
Dynamic Deployment of Software Defined Radio
Components for Mobile Wireless Internet Applications

Saehwa Kim, Jamison Masse, and Seongsoo Hong

School of Electrical Engineering and Computer Science
Seoul National University, Seoul 151-742, Korea

{ksaehwa, jamison, sshong}@redwood.snu.ac.kr

Abstract. Software Defined Radio (SDR) is a key enabling technology for mo-
bile wireless Internet. SDR represents unique opportunity to provide Internet
connectivity to handheld devices over a limitless range of communication stan-
dards. For SDR systems to realize their full potential, they must be reconfigur-
able through the dynamic deployment of SDR components. However, the cur-
rent SDR Forum standard, Software Communication Architecture (SCA), is
insufficient in this respect since it fails to provide a complete component
framework. In this paper, we propose a SCA-based component framework for
SDR. Specifically, we present (1) a component model that defines a component
as a specialized CORBA object that implements object management functional-
ity, (2) a package model exploiting the existing XML descriptors of the SCA,
and (3) a deployment model that defines a SCA-based deployment environ-
ment, a boot-up process to restore deployment state, and a deployment process
supporting lazy application instantiation and dynamic component replacement.
Frameworks that incorporate these improvements will meet the dynamic soft-
ware deployment needs of next-generation wireless Internet applications.

1 Introduction

Convergence of Internet and wireless communication technologies is creating huge
demand for access to Internet services from wireless handheld devices. Software De-
fined Radio (SDR) is a key enabling technology for mobile wireless Internet [1]. SDR
is a completely configurable radio that can be programmed in software. SDR offers
mobile wireless Internet users the ability to use a single terminal to access a wide
range of wireless services and features by ensuring that handheld devices are radio-
agnostic. As new wireless standards emerge, SDR terminals represent an investment
for consumers and carriers that are protected from the volatility of a still emerging set
of technologies. Not only does SDR lower the barriers to entry for consumers and
providers of wireless Internet services but opens the field to the improvement of stan-
dards with fewer burdens of legacy support. This means that wireless Internet facili-
tated by SDR offers the opportunity for not just the evolution of wireless standards
but holds the potential to allow the introduction of completely new standards with lit-

 The work reported in this paper is supported in part by MOST (Ministry of Science and
Technology) under the National Research Laboratory (NRL) grant 2000-N-NL-01-C-136.

tle expense or inconvenience. A wireless Internet built on SDR is a network con-
structed with a truly upgradable end-to-end infrastructure.
For SDR systems to realize their full potential, they must be reconfigurable through
the dynamic deployment of SDR components. This can be achieved by component
software technology that is aimed at creating new software systems through the com-
bination of deployable software (components), as opposed to ground-up development.
We adopt the OMG’s (Object Management Group) [2] definition of a component: a
modular, deployable, and replaceable part of a system that encapsulates implementa-
tion and exposes a set of interfaces [3]. Components are typically some form of
shared library and, depending on the deployment environment, could be distributed as
binaries, byte code, or even source files written in a scripting language.
The SDR forum [1] has adopted Software Communication Architecture (SCA) [4] of
the Joint Tactical Radio System (JTRS) [5] as the standard software structure of SDR
systems. The SCA structure is composed of an application layer and an operation en-
vironment (OE) layer. The OE is also divided into RTOS, CORBA (Common Object
Request Broker Architecture) [6], and core framework layers where the SCA core
framework is composed of the specification of interfaces and a domain profile. A do-
main profile is composed of XML descriptor files that describe the hardware and
software configuration information of a SCA system domain.
However, the current SCA is insufficient, not properly specifying how the dynamic
deployment of SDR components for mobile wireless Internet applications can be car-
ried out, failing to provide a complete component framework. The SCA is inadequate
as a component framework since it does not explicitly specify (1) a component model
that defines how to express a component interface and how to implement it, (2) a
package model that defines what is in a deployment package and how those contents
are packaged, and (3) a deployment model that defines the deployment environment
and deployment process. Although the SCA is based on CORBA technology,
CORBA Component Model (CCM) [7] cannot be directly applied to SDR handheld
devices since the CCM is focused only on server side applications that are installed in
general purpose systems [8] while SDR systems accommodate stand-alone wireless
applications, as opposed to stand-by server applications.
In this paper, we propose a SCA-based component framework for dynamic deploy-
ment of SDR components for mobile wireless Internet applications. Specifically, we
present (1) a component model that defines a common component CORBA interface
that supports object management functionality while isolating functions that are not a
part of the application domain, (2) a package model that exploits XML descriptors de-
fined in the SCA domain profile, and (3) a deployment model that defines a deploy-
ment environment, a boot-up process to restore deployment state, and deployment
process that supports lazy application instantiation and dynamic replacement of appli-
cation components.
The remainder of the paper is as follows. In Sections 2, 3, and 4 we present our com-
ponent model, package model, and deployment model respectively. These together
complement SCA and form a complete component framework. We conclude this pa-
per in Section 5.

