
Abstract

SCA (Software Communication Architecture), which has
been adopted as a SDR (Software Defined Radio) Forum
standard, provides a framework that successfully exploits
common design patterns of embedded systems software.
However, the SCA is inadequate as a component
framework since it does not explicitly specify (1) a
component model that defines how to express a
component interface and how to implement it, (2) a
package model that defines what and how to package in
deployment units, and (3) a deployment model that defines
the deployment environment and deployment process. In
this paper, we propose a SCA-based component
framework for SDR. Specifically, we present (1) a
component model that defines a component as a
specialized CORBA object that implements object
management functionality, (2) a package model exploiting
the existing XML descriptors of the SCA, and (3) a
deployment model that defines a SCA-based deployment
environment with a boot-up process to restore the
deployment state and a deployment process supporting
lazy application instantiation and dynamic component
replacement.

1. Introduction

Component software technology for maximizing software
reuse is greatly helpful to overcome the extreme complexity of
embedded software and reduce time-to-market. The component
software technology is aimed at creating new software systems
through the combination of deployable software, as opposed to
ground-up development. We adopt the OMG’s (Object
Management Group) [1] definition of a component: a modular,
deployable, and replaceable part of a system that encapsulates
implementation and exposes a set of interfaces [2]. Components
are typically some form of shared library and, depending on the
deployment environment, could be distributed as binaries, byte
code, or even source files written in a scripting language.

The SDR (Software Defined Radio) forum [3] has adopted
SCA (Software Communication Architecture) [4] of the JTRS

 The work reported in this paper is supported by the Korea Science and

Engineering Foundation (KOSEF) grant R01-1999-00206.
 School of Electrical Engineering and Computer Science, Seoul

National University, Seoul 151-742, Korea.

(Joint Tactical Radio System) [5] as the standard software
structure of SDR embedded systems. The SCA provides a
framework that successfully exploits common design patterns of
embedded systems software, which is typically composed of
device control programs and application programs. The SCA
also provides a flexible environment for integrating
heterogeneous hardware and software written in various
languages by adopting CORBA (Common Object Request
Broker Architecture) [6] as its base middleware. However, the
current SCA is inadequate as a component framework since it
does not explicitly specify (1) a component model that defines
how to express a component interface and how to implement it,
(2) a package model that defines what is in a deployment
package and how those contents are packaged, and (3) a
deployment model that defines the deployment environment and
deployment process.

In this paper, we propose a SCA-based component framework
for the SDR. Specifically, we present (1) a component model
that defines a common component CORBA interface that
supports object management functionality including connecting
contained objects while isolating functions that are not a part of
the application domain, (2) a package model that exploits XML
descriptors defined in the SCA domain profile, and (3) a
deployment model that defines a deployment environment
exploiting the SCA core framework interfaces, a boot-up process
to restore the deployment state exploiting the SCA domain
profile, and deployment process that supports lazy application
instantiation and dynamic replacement of application
components. An application can be selectively instantiated after
its installation through our lazy application instantiation. An
application also can be dynamically upgraded through our
dynamic component replacement mechanism.

1.1. Related Work
CCM (CORBA Component Model) [7], EJB (Enterprise Java

Beans) component model [8], and DCOM (Distributed
Component Object Model) [9] are the most widely available
component frameworks for distributed object computing.
Among them, the CCM is the most recent standard and supports
more advanced technology encompassing the others. Since the
CCM can interoperate with both the EJB and the DCOM and
since the SCA is based on CORBA technology, we will use the
CCM exclusively to compare with our research.

However, the CCM cannot be directly applied to SDR
handheld devices since the CCM is focused only on server side
applications that are installed in general purpose systems [10]
while SDR systems accommodate stand-alone wireless
applications, as opposed to stand-by server applications.

Imposing features from the CCM, such as containers, home

SCA-based Component Framework for Software Defined Radio

Saehwa Kim, Jamison Masse, Seongsoo Hong, and Naehyuck Chang
School of Electrical Engineering and Computer Science

Seoul National University, Seoul 151-742, Korea
{ksaehwa, jamison, sshong}@redwood.snu.ac.kr, naehyuck@snu.ac.kr

executers, and reflection runs counter to the need for
lightweight software in handheld devices. We should also
consider how to deploy hardware device configuration
information related to the deployment of software components.
Additionally, we also consider how to restore the deployment
state when an SDR system boots up since SDR systems may
exist that have limited non-volatile storages that cannot support
full check pointing or backup of run-time memory state.

