statement is automatically split from the 
basic block and becomes a new conditional basic block. 

Figure 6 shows what happens to the mmap() method 
when the mmap support for cramfs aspect is 
applied.  In order to set the attributes added to the 
mm_block class by the new aspect (mapped_to_file, 
mmapped_inode, mmapped_file), additional code 
needs to be inserted. If mapping was done by a file system 
mapping routine (fs->mmap()), then mm_block is set 
to a file mapped block (mapped_to_file = 1). If 
mapping was done by allocating a new empty area, then 
mm_block is set to an anonymous block 
(mapped_to_file = 0). Programmers can add basic 
blocks for this code by cutting a link between basic blocks 
or by splitting a basic block into two basic blocks. Then, 
the basic blocks can be populated with code. Basic blocks 
from inactive aspects are not visible, or programmers can 
configure it so that they are shaded. Consequently, our 
scheme does not hurt readability while visualizing how 

int mmap(…)

declare local variables
find appropriate region

mmap support

map to a file ?
mmap support

allocate a new memory
create a new mm_block
add it to a list

mmap support

fs->romptr()
mmap support

failed ?
mmap support

fs->mmap()
mmap support

failed ?
mmap support

return mapped address
mmap support

true

true

true

false

false

false

 

int mmap(…)

declare local variables
find appropriate region

mmap support

map to a file ?
mmap support

allocate a new memory
create a new mm_block

mmap support

fs->romptr()
mmap support

failed ?
mmap support

fs->mmap()
mmap support

failed ?
mmap support

return mapped address
mmap support

true

true

false

false

false

set as anonymous block
mmap support for cramfs

create a new mm_block
set as file mapped block

mmap support for cramfs

true

add mm_block to list

mmap support

 

Figure 5. Method structure diagram (before adding 
mmap support for cramfs aspect). 

Figure 6. Method structure diagram (after adding 
mmap support for cramfs aspect). 



different aspects are weaved together. 
 

2.4 Architecture of our framework 
 
Now, we describe the architecture of our graphical 

aspect programming framework shown in Figure 7. The 
programming framework consists of two views.  One is 
the current configuration that specifies whether a certain 
aspect is turned on or off. The other is the aspect model, 
which describes what aspects are in the system and their 
definitions. The detailed design of the aspect model is 
provided in Section 3. Using the current configuration and 
the aspect model, the viewer shows various diagrams 
previously introduced. Using the editor, programmers can 
configure an RTOS by turning aspects on or off. They can 
add or delete aspects, and input the actual code inside 
basic blocks.  

The current configuration can be saved to a file and the 
aspect model is also stored in aspect files for later use. In 
our framework, we have chosen to store a single aspect in 
a single file. However, the exact format of the aspect file 
has not yet been decided.  Simple #ifdef methods in 
C/C++ can be used, or some aspect language such as 
AspectJ [3] can also be used. In either case, the aspect 
model remains unchanged. The aspect analyzer absorbs 
language and aspect technology dependencies. 

The aspect weaver generates executable target code 
from the current configuration and aspect model. The 
detailed operation of the aspect weaver is described in 
Section 4. 

 
3.  Detailed specification of the aspect model 

 
In this section, we describe our aspect model in detail. 

Figure 8 is the design of our aspect model described in a 
UML class diagram. The top-level class is the system. In 
the system there exist many aspects, each representing a 
specific feature. An aspect has a unique name and a 
description and it also has a boolean flag that indicates 
whether the aspect is activated or not. An aspect can have 
multiple sub-aspects and a sub-aspect may depend on 
multiple super-aspects. A sub-aspect can be activated only 
when all its super-aspects are activated. 

An aspect consists of multiple class definitions. An 
aspect may also have no class definitions; in that case the 
aspect is used only for grouping sub-aspects. Each class 
has its name, but the name is not necessarily unique in the 
system, because a class in another aspect may have the 
same name. 

Inside a method basic blocks are defined, and the basic 
blocks are connected to each other. Since a basic block 
may be connected to a basic block that belongs to a 
different aspect, a basic block is not a member of the 
method, but of the system. However, a basic block has a 
relationship with a method to indicate in what method it is 
defined. 

Basic blocks can be one of two sub-types, a code block 
and a condition block. The main difference between them 
is that the code block is connected to zero or one other 
basic block whereas the condition block is connected to 
two or more basic blocks, depending on its condition. 
Each basic block has a description about what it is for, as 

Viewer/Editor

configuration aspect
model

aspect analyzer

configuration files aspect files 

class files

aspect weaver

 

name
description
active: boolean

aspect

name
…

class

name
type
…

attribute
name
return type
…

method

system

description
…

basic block

code

code block

condition

condition block

1

1..n

*

*

super-aspect

sub-aspect

1

11

*

* * 1
defined in

*

1

from
*

0..1

2..n
to

to

 

Figure 7. Architecture of the programming 
framework. 

Figure 8. UML class diagram of our aspect model. 