2 Component Model

In this section, we present our component model that describes how to define inter-
faces of components and its rationale. Our approach is composed of isolating object-
management functionality and providing consistent notion of ports.

2.1 Isolating Object-Management Functionality

In the CORBA environment, a distributed object-computing system, a component in
our framework has the ability to express itself as a run-time CORBA object with its
own interface. Then, we need to provide a standardized common component interface
so that a deployment tool can construct software by composing components. In our
component model, a component at run-time can be viewed as an aggregation of ob-
jects. The contained objects’ functionality is part of one or many applications. Our
components also provide functionality unrelated to any application domain, object
management functionality. Object management functionality includes operations for
(1) internally managing object life cycles and (2) externally connecting objects. Al-
though the object-management functionality does not contribute to the application
domain itself, it is essential to enable scalable server object systems. In fact, CORBA
programming is essentially the wrapping of proper scalable object management func-
tionality around application objects.
This approach follows the basic principal of object-orientation that encapsulates be-
haviors according to divisible functions. Our approach is also justified when charac-
teristics of software for handheld devices are considered where objects are statically
connected in the deployment phase and maintain their connections for the lifetime of
their installation.

2.2 Providing Consistent Notion of Ports

The current SCA inconsistently makes use of the concept of ports, differing between
the SCA core framework interfaces and the SCA domain profile. The term port is
used in the CCM and also in the SCA domain profile to stand for a named connection
point through which components interoperate. The view of the SCA domain profile is
in accordance with that of our component model. We consider ports simply named
connection points between components, while the SCA core framework interfaces
consider ports actual objects providing connection functionality.
Our component model supports one-way binary communication via provides ports
and uses ports. A provides port of a component is the means to retrieve an object ref-
erence for a server object contained in the component. A uses port of a component is
the means to retrieve an object reference for a proxy object connected with a server
object contained in another component.
In our component model, component interfaces are declared via IDL (IDL2) and
Software Package Descriptor (SPD). Specifically, the IDL declares only a component
name and the SPD declares the port information of a component. We propose
SCAComponentObject interface that is used as a common component. The declara-
tion of a component interface in IDL is done as follows by only declaring the compo-
nent name information.

interface component_name:SCAComponentObject {};

That is, interfaces inheriting only SCAComponentObject without a body are compo-
nent interfaces. The SCAComponentObject interface provides getter operations for
provides ports and setter and getter operations for uses ports. The SCAComponentOb-
ject also has an attribute identifier that is used as a unique identifier for instances of a
component interface. Programmers should implement operations of SCAComponen-
tObject for each component interface according to their set of ports.
In the current SCA, some objects contained in a component should implement Port
interface to connect uses ports contained in the component. Moreover, contained ob-
jects that will be exported as provides ports should also implement connection opera-
tion of PortSupplier interface that is inherited by Resource interface. In our compo-
nent model, the common component interface (SCAComponentObject) provides
connection functionality, rather than using port objects to facilitate connection. The
SCAComponentObject makes both the Port and PortSupplier interfaces of the cur-
rent SCA for connecting objects obsolete.

3 Packaging Model

Although a component file is the basic unit of software composition, it cannot be the
unit of deployment. The deployment unit for composing component software should
contain not only component files but also files like XML descriptors describing de-
ployment information. We adopt the term package from the CCM for the deployment
unit, which is a ZIP file format assembly of multiple files. We classify packages into
(1) component packages that contain only one component type and (2) component as-
sembly packages that contain multiple component types.
Since the SCA domain profile provides well-defined descriptors and association rela-
tionships among descriptors, it is straightforward to determine which descriptors
should be packaged together in each package. Since a component is described with
Software Package Descriptor (SPD), a component package contains one top-level
SPD as well as all the other descriptors the SPD requires. A component assembly
package contains either one Software Assembly Descriptor (SAD) or one Device
Configuration Descriptor (DCD) as well as all the other descriptors they require.

4 Deployment Model

In this section, we describe our deployment model that is composed of (1) a complete
deployment environment, (2) a system boot-up process to restore deployment state,
and (3) a deployment process supporting lazy application instantiation and dynamic
replacement of application components.

4.1 Deployment Environment

A DomainManager object exists in one processor in a system as a singleton. Applica-
tion and ApplicationFactory interfaces should be collocated with DomainManager
since the latter directly uses the former. Additionally, a FileManager object and an

XML parser objects should exist as singletons. Note that these objects need not be
collocated with the DomainManager object. Each processor also contains logical de-
vice objects: one logical device for the processor itself and others for hardware de-
vices the processor manages. These proxy logical devices can act as cross loaders by
managing accessible image files, loading images to target devices, and letting cross-
loaded images execute on their target devices. As such, the role of logical device ob-
jects is similar to that of hardware managers in [9]. Each processor also accommo-
dates one DeviceManager object to manage logical devices and service objects
instantiated in it, each of which require a FileSystem object. To set up this
deployment environment, we need a pre-installed component package supporting
DomainManager and component assembly packages described with DCDs.

