
Deterministic and Statistical Deadline
Guarantees for a Mixed Set of Periodic and

Aperiodic Tasks �

Minsoo Ryu and Seung-Jean Kim

School of Electrical Engineering and Computer Science,
Seoul National University, San 56-1,

Shillim-Dong, Gwanak-Ku, Seoul 151-742, Korea
msryu@redwood.snu.ac.kr and sjkim@stanford.edu

Abstract. Current hard real-time technologies are unable to support
a new class of applications that have real-time constraints but with
dynamic request arrivals and unpredictable resource requirements. We
propose two new admission control approaches to address this problem.
First, we present an efficient schedulability test, called utilization de-
mand analysis, to handle periodic and aperiodic tasks with deterministic
execution times. The utilization demand is defined as the processor uti-
lization required for a mixed task set to meet deadlines with certainty,
thus for deterministic deadline guarantees. We show that the utiliza-
tion demand analysis eliminates the need for complicated schedulability
analysis and enables on-line admission control. Second, we present a sta-
tistical admission control scheme using effective execution times to han-
dle stochastic execution times. Effective execution times are determined
from the deadline miss probability demanded by the application and
stochastic properties of task execution times. Every task is associated
with an effective execution time and is restricted to using processor time
not exceeding its effective execution time. This scheme allows every task
to meet its deadline with a specified probability without being interfered
with, and greatly simplifies the admission control when combined with
the utilization demand analysis.

1 Introduction

The emergence of distributed multimedia applications with demanding QoS re-
quirements is setting forth new challenges for real-time systems. Such new ap-
plications including video conferencing and interactive distance learning require
real-time performance guarantees for the delivery and processing of continuous
media data. However, despite recent developments in real-time computing, cur-
rent hard real-time solutions cannot be directly applied to these applications.
� The work reported in this paper was supported in part by MOST under the National

Research Laboratory (NRL) grant 2000-N-NL-01-C-136, by Automatic Control Re-
search Center (ACRC), and by the Automation and Systems Research Institute
(ASRI).



2 Minsoo Ryu et al.

While most real-time research has put an emphasis on the periodic task model
[15, 2, 12, 3, 14] in which task arrivals and execution times are deterministic, mul-
timedia applications have two distinguishing characteristics. First, processor us-
age patterns include both periodic and aperiodic tasks. For example, a query
for continuous media requires periodic tasks for delivery and processing of con-
tinuous data, and a query on a database of static data types requires aperiodic
tasks. Second, task execution times are either deterministic or stochastic, such
as CBR (constant bit rate) video data versus VBR (variable bit rate) data.

In this paper, we attempt to provide deadline guarantees via admission con-
trol for real-time tasks while allowing randomness in arrivals and execution times.
Such deadline guarantees can be either deterministic or statistical depending on
the characteristics of task execution times. When task execution times are upper
bounded and their bounds are known, deterministic deadline guarantees can be
provided so that all tasks meet deadlines at run-time. The deterministic guaran-
tee provides the highest level of deadline guarantees, however, it may be an overly
conservative approach for some multimedia applications which are not greatly
impacted by infrequent deadline misses. This necessitates statistical deadline
guarantees. When task execution times are not bounded or exhibit great vari-
ability, a statistical approach provides probabilistic deadline guarantees with a
specified probability.

We present new admission control approaches for both types of deadline
guarantees. First, we propose an efficient schedulability test, called utilization
demand analysis, to handle periodic and aperiodic tasks with deterministic ex-
ecution times. The utilization demand is defined as the processor utilization
required for a mixed task set to meet all deadlines. We use the utilization de-
mand to develop a schedulability test for deterministic deadline guarantees under
EDF. We show that the utilization demand analysis eliminates the need for com-
plicated schedulability analysis and enables on-line admission control. Also, as
we will see later, the utilization demand provides a useful means for statistical
deadline guarantees.

Second, we present two admission control schemes to provide statistical dead-
line guarantees by bounding the probability that tasks miss deadlines. In gen-
eral, priority driven scheduling algorithms like EDF, unlike WFQ (weighted fair
queueing), inherently lack the “isolation” mechanism to protect tasks from one
another. If a task runs arbitrarily long, bounding deadline miss probabilities of
its subsequent tasks is significantly problematic. To overcome this problem, we
propose to discard tasks that match specific criteria. Our first approach is to
discard tasks missing deadlines, and this allows us to compute deadline miss
probabilities under the worst case. The shortcoming of this approach, however,
is that it leads to computationally complex algorithms since computing probabil-
ities generally requires expensive convolution operations. Our second approach
improves upon the first one by aggressively discarding tasks. We use effective exe-
cution times which are determined from the deadline miss probability demanded
by the application and stochastic properties of execution times. Every task is
associated with an effective execution time and is restricted to using processor



Deterministic and Statistical Deadline Guarantees 3

time not exceeding its effective execution time. If a task consumes processor time
more than its effective execution time, it is immediately discarded. This scheme
allows every task to meet its deadline with a specified probability without being
interfered with, and greatly simplifies the admission control when combined with
the utilization demand analysis.