Generated 
aspect 
weaver

UML
diagram

General
code

generator

Source code
(C++/Java)

configuration

aspect
model

Object-oriented
model

transformation

Figure 9. Aspect weaving process. 



well as the actual code or condition that is written in the 
target language. 

 
4.  Aspect weaving process 

 
Now we will explain the aspect weaving process. In 

Figure 7, the aspect weaver is a tool that generates class 
files written in the target language from the configuration 
and aspect model. Rather than using a hard-coded aspect 
weaver, we use an aspect weaver automatically generated 
from an object-oriented meta-model transformation 
specification, as in Figure 10. If we use a hard-coded 
aspect weaver, the following limitations arise. (1) The 
aspect weaver is tied to a target language. Thus, 
programmers have no control over the process of aspect 
weaving. (2) Modifying the aspect weaver cannot be done 
without dealing with the complexity of a target language. 
(3) Modification of the weaver is difficult, error-prone, 
and time-consuming. 

In our aspect weaving process, programmers specify 
aspect weaving using an object-oriented meta-model 
transformation. We give a sample specification in Figure 
10. This specification is transformed into the actual aspect 
weaver. This aspect weaver takes the current 
configuration and aspect model as inputs and generates 

UML diagrams. In turn, UML diagrams can be 
transformed into target source code by the general code 
generator provided by a commercial tool such as Rose. 

For object-oriented model transformation specification, 
we have adopted the extended object diagrams proposed 
by Milicev [14]. We have also slightly extended the 
diagrams of Milicev since they do not support the notion 
of importable instances. Specifically, we extend the 
semantics and syntax of <<Ref>> instances used in the 
substructure definition. 

Figure 10 shows our example extended object diagram 
for meta-model transformation. By changing this object 
diagram, programmers can modify the weaving process 
without the need to modify the weaver code directly. The 
object diagram on Figure 10 describes the following meta-
model translation specification. 

 
For each Aspect a in system, 

If a.active is true 
For each Class c in a 

If c.name does not exist then generate class 
 named c.name and set it as target; 
Else set target as the existing class whose 
 name equals c.name; 
End if 
For each Method m in c  

If m.name does not exist then add m to c 
as a member  
End if 

End for 
For each Attribute att in c  

If a.name does not exist then add att to 
c  as a member 
End if 

End for 
End for 

End if 
End for 

 
<<ForEach>> stereotyped packages are used for 

repetitive element creation. In Figure 10, the innermost 
<<ForEach>> package named BaseMethod creates a 
method element for each method m contained in class c 
that is also contained in aspect a. Cond tagged values are 
used for conditional repetition or conditional creation of 
instances. As an example for conditional creation, a 
baseClass:Class instance is created only if an 
instance of the same class name does not exist. 

A <<Ref>> instance represents a variable instance 
that imports other instances according to the parameter 
setting from its tagged values. A <<Ref>> instance is not 
created even if it is within a <<ForEach>> package. In 
Figure 10, the target:Class <<Ref>> instance  
imports a created class within the BaseClasses 

<<ForEach>>
BaseAspects

{ 
ForEach = a.
OfType = Aspect.
InCollection = aspect_model.aspect
}  

{Cond=a.active 
&& c.name does not exist.}
name = c.name
type = Class

baseClass:Class

<<ForEach>>
BaseClasses

{
ForEach = c.
OfType = Class,
InCollection = a.class
}

{ 
ForEach = att.
OfType = Attribute.
InCollection = c.attribute
}  

<<ForEach>>
BaseAttribute

{ 
ForEach = m,
OfType = Method.
InCollection = c.method
}  

<<ForEach>>
BaseMethod

m
em

be
rs

m
em

be
rs

baseClass:Class

<<
R

ef
>>

 {c
.n

am
e 

==
 b

as
eC

la
ss

.n
am

e}

<<Ref>>

<<Ref>>
i1:Class

p1 p2

{ i1 = (p1 !=null) ? p1 : p2 }

{Cond= m.name does not exist}

name = m.name

baseMethod:Method

{Cond= att.name does not exist}

name = att.name
type = att.type

baseAttribute:Attribute

<<ForEach>>
BaseAspects

{ 
ForEach = a.
OfType = Aspect.
InCollection = aspect_model.aspect
}  

{Cond=a.active 
&& c.name does not exist.}
name = c.name
type = Class

baseClass:Class

<<ForEach>>
BaseClasses

{
ForEach = c.
OfType = Class,
InCollection = a.class
}

{ 
ForEach = att.
OfType = Attribute.
InCollection = c.attribute
}  

<<ForEach>>
BaseAttribute

{ 
ForEach = m,
OfType = Method.
InCollection = c.method
}  

<<ForEach>>
BaseMethod

m
em

be
rs

m
em

be
rs

baseClass:Class

<<
R

ef
>>

 {c
.n

am
e 

==
 b

as
eC

la
ss

.n
am

e}

<<Ref>>

<<Ref>>
i1:Class

p1 p2

{ i1 = (p1 !=null) ? p1 : p2 }

{Cond= m.name does not exist}

name = m.name

baseMethod:Method

{Cond= m.name does not exist}

name = m.name

baseMethod:Method

{Cond= att.name does not exist}

name = att.name
type = att.type

baseAttribute:Attribute

{Cond= att.name does not exist}

name = att.name
type = att.type

baseAttribute:Attribute

 
 

Figure 10. Extended UML object diagram that 
specifies meat-model transformation. 