4.2 Boot-up Process

The boot-up process, the restoration of the deployment state, is mainly composed of
(1) setting up the deployment environment and (2) activating applications that were
executing when the system was shut down. Our boot-up process requires elements of
domain profiles reside in non-volatile storage. Specifically, a DCD should be pre-
installed in each node and one node should have DMD pre-installed where the Do-
mainManager will reside. In addition, SADs also should be pre-installed in the
proper nodes. Additionally, applications must be able to specify whether they should
be instantiated immediately after boot-up if they were instantiated at shutdown. For
this, we added to SAD two XML elements instantiated and restore. The element in-
stantiated is set to true when its application is instantiated and is set to false when the
application is shut down. The element restore is a static value representing whether
the instantiation of its application would be restored or not. Under these conditions,
each node executes a boot-up procedure by exploiting the domain profile information.
The boot-up procedure is composed of (1) DomainManager configuration using
DMD, (2) DeviceManager configuration using the DCD, and (3) Application con-
figuration using SADs.

4.3 Deployment Process

Our deployment model provides different deployment processes according to the
component types being deployed. Specifically, our deployment process supports lazy
application instantiation where an application may not be activated immediately after
it is installed but it may be activated selectively afterward. But components that im-
plement control and service interfaces in the SCA framework that are always instanti-
ated such as Device are instantiated immediately after installation. Note that the CCM
deployment process, intended for server systems, installed components are instanti-
ated immediately after installation. However in our framework for SDR handheld de-
vices, multiple stand-alone applications may be installed together but can be selec-
tively instantiated.
Application component upgrades are facilitated through a replace() operation we have
added to DomainManager. Upgrading an instantiated application can be done in two
ways: run-time or lazy upgrade. The lazy upgrade uninstalls the package of the target
component, installs the new package, and updates the corresponding SAD descriptor.
The upgrade takes effect only after the application is re-instantiated. The run-time up-

grade follows the same procedure as the lazy upgrade except that after updating the
SAD, the run-time upgrade (1) stops all the resource objects within the target applica-
tion, (2) disconnects the target component connections, (3) instantiates the replace-
ment component, and (4) restores the previous connections. The choice of such an
upgrade strategy is dependent on the properties of components or applications. For
this reason, we have added to both the SAD and the SPD an XML element up-
gradetype that can be either runtime or lazy. Only when both values are runtime, the
run-time upgrade is performed.

5 Conclusion

We have presented a SCA-based component framework supporting dynamic deploy-
ment of SDR components for mobile wireless Internet applications. The main contri-
butions of the paper are three fold. First, we have proposed the component model spe-
cialized to handheld embedded systems with consistent notion of ports. Second, we
have proposed the deployment model based on the current SDR software standard,
complementing it. Finally, we have presented the component framework specialized
for handheld embedded systems addressing the characteristics of handheld devices
applications with static connection management of components, the need for a boot
up process that properly restores deployment state, and lazy application instantiation
policies and methods. Frameworks that incorporate these improvements will meet the
dynamic software deployment needs of next-generation wireless Internet applications.
There are several future research directions. Designing a lightweight container for
handheld embedded systems that supports such a component model seems promising.
Future considerations also include specifying non-functional QoS aspect of compo-
nents such as response time, fault-tolerance, security and tools for evaluating them.

References

1. Software Defined Radio (SDR) Forum, http://www.sdrform.org.
2. Object Management Group (OMG), http://www.omg.org.
3. Unified Modeling Language Specification Version 1.4 Appendix B - Glossary, Object

Management Group, September 2001.
4. Software Communications Architecture (SCA) Specification MSRC-5000SCA V2.2, Joint

Tactical Radio Systems, November 17, 2001, Available at
http://www.jtrs.saalt.army.mil/SCA/SCA.html.

5. Joint Tactical Radio System (JTRS), http://www.jtrs.saalt.army.mil/.
6. The Common Object Request Broker: Architecture and Specification, Version 3.0, Object

Management Group, June 2002.
7. CORBA Component Model Version 3.0, Object Management Group, June 2002.
8. W. Emmerich and N. Kaveh, Component Technologies: Java Beans, COM, CORBA,

RMI, EJB and the CORBA Component Model, In Proceedings of International Conference
on Software Engineering, pp. 691-692, 2002.

9. Benjamin H. Wang, Pangan Ting, S. Charles Tsao, Hung-Lin Chou, and Nanson Huang,
Integration of System Software and SDR Hardware Platforms, SDRF-01-I-0052-V0.00,
Software Defined Radio Forum Contribution, August 2001.