1.1 Related Work

A number of techniques have been proposed to handle mixes of periodic and
aperiodic tasks [13, 16, 6, 17, 7, 8]. The algorithms in [13, 16, 6, 17] assume that
aperiodic tasks are soft real-time and give preferential treatment to periodic
tasks. In these aproaches, aperiodic tasks are handled at a lower priority level in
the background, or at a some fixed priority level by a special periodic task which
serves aperiodic requests with its limited capacity. The algorithms proposed in
[11, 5] handle aperiodic tasks with explicit deadlines. Also, they are known to
be optimal with regard to specific criteria, for example, of the response time or
processor utilization. However, they not only require complete knowledge of the
periodic tasks, but also have high computational complexities when used on-line.
In our model, all aperiodic tasks have explicit deadlines and are scheduled by
the same scheduling policy as periodic tasks. Moreover, our utilization demand
method eliminates the need for complicated schedulability analysis, requiring
low run-time overhead.

In the meantime, several researchers have worked on non-deterministic so-
lutions to real-time scheduling problems with stochastic execution times. The
statistical rate monotonic scheduling (SRMS) in [1] is a non-deterministic ver-
sion of the classical rate monotonic scheduling. Under the assumption that the
accurate execution time of a task is known when the task arrives, SRMS allows
one to compute the percentage of deadline misses. Tia et al. [18] proposed two
methods to handle stochastic task execution times, probabilistic time-demand
analysis and transform-task method. The probabilistic time-demand analysis at-
tempts to provide a lower bound on the probability that a periodic task meets
its deadline under fixed priority scheduling. The probabilistic time-demand anal-
ysis is based on the notion of critical instant at which the first instances in all
periodic tasks are released simultaneously. The critical instant leads to the worst
case when all tasks complete before their deadlines, i.e., when no backlog exists.
However, it has not been proven for unbounded execution times that the crit-
ical instant is the worst case. Another method, called transform-task method,
divides each task into a periodic task and a sporadic task. The periodic task has
the same period as the original task and has a fixed execution time that should
be chosen such that all the periodic tasks in the system are schedulable. If the
actual execution time of a periodic task is larger than the fixed execution time
at run-time, the excessive portion of the task is modeled as a sporadic task that
can be scheduled by either a sporadic server or a slack stealing algorithm.

The key idea of our effective execution time method is similar to that of the
transform-task method in that each task is associated with a fixed amount of
execution time and its processor usage is enforced accordingly. Our contribution



4 Minsoo Ryu et al.

is to give a formal definition of effective execution times based on the notion
of statistical schedulability and to combine effective execution times with the
utilization demand analysis in order to provide an efficient, statistical version
of admission control scheme. In fact, the use of effective execution times allows
us to easily extend existing deterministic scheduling algorithms and analysis
techniques to handle stochastic execution times.

The remainder of this paper is organized as follows. In Section 2, we discuss
our models and assumptions. Section 3 describes the utilization demand method
for schedulability analysis of aperiodic tasks with known worst case execution
times. This method is then applied to a mixed set of periodic and aperiodic
tasks. Section 4 introduces two techniques for statistical deadline guarantees. The
first technique bounds deadline miss probabilities by discarding tasks missing
deadlines. The second technique uses effective execution times as its discard
criterion. We will combine effective execution times with utilization demands to
provide an efficient admission test. We then conclude in Section 5.

2 Models and Assumptions

Consider a set of aperiodic tasks Q = {τ1, τ2, . . . , τi, . . .} where tasks are in
arrival order, i.e., τi arrives earlier than τi+1. We use Q(t) ⊂ Q to denote the
set of tasks that have arrived before t and have not completed by t. Every
aperiodic task τi ∈ Q has an arrival time Ai, an execution time requirement ei,
and a relative deadline di from its arrival time. The absolute deadline Di of τi

is computed by Di = Ai + di. If the execution time ei is bounded from above,
then its least upper bound is denoted by emax

i . Otherwise, we assume that ei

is an independent random variable and is distributed according to probability
density function (pdf) gei

(e).
We use similar notation for periodic tasks. Periodic task τ̃i with period T̃i

can be considered as a finite or infinite sequence of aperiodic requests. Such
aperiodic requests are referred to as periodic task instances which are denoted
by τ̃i,j . Each periodic task instance τ̃i,j has an execution time requirement ẽi,j

and a common relative deadline d̃i. Note that we use the periodic task model
[15] where the relative deadline of a task is equal to its period, i.e., d̃i = T̃i.
If ẽi,j is upper bounded for all j, then the least upper bound is denoted by
ẽmax
i . Otherwise, we assume that all ẽi,j are independent random variables that

are identically distributed according to the same probability density function
gẽi

(e). Unlike aperiodic tasks, we use Ãi to denote the release time of the first
instance τ̃i,1. Using this, the absolute deadline D̃i,j of τ̃i,j is computed by D̃i,j =
Ãi + (j − 1)T̃i + d̃i.

In our discussions, we assume a simple system architecture consisting of two
components, an admission controller and a processor scheduler, as in Figure 1.
The admission controller, through admit or reject, is responsible for ensuring
that the system can provide promised deadline guarantees for all tasks accepted.
The processor scheduler in turn allocates processor time to tasks according a
particular scheduling algorithm. This simple architecture allows us to consider



Deterministic and Statistical Deadline Guarantees 5

a wide variety of models for end system operation and configuration. Note that
in the case of deterministic deadline guarantees, a periodic task is said to be
schedulable if all instances meet their deadlines. To do so, the admission con-
troller is responsible for admission of all future instances of accepted periodic
tasks.

