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Abstract

Delivered end-to-end QoS is often limited by the ineffective resource management at Internet end sys-

tems. To overcome this problem, we present a resource allocation framework that can handle both the

bandwidth and deadline requirements in allocating time shared resources at an Internet end system. The

proposed framework has a two-level hierarchy. At the top-level, a proportional share scheduler, called Ear-

liest Finish Time Credit/Debit (EFT-C/D) scheduler, allocates a time shared resource like CPU to the

bottom-level schedulers in proportion to the specified rate of each bottom-level scheduler. The bottom-level

schedulers each employ different scheduling disciplines to handle different timing requirements. Specifi-

cally, tasks with deadline requirements are scheduled by an EDF (earliest deadline first) scheduler, and

tasks with bandwidth requirements are scheduled by a proportional share scheduler such as the proposed

EFT-C/D scheduler or an EEVDF (Earliest Eligible Virtual Deadline First) scheduler. Our major con-

tributions are two-fold. First, we present the EFT-C/D algorithm that can achieve nearly perfect fairness

when compared to the ideal GPS server. We also show that the EFT-C/D algorithm is considerably sim-

ple to implement and incurs low run-time overhead since its implementation does not involve establishing

virtual time. Second, we present a utilization-based schedulability analysis for the EDF scheduler at the

bottom-level. Our analysis technique enables on-line admission control by allowing us to easily test the

schedulability of a given task set by simply computing required resource utilization.
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1 Introduction

Recent advances in processor and network technologies have enabled computers to run combinations

of QoS-demanding applications with different types of timing requirements. For instance, multimedia

applications such as video streaming possess stringent bandwidth requirements in processor allocation

to provide smooth presentation. On the other hand, some applications like online stock trading and

networked games impose hard deadlines on data processing since untimely processing can lead to un-

acceptable financial losses or an inconsistent game experience. Thus, it is important for Internet end

systems to meet various types of timing requirements via effective resource management.

In this paper we explore the resource allocation problem to support both the bandwidth and deadline

requirements in Internet end systems ranging from desk-top computers to mobile terminals. Currently

the dominant approach in such systems is just to provide best-effort services based on a simple time-

sharing policy. However, due to the lack of bandwidth and deadline guarantees, this approach often fails

to support the real-time applications mentioned above. As a result, delivered end-to-end QoS through

Internet is often limited by the ineffective resource allocation at Internet end systems.

To overcome this problem, we propose and analyze a resource allocation framework that has a two-level

hierarchy as shown in Figure 1. At the top-level, a proportional share scheduler allocates a time shared

resource like CPU to each lower-level scheduler in proportion to its specified rate share. In doing so,

we use an algorithm, called Earliest Finish Time Credit/Debit (EFT-C/D), which is an extension of the

credit/debit algorithm in [6]. The bottom-level schedulers each employ different scheduling disciplines

to handle different timing requirements. Specifically, tasks with deadline requirements are scheduled by

an EDF (earliest deadline first) scheduler [8], and tasks with bandwidth requirements are scheduled by a

proportional share scheduler such as the proposed EFT-C/D scheduler or an EEVDF (Earliest Eligible

Virtual Deadline First) scheduler [11]. Note that our scheduling hierarchy permits more schedulers to

support other types of scheduling disciplines such as RM (rate monotonic), but our discussions will focus

only on the top-level proportional share scheduler and the bottom-level EDF scheduler.

Our major contributions are two-fold. First, we present the Earliest Finish Time C/D (EFT-C/D)

algorithm that can achieve nearly perfect fairness when compared to the ideal GPS (Generalized Processor

Sharing) server [9]. Specifically, the service time difference between EFT-C/D and GPS schedulers is

bounded by the size of time quantum. The complexity of the algorithm is O(n). Nevertheless, the

EFT-C/D algorithm is considerably simple to implement and incurs low run-time overhead since its

implementation does not involve establishing virtual time [9, 5]. Second, we present a utilization-based

schedulability analysis for the EDF scheduler at the low-level. Our analysis technique enables on-line

admission control by allowing us to easily test the schedulability of a given task set by simply computing
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Figure 1: Two-level scheduling framework.

required resource utilization.