<<ForEach>> package or an existing class depending 
on its tagged value. 

 
5.  Conclusion 

 
We have presented a new graphical aspect 

programming framework for the design and 
implementation of highly customizable RTOSes. 
Specifically, we have proposed (1) a graphical aspect 
programming framework that visualizes aspects, 
crosscutting classes, and method structures, (2) a new 
aspect model that supports a sub-method level granularity 
where an aspect is defined as a set of classes, and (3) an 
aspect weaving process specified by an object-oriented 
meta-model transformation. 

One of the benefits of the proposed programming 
framework is that it can clearly show the relationships 
between aspects, which is extremely difficult in the 
current text-based aspect languages. Also, our framework 
achieves granularity finer than at the level of a method; 
whereas other aspect languages achieve only method-level 
granularity. This makes our framework suitable for 
developing and implementing an RTOS, where many 
aspects are intertwined complexly. 

Our aspect model regards the operating system as a 
group of configurable aspects, and the aspects may 
contain multiple classes. Unlike the existing object-
oriented model, our aspect model allows multiple classes 
that have the same name to exist in an operating system, 
and these classes are merged to become a complete class. 
A method in a class can be divided into multiple basic 
blocks, which may be included in different aspects, thus 
achieving granularity finer than the level of a method. 

We also specified an aspect weaving process that is 
easily modifiable and independent of target language. 
Since existing aspect weavers are hard-coded, they are 
very difficult to modify and are tied to the target language. 
To solve this problem, we specified the aspect weaving 
process using object-oriented model transformation, from 
which the aspect weaver is automatically generated. 

We are currently implementing the graphical aspect 
programming framework, based on the design presented 
in this paper. We are also researching an automatic 
method that can extract crosscutting features into aspects 
from existing operating systems, such as Linux and 
FreeBSD. 

  
References 

 
1 G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. 

Lopes, J. Loingtier and J. Irwin, “Aspect-Oriented 
Programming”, In Proceedings of European Conference 
on Object-Oriented Programming, 1997. 

2 Y. Coady, G. Kiczales, M. Feeley and G. Smolyn, “Using 
ApectC to Improve the Modularity of Path-Specific 

Customization in Operating System Code”, In Proceedings 
of European Software Engineering Conference and ACM 
SIGSOFT Symposium on the Foundations of Software 
Engineering, 2001. 

3 G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, 
and W. G. Griswold, “An Overview of AspectJ”, In 
Proceedings of the European Conference on Object-
Oriented Programming, 2001. 

4 O. Spinczyk, A. Gal, and W. Schröder-Preikschat, 
“AspectC++: An Aspect-Oriented Extension to C++”, In 
Proceedings of the 40th International Conference on 
Technology of Object-Oriented Languages and Systems, 
2002. 

5 D. Milićev, “Automatic Model Transformations Using 
Extended UML Object Diagrams in Modeling 
Environments”, In IEEE Transactions on Software 
Engineering, 2002. 

6 Y. Coady and G. Kiczales, “Back to the Future: A 
Retroactive Study of Aspect Evolution in Operating 
System Code”, In Proceedings of Aspect-Oriented 
Software Development, 2003. 

7 W. M. Ho, F. Pennaneac'h, and N. Plouzeau, “UMLAUT: 
A framework for weaving UML-based aspect-oriented 
designs,” In Proceedings of Technology of object-oriented 
languages and systems (TOOLS Europe), 2000.  

8 Y. Coady, G. Kiczales, M. Feeley, N. Hutchinson, and J. S. 
Ong, “Structuring operating system aspects: using AOP to 
improve OS structure modularity,” In Communications of 
the ACM, 44 (10), 2001. 

9 M. Basch and A. Sanchez, “Incorporating Aspects into the 
UML”, In Workshop on Aspect-Oriented Modeling with 
UML, 2003. 

10 Object Management Group, OMG Unified Modeling 
Language Specification Version 1.3, 1999 

11 Rational Software, http://www.rational.com 
12 C. Clifton, G. T. Leavens, C, Chambers, and T. Millstein, 

“MultiJava: Modular open classes and symmetric multiple 
dispatch for java.”. In Procesdings of OOPSLA, 2000. 

13 T. Millstein and C. Chambers, “Modular Statically Typed 
Multimethods.”, In Proceedings of the European 
Conference on Object-Oriented Programming, 1999. 

14 M. Kande, J. Kienzle, and A. Strohmeier, “From AOP to 
UML: A Bottom-Up Approach”, In Workshop on Aspect-
Oriented Modeling with UML, 2002. 

15 M. C. Chu-Carroll, J. Wright, A. T. T. Ying, “Visual 
Separation of Concerns through Multidimensional 
Program Storage”, In Proceedings of Aspect-Oriented 
Software Development, 2003.  