Admission
ControllerArrive

RejectReject

Queue

Scheduler Depart

Task

EDF

Fig. 1. End system architecture

The scheduling algorithm considered here is earliest deadline first (EDF)[15].
EDF was selected for two reasons. First, EDF is known to be optimal for de-
terministic deadline guarantees in the sense that it can schedule any task set
which is schedulable by any other algorithm. Even though optimality of EDF
has not been proven in a statistical environment, it still serves as a benchmark
for other scheduling algorithms. Second, EDF algorithm allows for utilization-
based schedulability tests which incur little run-time overhead. Under EDF, if
the utilization of a task set does not exceed one, then the set is schedulable. We
will show that, in the next section, the utilization-based test and our utilization
demand analysis can be combined successfully into an integrated schedulability
test. Note that though we choose EDF for task scheduling, most of our techniques
are applicable to a variety of priority driven scheduling algorithms.

3 Utilization Demand Analysis and Deterministic
Deadline Guarantees

In this section we introduce the utilization demand analysis which provides a
schedulability test for a mixed task set. We first define utilization demands for
aperiodic tasks, and derive a necessary and sufficient schedulability condition. We
then develop an integrated schedulability test for a mixed set. The schedulability
tests developed in this section are used for deterministic deadline guarantees.

3.1 Utilization Demands for Aperiodic Tasks

Consider a set of aperiodic tasks Q = {τ1, τ2, . . . , τi, . . .} under priority driven
scheduling policy. In order to determine Q(t) is schedulable at t, we need to con-
sider two dynamic variables for each task τi ∈ Q(t), maximum residual execution
time eres

i,t and lead time dres
i,t . At time t, the maximum residual execution time



6 Minsoo Ryu et al.

Table 1. Summary of notation

Notation Meaning

Q Set of aperiodic tasks

Q(t) Set of aperiodic tasks that have arrived before t and have not
completed by t

Q(t, hp(τ)) Set of aperiodic tasks that have higher priorities than τi in Q(t)

τi, τ̃i, τ̃i,j Aperiodic task, periodic task, periodic task instance

Ai, ei, di, Di Arrival time, execution time, relative deadline, and absolute
deadline of τi

fi Finish time of τi

emax
i Worst case execution time of τi

epast
i,t Allocated processor time for τi by t

eres
i,t Maximum residual execution time of τi at t (eres

i,t = emax
i − epast

i,t )

dres
i,t Lead time of τi at t (Di − t)

Ãi, ẽi,j , d̃i, D̃i,j Release time, execution time, relative deadline, and absolute
deadline of τ̃i,j

T̃i Period of τ̃i

ẽmax
i Worst case execution time of τ̃i

gei(e), geres
i,t

(e) pdf of ei, pdf of eres
i,t

uQ(t)(τi) Utilization demand of τi ∈ Q(t)

UQ(t) Maximum utilization demand of Q(t)

eres
i,t of τi is the maximum of remaining processor time to complete τi. The lead

time dres
i,t of τi is the difference between its absolute deadline Di and the current

time t [10], i.e., Di − t. Keeping these two dynamic variables provides sufficient
information for the schedulability test of Q(t). Table 1 summarizes the notation
used throughout this paper.

We are now ready to define utilization demands for aperiodic tasks. Roughly,
a utilization demand of τi ∈ Q(t) is defined as the processor time required to
meet its deadline divided by its lead time. Since τi can start only after its higher-
priority tasks complete, we need to consider the sum of residual execution times
of itself and its higher-priority tasks. Let Q(t, hp(τi)) ⊂ Q(t) be the set of tasks
that have higher priorities than τi. The utilization demand of τi is defined by

uQ(t)(τi)
def=

∑
τj∈Q(t,hp(τi))

eres
j,t + eres

i,t

dres
i,t

. (1)

The maximum utilization demand UQ(t) is defined for the set Q(t) as below.

UQ(t)
def= max

i
[uQ(t)(τi)]. (2)

The following theorem shows a necessary and sufficient schedulability condi-
tion for an aperiodic task set.



Deterministic and Statistical Deadline Guarantees 7

Theorem 3.1 Aperiodic task set Q(t) = {τm, τm+1, . . . , τn} is schedulable if and
only if

UQ(t) ≤ 1. (3)

Proof. We consider the “if” part first. Let fi be the worst case finish time
of τi ∈ Q(t). The finish time fi will be current time plus the sum of residual
execution times of higher priority tasks including τi’s execution time. By the
definition of utilization demand in Eq.(1), we have

fi = t +
∑

τj∈Q(t,hp(τi))

eres
j,t + eres

i,t

= t + dres
i,t · uQ(t)(τi)

= t + (Di − t) · uQ(t)(τi).

Since uQ(τi,ti) ≤ UQ(t) ≤ 1,

t + (Di − t) · uQ(t)(τi) ≤ t + (Di − t)
≤ Di.