The remainder of the paper is as follows. We provide an
overview of the SCA in Section 2. In Sections 3, 4, and 5, we
present our component framework that is composed of a
component model, package model, and deployment model to
complement SCA and complete component framework. We
conclude this paper in Section 6.

2. Overview of the SCA

The SCA structure is composed of an application layer and an
operation environment (OE) layer. The OE is also divided into
RTOS, CORBA, and core framework layers where RTOS and
CORBA are COTS (Commercial Off-The-Shelf) products. Since
the SCA uses the CORBA middleware, application programs are
basically composed of CORBA objects that conform to the SCA
core framework. The SCA core framework is composed of the
specification of interfaces and a domain profile. A domain
profile is composed of XML descriptor files that describe the
hardware and software configuration information of a SCA
system domain.

3. Proposed Component Model

In this section, we present our component model that
describes how to define interfaces of components and its
rationale. For this, we will first explain our approach, which is
isolating object-management functionality. Then, we will
explain the notion of ports, which are used to describe an
interface of a component. After that, we will present our
common component interface.

3.1. Approach: Isolating Object-Management
Functionality

A component object in our component model, an instantiation
of a component interface, isolates object-management
functionality and does not contribute any functionality to an

application domain. A component object is responsible (1)
internally for managing life cycles of its contained objects and
(2) externally only for connecting its contained objects with
objects in other components. To enforce this approach, we let a
component interface in our component model compose CORBA
object interfaces but prevent it from inheriting any CORBA
object interface. This approach follows the basic principal of
object-orientation that encapsulates behaviors according to
divisible functions. Our approach is also justified when
characteristics of embedded systems software are considered
where objects are typically statically connected in the
deployment phase and maintain their connections composing
stand-alone applications.

3.2. Ports
The term port is used in the CCM and also in the SCA domain

profile to mean a named connection point through which
components interoperate. We explain the notion of ports that are
needed in our component model to declare component interfaces
and describe connection information between components.

Our component model supports one-way binary
communication via provides ports and uses ports. A provides
port of a component is the means to retrieve an object reference
for a server object contained in the component. A uses port of a
component is the means to retrieve an object reference for a
proxy object connected with a server object contained in another
component. Figure 1 shows conceptually the connection of
components via ports in our component model.

3.3. Common Component Interface
We provide a standardized common component interface so

that a deployment tool can construct software by composing
components. In our component model, component interfaces are
declared via IDL (IDL2) and Software Component Descriptor
(SCD) in the SCA domain profile. Specifically, the IDL declares
only a component name and the SCD declares the port
information of a component. We propose SCACompObj interface
that will be used as a common component interface as shown in
Figure 2. The declaration of component interface in IDL is done
as follows by only declaring the component name information.
interface component_name:SCACompObject {};
That is, interfaces inheriting only SCACompObj without a

body are component interfaces. As described before, the
SCACompObj is an interface whose function is to connect objects

object1

object2

request

providesport

connection

usesport

IOR (Interoperable
Object Reference)

CORBA object

componentC

componentB

request

Legend

componentA

Object getProvidesPort(in string providesPortName) raises (UnknownPort);

SCACompObj
string identifier

<<interface>>

Object getUsesPort(in string usesPortName) raises (UnknownPort);
void connectPort(in string usesPortName, in Object prividesPort, in string connectionId)

raises (UnknownPort, InvalidPort, OccupiedPort);
void disconnectPort(in string usesPortName, in string connectionId) raises (InvalidConnection);

UsesPort
<<Interface>>

ProvidesPort
<<interface>>

Figure 1. Connection of components via ports in our
component model.