There are a few results on the hierarchical scheduling structure. In [3], Liu and Deng proposed a

hierarchical scheduler that uses EDF scheduler as a top-level scheduler. Each application is handled

by a dedicated bottom-level server based on the CBS (Constant Bandwidth Server) algorithm. The

hierarchical scheduler by Liu and Deng can support both real-time applications with deadlines and non

real-time applications, but cannot handle bandwidth requirements in processor allocation. On the other

hand, Goyal et al. adopt a proportional share scheme at the top-level, called start time fair queueing, and

propose to use various types of scheduling policies at lower levels [5]. While our scheduling structure is

very similar to the hierarchical scheduler in [5], ours improves upon it by using the EFT-C/D algorithm

that outperforms the start-time fair queueing algorithm in terms of fairness.

The remainder of this paper is organized as follows. Section 2 discusses our models and assumptions.

Section 3 describes the basic credit/debit algorithm and the Earliest Finish Time C/D (EFT-C/D) for

the top-level scheduler. Section 4 describes a schedulability analysis for the low-level EDF scheduler.

Section 5 concludes this paper by describing future research directions.

2 Models and Assumptions

We consider two types of tasks: hard and soft real-time tasks. A hard real-time task τi is characterized

by a deadline requirement di and a worst-case execution time (WCET) ei. The deadline is defined to be

a relative value from the request time of τi. If the task is periodic, it is denoted by τ̃i and its period is

denoted by Ti. A soft real-time task is characterized by a bandwidth requirement bi which is the relative

share of the time-shared resource.
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There are two important bottom-level schedulers in our scheduling framework. The hard real-time

scheduler S1 is associated with a relative share r1 of CPU resource and is scheduled by the root scheduler

S0. The hard real-time scheduler S1 then schedules hard real-time tasks based on EDF algorithm. The

soft real-time scheduler S2 is also associated with a relative share r2 and schedules soft real-time tasks

using a proportional share algorithm such as the Stride scheduler [12] or the EEVDF scheduler [11]. The

notation used throughout the paper is summarized in Table 1.

notation description
τi hard real-time task
ei worst-case execution time of τi

di relative deadline of τi

τ̃i periodic task
Ti period of τ̃i

S0 root scheduler
Si bottom-level scheduler
Ci credit value for Si

ri relative CPU share for Si

∆ time quantum
WCD

i service time received by Si in the interval [0, t] under EFT-C/D
WGPS

i service time received by Si in the interval [0, t] under GPS
Ei(t) service lag of Si

Q(t) set of aperiodic tasks at time t

Q(t, hp(τi)) set of taks that have higher priorities than τi

eres
i,t maximum residual execution time of τi at time t

dres
i,t lead time of τi at time t

uQ(t)(τi) utilization demand of τi

UQ(t) maximum utilization demand of Q(t)
P set of periodic tasks
QP equivalent aperiodic task set of P
UP utilization of P
G(t) mixed set of periodic and aperiodic tasks at time t

Table 1: Notations for the scheduling framework.

3 Proportional Share Allocation of Processor Bandwidth

In this section we first describe the basic credit/debit algorithm [6], and then present the Earliest

Finish Time C/D (EFT-C/D) algorithm for the top-level scheduler.
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3.1 Basic Credit/Debit Algorithm

The credit/debit algorithm is a proportional share allocation mechanism for time shared resources

such as CPU time. It allocates the resource to bottom-level schedulers in discrete time slices, and the

duration of a time slice is referred to as time quantum ∆. The credit/debit algorithm maintains for each

bottom-level scheduler Si a credit value Ci which can be viewed as a virtual time index for the top-level

scheduler’s quantum allocation. Initially, the top-level scheduler sets each credit value Ci to zero. At the

beginning of each time quantum, it increases each Ci by ri∑
j

rj
·∆ and selects the bottom-level scheduler

with the maximum credit and ties are broken arbitrarily. It then subtracts the allocated quantum ∆

from the credit Ci of the selected scheduler.