Next, we consider the “only if” part. The proof is by contradiction. If we assume
that Q(t) = {τ1, τ2, . . . , τn} is schedulable and UQ(ti) > 1, then there exists τi

such that uQ(τi, t) > 1. Hence,

fi = t +
∑

τj∈Q(t,hp(τi))

eres
j,t + eres

i,t

= t + (Di − t) · uQ(t)(τi)
> t + (Di − t) = Di.

This contradicts the assumption that Q(t) is schedulable. ��
Obviously, a new task arrival affects the schedulability of Q(t) while task

departures do not. Therefore, the above schedulability test is valid only until
the next arrival time of a new task. This necessitates testing of schedulability at
every task arrival. Figure 2 illustrates the maximum utilization demand UQ(t)

with several task arrivals and departures. At t3, the utilization demand jumps
to above one. It is easy to show that if UQ(t) is less than one at t, UQ(t) is a
decreasing function of time until the next arrival time.

Our second theorem shows the subadditivity property of the utilization de-
mand function. This property is essential in devising an integrated shedulability
condition for a mixed set of periodic and aperiodic tasks.

Theorem 3.2 For any two aperiodic task sets,

UQ1(t)∪Q2(t) ≤ UQ1(t) + UQ2(t). (4)

Proof. See Appendix A.



8 Minsoo Ryu et al.

1

arrive

t1 t2 t3 time

depart

depart depart

arrive arrive

Fig. 2. Utilization demand for a dynamic task set with arrivals and departures

3.2 Schedulabiltiy Condition for a Mixed Task Set

We now generalize the utilization demand analysis for a mixed set of periodic
and aperiodic tasks. Basically, all instances of periodic tasks can be considered as
aperiodic tasks. This gives a possibility to apply the utilization demand method
to periodic tasks. Suppose that P = {τ̃1, τ̃2, . . . , τ̃N} is a set of periodic tasks.
This periodic task set can be associated with an equivalent aperiodic task set
QP which consists of all task instances generated by P . Thus, P is schedulable
if and only if all tasks in QP are schedulable.

In the following theorem, we show an important relationship between the
utilization demand and the utilization of a periodic task set. The following the-
orem states that the utilization of P is equal to or greater than the maximum
utilization demand of QP .

Theorem 3.3 Let UP =
∑N

i=1
ẽmax

i

T̃i
be the utilization of periodic task set P =

{τ̃1, τ̃2, . . . , τ̃N}. If P is schedulable by EDF, then

UQP (t) ≤ UP (5)

for all t ≥ 0.
Proof. For an arbitrary t, suppose that QP (t) = {τm, . . . , τi, . . . , τn}. Without
loss of generality, assume that the maximum utilization demand is UQP (t) =
uQP (t)(τi). At this moment t, we inject a new periodic task into P such that P is
still schedulable. Consider a new periodic task τ̃∗ whose period is T̃∗ = Di −Ai.
We set ẽ∗ = T̃∗ · (1−UP ) so that UP + ẽ∗

T̃∗
= 1, then P ∪{τ̃∗} will be schedulable

by EDF. If we release the first instance τ̃∗,1 immediately before Ai, then τ̃∗,1 has
an absolute deadline earlier than τi. According to EDF policy, the priority of
τ̃∗,1 is higher than that of τi. Hence, τi would be preempted and delayed by the
amount of ẽ∗, but τi still meets its deadline Di. Let fnew

i be the finish time of
delayed τi, then we have

fnew
i = fi + ẽ∗

= t + (Di − t) · uQP (t)(τi) + ẽ∗ ≤ Di. (6)



Deterministic and Statistical Deadline Guarantees 9

By subtracting (ti + ẽ∗) from both sides of Ineq.(6) and deviding both sides by
(Di − t), we have

uQP (t)(τi) ≤ Di − ẽ∗ − t

Di − t
(7)

= 1 − ẽ∗
Di − t

(8)

= 1 − (1 − UP ) = UP . (9)

Eq.(9) follows from ẽ∗ = T̃∗(1 − UP ) = (Di − t)(1 − UP ). This completes the
proof. ��

We are now able to derive a schedulability condition for a mixed task set. Let
P be the set of periodic tasks and its utilization be UP . The following theorem
gives a sufficient condition.

Theorem 3.4 Given periodic task set P and aperiodic task set Q(t), if UP +
UQ(t) ≤ 1, then P ∪ Q(t) is schedulable by an EDF scheduler.
Proof. Let QP be the equivalent aperiodic task set of P . It suffices to show that
QP (t) ∪ Q(t) is schedulable for any t. We show that UQP (t)∪Q(t) ≤ 1.

UQP (t)∪Q(t) ≤ UQP (t) + UQ(t) (10)
≤ UP + UQ(t) ≤ 1. (11)

Ineq.(11) follows from Theorem 3.2 and Ineq.(11) follows from Theorem 3.3.
This completes the proof. ��

Using Theorem 3.4 one can easily determine the schedulability for a mixed
task set in a similar fashion as with the utilization-based test for periodic task
sets. Note that all periodic tasks can meet deadlines under EDF algorithm if the
sum of their utilization factors does not exceed one. It is easy to see that the
algorithm for the utilization demand analysis has a run time of O(n) where n
is the number of aperiodic tasks in the system. Computing utilization demands
requires maintaining small data structure for residual execution times and lead
times. Also, this requires low run-time overhead, since these variables need to
be computed only when new tasks arrive.

4 Effective Execution Times and Statistical Deadline
Guarantees

In this section, we present two statistical approaches to handling stochastic ex-
ecution times. We use two task discard policies to bound deadline miss proba-
bilities. The first approach is based on deadline miss handling. It discards tasks
missing deadlines, and this allows us to bound deadline miss probabilities of
tasks. The second approach associates each task with a fixed amount of pro-
cessor time, effective execution time, that is allocated to the task. It discards
any task whose processor usage exceeds its allocated processor time. Combined
with the utilization demand analysis, effective execution times enable an efficient
admission control with a surprising simplicity.



10 Minsoo Ryu et al.

4.1 Statistical Deadline Guarantees with Deadline Miss Handling

A statistical approach allows for a small deadline miss probability. Specifically,
the probabilistic deadline guarantee is provided in the form of

Pr(fi > Di) ≤ ε (12)

where ε is generally small, e.g., ε = 0.01. Using this condition, we can formally
define the statistical version of schedulability.

Definition 1. If the probability that a task τi misses its deadline is equal to or
less than ε, τi is said to be statistically schedulable with probability 1 − ε

Consider a task τi and a task set Q. We will use the execution time ei and
residual execution eres

i,t as random variables throughout this section. The deadline
miss probability of τi can be stated as

Pr(fi > Di) = Pr(
∑

τj∈Q(Ai,hp(τi))

eres
j,Ai

+
∑

τk∈Q((Ai,fi],hp(τi))

ek + ei > di) (13)

where Q((Ai, fi], hp(τi)) contains τi’s higher priority tasks that will be admit-
ted between the arrival and completion of τi. Thus, to provide the statistical
guarantee for τi, an admission policy must always ensure Pr(fi > Di) ≤ ε by
appropriately maintaining the future task set Q((Ai, fi], hp(τi)). Whenever a
new task τk arrives, the system needs to ensure Pr(fi > Di) ≤ ε for every τi as
well as Pr(fk > Dk) ≤ ε for τk.

We now apply Eq.(13) to periodic tasks. As mentioned above, we assume that
tasks missing deadlines are immediately discarded. Without this assumption, a
periodic task instance τ̃i,j may not complete by the release of a subsequent in-
stance τ̃i,j+1. Since such a backlog τ̃i,j can be arbitrarily long, all the subsequent
task instances may miss deadlines. This is called the domino effect [4]. Discard-
ing tasks that miss deadlines avoids such domino effects and keeps the system
predictable. The following theorem provides a statistical schedulability condition
for a periodic task set. The intuition that motivates the theorem is that we can
find the worst case since future arrivals are known due to the periodicity.

Theorem 4.1 Suppose tasks missing deadlines are immediately discarded for a
given periodic task set P = {τ̃1, τ̃2, . . . , τ̃N}. Task τi ∈ P is statistically schedu-
lable with probability 1 − ε if the following holds.

Pr(f̃i,j > D̃i,j) ≤ Pr(
N∑

k=1

ẽk · (� T̃i

T̃k

	 + 1) ≥ T̃i). (14)

Proof. Consider the equivalent aperiodic task set QP of P . At time Ãi,j , we
have QP (Ãi,j) = {τm, . . . , τn} where τn is τ̃i,j . Since dn = d̃i = T̃i for τn, we can



Deterministic and Statistical Deadline Guarantees 11

write Ineq.(13)

Pr(fn > Dn)

= Pr(
∑

τk∈QP (An,hp(τn))

eres
k,An

+
∑

τk∈QP ((An,fn],hp(τn))

ek + en > T̃i).

We can see that QP (An, hp(τn)) can include no more than one instance per each
periodic task τ̃k ∈ P , since all the previous instances are finished or discarded
before their deadlines. Thus, we have∑

τk∈QP (An,hp(τn))

eres
k,An

≤
∑

τ̃k∈P

ẽk. (15)

We then find the worst-case workload of
∑

τk∈QP ((An,fn],hp(τn)) ek +en. For each

periodic task τ̃k ∈ P , there are at most � T̃i

T̃k
	 new arrivals at QP in the interval

(An, fn] where T̃i = d̃i ≥ fn − An. Thus,

∑
τk∈QP (An,hp(τn))

ek + en ≤
∑

τ̃k∈P

� T̃i

T̃k

	ẽk. (16)

It immediately follows from Eq.(15) and Eq.(16)
∑

τk∈QP (An,hp(τn))

eres
k,An

+
∑

τk∈QP (An,hp(τn))

ek + en

≤
∑

τ̃k∈P

ẽk +
∑

τ̃k∈P

� T̃i

T̃k

	ẽk. (17)

This leads to Ineq.(14). ��
By combining Eq.(13) and Eq.(14), we can obtain the following admission

condition for a mixture of a periodic task set P = {τ̃1, τ̃2, . . . , τ̃i, . . . , τ̃N} and an
aperiodic task set Q(t) = {τm, . . . , τj , . . . , τn}. Aperiodic task τi ∈ Q(t) can be
admitted if the following can be satisfied.