Figure 2 illustrates an example of the credit/debit algorithm. Three bottom-level schedulers S1, S2,

and S3 are scheduled by the credit/debit algorithm. Their relative resource shares are 7, 2, and 1

respectively. Initially, each credit value is set to 0 at t = 0. Since ties are broken arbitrarily, let us

assume that the credit/debit scheduler selects S1 at t = 0. Here we use rectangles to represent selected

credit values. When the bottom-level scheduler S1 finished receiving the first quantum at time t = ∆,

the top-level scheduler S0 updates each credit value as below.

C1(∆) = C1(0) +
7
10

· 10 − 10 = −3, C2(∆) = C2(0) +
2
10

· 10 = 2, C3(∆) = C3(0) +
1
10

· 10 = 1

At the beginning of the second quantum, S2 is selected since its credit is the highest. Figure 2 shows the

credit values during the interval [0, 9∆].

Bottom-level scheduler (Si) Relative share (ri) Credit (Ci)

S1 7 0 -3 4 1 8 5 2 9 6 3

S2 2 0 2 -6 -4 -2 0 2 -6 -4 -2

S3 1 0 1 2 3 -6 -5 -4 -3 -2 -1

time (t) 0 1∆ 2∆ 3∆ 4∆ 5∆ 6∆ 7∆ 8∆ 9∆

Figure 2: An example of the credit/debit algorithm with ∆ = 10.

The credit Ci(t) represents the service time that Si received by time t under the ideal GPS discipline.

If a bottom-level scheduler with Ci = 0 is chosen, then the service starts at the same time as it would

under the GPS server. If a bottom-level scheduler with Ci > 0 is chosen, then the service starts later

than it would under the GPS server.
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3.2 Earliest Finish Time C/D Algorithm

We now modify the basic credit/debit algorithm to emulate WF2Q, which is the most popular packet

fair queueing discipline. Consider a network switch that multiplexes a set of incoming sessions on a

packet-by-packet basis. If we assume that every packet has the same size and that it takes ∆ to transmit

single packet, then the packet queueing problem can be reduced to our processor scheduling problem.

Thus, this gives a possibility that we can apply the resource allocation mechanism of WF2Q to our

proportional share algorithm.

The WF2Q discipline serves packets in increasing order of packet departure time among packets that

have started receiving service under GPS. To emulate WF2Q, we consider the corresponding GPS server.

Let qi,j be the jth quantum received by Si under GPS, and let fi,j be the time at which Si finishes to

receive qi,j under GPS. Then we modify the basic credit/debit scheduler so that it selects the bottom-level

scheduler Si with minimum fi,j among schedulers with positive credit value. The computation of fi,j

is as follows. Since Ci represents the service time that Si received by time t under the GPS discipline,

∆ − Ci represents the remaining service time for qi,j . For qi,j to complete, it needs ∆−Ci

ri/
∑

j
rj

. Since the

term
∑

j rj is common for all Si, the modified algorithm selects the scheduler with

min{∆ − Ci

ri
} and Ci ≥ 0. (1)

We call the modified algorithm Earliest Finish Time C/D (EFT-C/D). Note that EFT-C/D algorithm

works in the same way as the WF2Q which selects the packet with the earliest departure time among

packets that have started receiving service under GPS.

Figure 3 illustrates an example of the EFT-C/D algorithm. The set of bottom-level schedulers and

bandwidth requirements are the same as in Figure 2. As an illustration, we show the selection of a

bottom-level scheduler by EFT-C/D algorithm at t = 3∆. Since C2 = −4 < 0, we calculate ∆−Ci
ri

only

for S1 and S3 as below.
10 − 1

7
=

9
7
,

10 − 3
1

= 7

The minimum of these two values is min(9
7 , 7) = 9

7 . Thus, S1 is selected by the EFT-C/D scheduler,

whereas S3 would be selected by the basic credit/debit scheduler.