Pr(fi > Di) = Pr(
∑

τj∈Q(Ai,hp(τi))∪QP (Ai,hp(τi))

eres
j,Ai

+
∑
τ̃j∈P

� di

T̃j

	ẽj

+
∑

τk∈Q(Ai,fi],hp(τi))

ek + ei > di) ≤ ε (18)

where
∑

τ̃i∈P �dj

T̃i
	ẽi represents the sum of execution times of periodic task in-

stances that arrive with higher priorities than τi during the execution of τi.
Applying the above condition to admission control requires computing dead-

line miss probabilities at run-time. If task execution times are statistically in-
dependent, we can compute deadline miss probabilities by convolving sum of



12 Minsoo Ryu et al.

random variables. For instance, the probability given in Eq.(13) can be written
as below.

Pr(fi > Di)

= Pr(
∑

τj∈Q(Ai,hp(τi))

eres
j,Ai

+
∑

τk∈Q((Ai,fi],hp(τi))

ek + ei > di) (19)

= 1 −
∫

Q(Ai,hp(τi))∪Q[Ai,fi]∪{τi}
gres

ej,t
(e) ∗ . . . gek

(e) ∗ . . . gei,t
(e)de (20)

where geres
j,t

(e) is the pdf of eres
j,t for τj ∈ Q(Ai, hp(τi)), gek

(e) is the pdf of ek for
τk ∈ Q((Ai, fi], hp(τi)), and gei,t

(e) is the pdf of ei. Let epast
j,t be the processor

time consumed by τj from its arrival time to current time t. Given the probability
density function gej

(e), we have

gej,t
(e) =

{
0 if e < 0
gej

(e+epast
j,t

)

1−Gej
(epast

j,t
)

otherwise (21)

where Gej
(epast

j,t ) =
∫ epast

j,t

0 gej
(e)de.

In fact, the admission control using Eq.(18) leads to computationally complex
algorithms since it involves expensive convolution operations. Note that convolu-
tion operations are very expensive. For instance, the computational complexity
of convolution g ∗h is known to be O(n2) where n is the number of points in dis-
cretized functions of g and h. Although the run-time overhead can be reduced if
we use FFT (Fast Fourier Transform) [9], the algorithm still requires O(nlog2n)
for g ∗ h. Our next approach eliminates the need for convolutions by taking
advantage of effective execution times, thus enabling efficient on-line admission
control.

4.2 Effective Execution Times and Overrun Handling

The approach in the previous section is based on the assumption that tasks
missing deadlines are discarded. This allows us to bound deadline miss proba-
bilities but leads to computationally complex algorithms. Our second approach
improves upon this by aggressively discarding tasks. Every task is associated
with a particular amount of processor time, called effective execution time, and
the admission control is performed using effective execution times. If any task
overruns its effective execution time, it is immediately discarded. By overrun,
we mean that a task consumes processor time more than its effective execution
time.

The objective of preventing task overruns is to isolate tasks from one another.
Under this scheme, every task can independently receive processor time up to
the amount of its effective execution time. Thus, the deadline miss probability of
a task is not adversely affected by other tasks. If we choose appropriate values for
effective execution times for a given bound ε, tasks can be statistically schedu-
lable with probability 1− ε. To choose the minimal processor time required for a



Deterministic and Statistical Deadline Guarantees 13

given bound, we can define the effective execution time eε
i of τi as a function of

the required deadline miss probability ε and probability density function gei
(e).∫ eε

0

gei
(x)dx = 1 − ε. (22)

Clearly, discarding overrun tasks has the implication that execution times
are bounded. The great benefit of this is that it allows us to integrate effective
execution times and the deterministic techniques we developed in section 3.
Using effective execution times, we can define statistical versions of utilization
demand and maximum utilization demand as below.

uε
Q(t)(τi)

def=

∑
τj∈Q(t,hp(τi))

eres,ε
j,t + eε

i

dres
i,t

and U ε
Q(t)

def= max
i

[uε
Q(t)(τi)] (23)

where eres,ε
j,t = eε

j,t − epast
j,t .

Using the above definitions, the following theorem provides a statistical ver-
sion of schedulability condition for a mixed set.

Theorem 4.2 Given a periodic task set P and aperiodic task set Q(t), QP ∪Q(t)
is statistically schedulable with probability 1 − ε if the following holds.

U ε
Q(t) + U ε

P ≤ 1 (24)

where U ε
P =

∑
τi∈P

ẽε
i

T̃i
.

Proof. Let S(t) be Q(t)∪QP . Thus, it suffices to show that any aperiodic task
τi in S = {τ1, . . . , τi, . . .} is statistically schedulable if U ε

S(t) ≤ 1. Consider the
deadline miss probability of τi ∈ S.

Pr(fi > Di) = Pr(
∑

τj∈S(Ai,hp(τi))

eres
j,Ai

+
∑

τj∈S((Ai,fi],hp(τi))

ej + ei > Di).(25)

Since eres
j ≤ eres,ε

j and ej ≤ eε
j for any τj , we have

Pr(fi > Di) = Pr(
∑

τj∈S(Ai,hp(τi))

eres
j,Ai

+
∑

τj∈S((Ai,fi],hp(τi))

ej + ei > Di) (26)

≥ Pr(
∑

τj∈S(Ai,hp(τi))

eres,ε
j,Ai

+
∑

τj∈S((Ai,fi],hp(τi))

eε
j + ei > Di).(27)

U ε
S(t) ≤ 1 implies

∑
τj∈S(Ai,hp(τi))

eres,ε
j,Ai

+
∑

τj∈S((Ai,fi],hp(τi))
eε
j + eε

i ≤ Di, thus
we have

Pr(fi > Di) ≥ Pr(
∑

τj∈S(Ai,hp(τi))

eres,ε
j,Ai

+
∑

τj∈S((Ai,fi],hp(τi))

eε
j + ei >

∑
τj∈S(Ai,hp(τi))

eres,ε
j,Ai

+
∑

τj∈S((Ai,fi],hp(τi))

eε
j + eε

i)

= Pr(ei > eε
i). (28)



14 Minsoo Ryu et al.

This completes the proof. ��
In many applications, it may be unnecessarily stringent to discard overrun

tasks. If the system is not overloaded, it is often advantageous to allow overruns
as long as its further execution does not interfere with other admitted tasks.
There are two other possibilities for handling overruns without affecting statis-
tical guarantees for other admitted tasks. The first one is to give second chances
to overrun tasks. Under this, the overrun task, whether it is periodic or aperi-
odic, is treated as a new aperiodic task. This task can receive processor time if it
passes new admission test. The other one is to provide utilization slack. The use
of utilization slack is similar to the idea of slack stealing [6, 11]. By Theorem 3.4,
we can determine utilization slack and estimate available processor time for an
overrun task. The following theorem shows how to estimate available processor
time.

Theorem 4.3 Suppose that τi ∈ Q(t)∪QP under EDF overruns at time t, where
QP is an equivalent aperiodic task set of P . Let eslack

i be the available processor
time for τi such that every task τj in Q(t) ∪ QP is statistically schedulable with
probability 1 − ε. The available processor time eslack

i (t) satisfies the following

eslack
i (t) ≤ dres

i,t · (1 − U ε
P − U ε

Q(t)) (29)

where UP is the utilization of P .
Proof. Let S(t) be Q(t) ∪ QP . Clearly, τi has the highest priority in S(t) at
t, since τi is executing at t. Thus, if we increase the execution time of τi to
ei +eslack

i , this affects utilization demands of all the remaining tasks in S(t). Let
ûS(t)(τj) be a new utilization demand for any τj ∈ S(t), then we can write

ûS(t)(τj) =

∑
τk∈S(t,hp(τj))

eres,ε
k,t + eres,ε

j,t + eslack
i

dres
j,t

(30)

=

∑
τk∈S(t,hp(τj))

eres,ε
k,t + eres,ε

j,t

dres
j,t

+
dres

i,t · (1 − U ε
P − U ε

Q(t))

dres
j,t

. (31)

Since dres
i,j ≤ dres

j,t ,

ûS(t)(τj) ≤
∑

τk∈S(t,hp(τj))
eres,ε
k,t + eres,ε

j,t

dres
j,t

+ (1 − U ε
P − U ε

Q(t)) (32)

≤ UP + U ε
Q(t) + (1 − U ε

P − U ε
Q(t)) = 1. (33)

5 Conclusion

We have proposed three approaches to deadline guarantees for a mixed set of
periodic and aperiodic tasks. First, we have presented a new schedulability anal-
ysis, called utilization demand analysis, which can be applied to periodic and
aperiodic tasks with deterministic execution times. We have shown that the



Deterministic and Statistical Deadline Guarantees 15

algorithm for this analysis has a run time of O(n), and thus it enables an effi-
cient on-line admission control. Second, we have presented a statistical admission
control scheme based on deadline miss handling. By discarding tasks missing
deadlines, this scheme allows us to bound deadline miss probabilities of tasks.
Third, we have presented an improved statistical scheme using effective execu-
tion times. By handling overruns, effective execution times allow tasks to meet
deadlines with a specified probability without being interfered with. Combined
with the utilization demand analysis, effective execution times greatly simplify
the admission control.

There are several future research directions. First, we could extend the un-
tilization demand analysis for fixed priority scheduling algorithms such as rate
monotonic (RM) algorithm. Second, we could evaluate a tradeoff between dead-
line miss probability and throughput of the system. Although we have not con-
sidered this problem in this paper, the results presented here will be useful in
such evaluation.