Now we show the analysis for the EFT-C/D algorithm. Consider two scheduling systems that differ

only by the service discipline, one using the EFT-C/D scheduler and one using the GPS server at the

top-level. Note that the two scheduling systems are identical with the exception of the top-level service

discipline. Thus, they have the same speed, same bottom-level schedulers with same service share, same

set of tasks, and same task arrival patterns.
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Bottom-level scheduler (Si) Relative share (ri) Credit (Ci)

S1 7 0 -3 4 1 -2 5 2 -1 6 3

S2 2 0 2 -6 -4 -2 0 2 4 -4 -2

S3 1 0 1 2 3 4 -5 -4 -3 -2 -1

time (t) 0 1∆ 2∆ 3∆ 4∆ 5∆ 6∆ 7∆ 8∆ 9∆

Figure 3: An example of the EFT-C/D algorithm with ∆ = 10.

Let WCD
i (0, t) be the service time that Si received in the interval [0, t] under EFT-C/D, and let

WGPS
i (0, t) be the service time that Si received in the interval [0, t] under GPS. Then, the service lag of

Si is

Ei(t) = WGPS
i (0, t) −WCD

i (0, t). (2)

Since the service lag represents the allocation accuracy of CD algorithm with respect to the GPS, we use

Ei(t) in evaluating the fairness provided by the EFT-C/D algorithm. The following theorem shows that

the service lag Ei(t) of any Si under CD is bounded by the quantum size ∆.

Theorem 1 The service lag of the EFT-C/D algorithm satisfies the following

|Ei(t)| = |WGPS
i (0, t) −WCD

i (0, t)| ≤ ∆ (3)

for any t > 0.

Proof. See Theorem 1 in [1].

4 Deadline Guarantees at Bottom-Level EDF Scheduler

We now present a schedulability analysis for the bottom-level EDF scheduler. First, we describe our

analysis techniques for normal EDF schedulers from our earlier work in [10], and then use those techniques

to develop a schedulability condition for the bottom-level EDF scheduler in our hierarchical structure.
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4.1 Overview of Utilization Demand Analysis

Consider a set of aperiodic tasks Q = {τ1, τ2, . . . , τi, . . .} under priority driven scheduling policy. We

associate two dynamic variables with each task τi ∈ Q(t), maximum residual execution time eres
i,t and

lead time dres
i,t . At time t, the maximum residual execution time eres

i,t of τi is the maximum of remaining

processor time to complete τi. The lead time dres
i,t of τi is the difference between its absolute deadline Di

and the current time t [7], i.e., Di − t. Then, a utilization demand of τi ∈ Q(t) is defined as the processor

time required to meet its deadline divided by its lead time. Let Q(t, hp(τi)) ⊂ Q(t) be the set of tasks

that have higher priorities than τi. The utilization demand of τi is defined by

uQ(t)(τi)
def=

∑
τj∈Q(t,hp(τi)) e

res
j,t + eres

i,t

dres
i,t

. (4)

The maximum utilization demand UQ(t) is defined for the set Q(t) as below.

UQ(t)
def= max

i
[uQ(t)(τi)] (5)

The following theorem shows a necessary and sufficient schedulability condition for an aperiodic task

set.

Theorem 2. Aperiodic task set Q(t) = {τm, τm+1, . . . , τn} is schedulable if and only if

UQ(t) ≤ 1. (6)

Proof. See [10].

The utilization demand can also be defined for periodic tasks since all instances of periodic tasks can

be considered aperiodic tasks. Suppose that P = {τ̃1, τ̃2, . . . , τ̃N} is a set of periodic tasks. This periodic

task set can be associated with an equivalent aperiodic task set QP which consists of all task instances

generated by P . Thus, P is schedulable if and only if all tasks in QP are schedulable. The following

theorem states that the utilization of P is equal to or greater than the maximum utilization demand of QP .

Theorem 3. Let UP =
∑N

i=1
ẽmax
i

T̃i
be the utilization of periodic task set P{τ̃1, τ̃2, . . . , τ̃N}. If P is
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schedulable by EDF, then

UQP (t) ≤ UP (7)

for all t ≥ 0.

Proof. See [10].

Let P be the set of periodic tasks and its utilization be UP . The following theorem gives a sufficient

condition for a mixed set of periodic and aperiodic tasks.

Theorem 4. Given periodic task set P and aperiodic task set Q(t), if UP + UQ(t) ≤ 1, then P ∪Q(t) is

schedulable by an EDF scheduler.