References

1. Atlas, A. K., Bestavros, A.: Statistical Rate Monotonic Scheduling. IEEE Real-Time
Systems Symposium, IEEE Computer Society Press (1998), 123–132

2. Audsley, N., Burns, A., Richardson, M., Wellings, A.: Hard Real-Time Schedul-
ing: The Deadline-Monotonic Approach. IEEE Workshop on Real-Time Operating
Systems and Software (1991), 133–137

3. Baker, T. and Shaw, A.: The Cyclic Executive Model and Ada. The Journal of
Real-Time Systems (1989), 1(1):7–25

4. Buttazzo, G.: Value vs. Deadline Scheduling in Overload Conditions. IEEE Real-
Time Systems Symposium, IEEE Computer Society Press (1995), 90–99

5. Chetto, H., Chetto, M.: Some Results of the Earliest Deadline First Scheduling
Algorithm. IEEE Transactions on Software Engineering, IEEE Computer Society
Press (1989), 15(10):1261–1268

6. Davis, R., Tindell, K., Burns, A.: Scheduling Slack Time in Fixed Priority Pre-
emptive Systems. IEEE Real-Time Systems Symposium, IEEE Computer Society
Press (1993), 222–231

7. Fohler, G.: Joint Scheduling of Distributed Complex Periodic and Hard Aperiodic
Tasks in Statically Scheduled Systems. IEEE Real-Time Systems Symposium, IEEE
Computer Society Press (1995), 22–33

8. Isovic, D., Fohler, G.: Online Handling of Hard Aperiodic Tasks in Time Triggered
Systems. The 11th Euromicro Conference on Real-Time Systems (1999)

9. Johnson, J. R., Johnson, R. W.: Challenges of Computing the Fast Fourier Trans-
form. Optimized Portable Application Libraries Workshop (1997)

10. Lehoczky, J. P.: Real-Time Queueing Theory. IEEE Real-Time Systems Sympo-
sium, IEEE Computer Society Press (1996), 186–195

11. Lehoczky, J. P., Ramos-Thuel, S.: An Optimal Algorithm for Scheduling Soft-
Aperiodic Tasks in Fixed-Priority Preemptive Systems. IEEE Real-Time Systems
Symposium, IEEE Computer Society Press (1992), 110–123

12. Lehoczky, J. P., Sha, L., Ding, Y.: The Rate Monotonic Scheduling Algorithm: Ex-
act Characterization and Average Case Behavior. IEEE Real-Time Systems Sym-
posium, IEEE Computer Society Press (1989), 166–171



16 Minsoo Ryu et al.

13. Lehoczky, J. P., Sha, L., Strosnider, J.: Enhanced Aperiodic Responsiveness in
Hard Real-Time Environments. IEEE Real-Time Systems Symposium, IEEE Com-
puter Society Press (1987), 261–270

14. Leung, J., Merill, M.: A Note on the Preemptive Scheduling of Periodic, Real-Time
Tasks. Information Processing Letters (1980), 11(3):115–118

15. Liu, C., Layland, J.: Scheduling Algorithm for Multiprogramming in a Hard Real-
Time Environment. Journal of the ACM (1973), 20(1):46–61

16. Sprunt, B., Sha, L., Lehoczky, J. P.: Aperiodic Task Scheduling for Hard-Real-Time
Systems. The Journal of Real-Time Systems (1989), 1(1):27–60

17. Spuri, M., Buttazzo, G.: Scheduling Aperiodic Tasks in Dynamic Priority Systems.
Journal of Real-Time Systems (1996), 10(2):1979–2012

18. Tia, T.-S., Deng, Z., Shankar, M., Storch, M., Sun, J., Liu, L.-C.: Probabilistic
Performance Guarantee for Real-Time Tasks with Varying Computation Times.
IEEE Real-Time Technology and Applications Symposium (1995) 164–173

Appendix: Proof of Theorem 3.2

Let Q1(t) ∪ Q2(t) = {τm, . . . , τp, . . . , τn}. Using Eq.(1) and Eq.(2), we have

UQ1(t)∪Q2(t) = max{ eres
m,t

dres
m,t

, . . . ,
eres
m,t+, . . . ,+eres

p,t

dres
p,t

,
eres
m,t+, . . . ,+eres

n,t

dres
n,t

} (34)

Suppose that the maximum utilization demand is UQ1(t)∪Q2(t) = eres
1,t +,...,+eres

p,t

dres
p,t

.
Without loss of generality, suppose τp ∈ Q1(t). Let Q∗

1(t) ⊂ Q1(t) be the set
of tasks whose residual execution times eres

i,t appear in eres
m,t+,...,+eres

p,t

dres
p,t

, and let
Q∗

2(t) ⊂ Q2(t) be the set of tasks whose residual execution times eres
j,t appear in

eres
m,t+,...,+eres

p,t

dres
p,t

. Then, we can write

eres
m,t + . . . + eres

p,t

dres
p,t

=

∑
τi∈Q∗

1(t) eres
i,t +

∑
τj∈Q∗

2(t) eres
j,t

dres
p,t

(35)

Since priorities are assigned according to EDF, dres
p,t is the maximum of {dres

i,t :
τi ∈ Q∗

1(t) ∪ Q∗
2(t)}. Let dres

q,t be the maximum of {dres
i,t : τi ∈ Q∗

2(t)}, then we
have dres

q,t ≤ dres
p,t . Hence,∑

τi∈Q∗
1(t) eres

i,t +
∑

τj∈Q∗
2(t) eres

j,t

dres
p,t

≤
∑

τi∈Q∗
1(t) eres

i,t

dres
p,t

+

∑
τj∈Q∗

2(t) eres
j,t

dres
q,t

(36)

≤ UQ1(t) + UQ2(t) (37)

This completes the proof.