Proof. See [10].

4.2 Schedulability Analysis

Consider a bottom-level scheduler Si and the quantum allocation in Figure 4. By using Theorem 1,

we can see that the maximum length of the interval between two consecutive time quanta allocated to

Si is given by
∑n

j=1
rj

ri
· 2∆ − ∆. Thus, it follows that the bottom-level scheduler Si can receive at least

∆ time in the interval [t, t+
∑n

j=1
rj

ri
· 2∆] for any t ≥ 0. In general, if we consider m consecutive quanta,

the scheduler can receive m − 1 quanta in the interval [t, t +
∑n

j=1
rj

ri
· m∆] for any t ≥ 0. Thus, it is

always guaranteed that the bottom-level scheduler is provided a utilization

U lower
i =

(m− 1)∆
∑n

j=1
rj

ri
·m∆

=
m− 1
m

ri
∑n

j=1 rj
. (8)

in the interval [t, t +
∑n

j=1
rj

ri
· m∆] for any t ≥ 0. Note that if we take any interval shorter than

∑n

j=1
rj

ri
·2∆, then we cannot guarantee that the scheduler is serviced. This also means that the scheduler

cannot guarantee any deadlines that are shorter than
∑n

j=1
rj

ri
· 2∆.

Let G(t) = P ∪ Q(t) be the mixed set of periodic and aperiodic tasks scheduled by the bottom-level

EDF scheduler, and let D be the minimum deadline such that D = min{dk|τk ∈ G}. We only consider

the case of D ≥
∑n

j=1
rj

ri
· 2∆. For simplicity, assume that the speed of underlying resource is 1. Then we

can derive a schedulability test based on the worst-case utilization.

Theorem 5. Suppose that G = P ∪Q(t) be the mixed set of periodic and aperiodic tasks. Let M be the
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Figure 4: Maximum length of the interval between two consecutive time quanta when ri∑n

f=0
rf

= 1
3 .

maximum of m such that
∑n

j=1
rj

ri
·m∆ ≤ D. If UG(t) is always less than M−1

M
ri∑n

j=1
rj

according to EDF

algorithm on a slow processor with speed M−1
M

ri∑n

j=1
rj
, then they are also schedulable by the bottom-level

EDF scheduler under EFT-C/D discipline.

Proof. Let τk be any aperiodic task or an instance of periodic task of G(t). It suffices to show that

the bottom-level EDF scheduler receives sufficient resource time to complete τk during the interval

[ak, ak + dk]. By definition, the amount of resource time needed for τk to complete by its deadline is

dk · uG(t)(τk). From Eq.(8), the bottom-level EDF scheduler Si can receive no less than dk · M−1
M

ri∑n

j=1
rj

.

Since

uG(t)(τk) ≤ UG(t) ≤
M − 1
M

ri
∑n

j=1 rj
,

it immediately follows that

dk · uG(t)(τk) ≤ dk · M − 1
M

ri
∑n

j=1 rj
.

This completes the proof.

5 Conclusion

We have presented a hierarchical scheduler to handle both bandwidth and deadline requirements in

processor time allocation within an end system. The hierarchical scheduler is based on the Earliest

Finish Time C/D (EFT-C/D) at the top-level to allocate the time shared resource to each bottom-level

scheduler in proportion to specified rate share. We have shown that EFT-C/D emulates the WF2Q

discipline and that it achieves nearly perfect fairness without establishing virtual time. We have also

provided a utilization-based schedulability analysis for the EDF scheduler at the bottom-level. Our

analysis allows us to easily test the schedulability of a given task set by simply computing required CPU

utilization, thus enabling on-line admission control.
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There are several future directions. First, we may allow adaptive rate modification for each bottom-

level scheduler in response to run-time workload variation. When the workload of a bottom-level scheduler

requires more resource share while others require less, then it would be desirable to adjust the rate share

accordingly. Second, we can also increase the flexibility our hierarchical scheduler by allowing dynamic

attachment and detachment of schedulers at bottom-level depending on the workload characteristics.

Finally, we are currently investigating if the original credit/debit algorithm can be proven to achieve the

same degree of fairness as EFT-C/D.
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