Figure 2. SCACompObject interface.

contained in components. The SCACompObj interface
implements UsesPort and ProvidesPort interfaces as shown
in Figure 2. The ProvidesPort interface provides getter
operations for provides ports and the UsesPort interface
provides setter and getter operations for uses ports. The
identifier attribute is used as a unique identifier for instances of
a component interface. Programmers should implement
operations of SCACompObj for each component interface
according to their set of ports.

The current SCA inconsistently makes use of the concept of
ports, differing between the SCA core framework interfaces and
the SCA domain profile. The view of the SCA domain profile is
in accordance with that of our component model. We consider
ports simply named connection points between components,
while the SCA core framework interfaces consider ports actual
objects providing connection functionality. In our component
model, the common component interface (SCACompObj)
provides connection functionality, rather than using port objects
to facilitate connection. Through our component model, the
notion of ports becomes consistent through the whole framework.
The SCACompObj makes both the Port and PortSupplier
interfaces of the current SCA for connecting objects obsolete.

4. Proposed Package Model

Although a component file is the basic unit of software
composition, it cannot be the unit of deployment. The
deployment unit for composing component software should
contain not only component files but also files like XML
descriptors describing deployment information. We adopt the
term package from the CCM for the deployment unit, which is a
ZIP file format assembly of multiple files. We classify packages
into (1) component packages that contain only one component
type and (2) component assembly packages that contain multiple
component types.

Since the SCA domain profile provides well-defined
descriptors and association relationships among descriptors, it is
straightforward to determine which descriptors should be
packaged together in each package. A component package
contains one top-level Software Package Descriptor (SPD) as
well as all the other descriptors the SPD requires. A component
assembly package contains either one Software Assembly
Descriptor (SAD) or one Device Configuration Descriptor
(DCD) as well as all the other descriptors they require.

On the other hand, packages cannot contain arbitrary
combination of SCA core framework interfaces since there are
precedence and collocation constraints on installing objects.
Therefore, we need to determine which interfaces should be and
cannot collocated in a package and categorize the types of
packages. Since this is tightly coupled with the deployment
model, we describe it in the next section.

5. Proposed Deployment Model

In this section, we describe the roles the participants play in
the deployment process and how they interoperate. Our
deployment model presents (1) a complete deployment
environment, (2) a system boot-up process to restore the
deployment state, and (3) a deployment process supporting lazy

application instantiation and dynamic replacement of application
components.

DomainManager

FileManager

XML Parser

DeviceManager

DeviceDevice

ApplicationFactory Application

an object name singleton
instantiated object

an object name instantiated object
per processor

a class name not-yet-instantiated
installed class a processor

Legend

FileSystem File

DeviceManager

File

optional

no need of
collocation

DeviceDevice

FileSystem

Figure 3. Deployment environment.

5.1. Deployment Environment
Figure 3 shows our basic deployment environment. Installed

classes and activated objects in the deployment environment are
primarily composed of the SCA core framework but also include
additional objects such as an XML parser. To set up this
deployment environment, we need a pre-installed component
package supporting DomainManager and component assembly
packages described with DCDs. This deployment environment
implicitly dictates which interfaces should be and should not be
collocated in a package and categorizes package types.

Each processor contains logical device objects; one logical
device for the processor itself and others for hardware devices
the processor manages. These proxy logical devices can act as
cross loaders by managing accessible image files, loading
images to target devices, and letting cross-loaded images
execute on their target devices. As such, the role of logical
device objects is similar to that of hardware managers in [11].

5.2. Boot-up Process
The boot-up process, the restoration of the deployment state,

is mainly composed of (1) setting up the deployment
environment and (2) activating applications that were executing
when the system was shut down. Our boot-up process requires
elements of domain profiles reside in non-volatile storage.
Specifically, a DCD should be pre-installed in each node and
one node should have DMD pre-installed where the
DomainManager will reside. In addition, SADs also should be
pre-installed in the proper nodes. Additionally, applications
must be able to specify if they should be instantiated
immediately after boot-up if they were instantiated at the point
of shut-down. For this, we added to SAD two XML elements
instantiated and restore. The element instantiated is set to true
when its application is instantiated and is set to false when the
application is shut down. The element restore is a static value
representing whether the instantiation of its application would be
restored or not. Under these conditions, each node executes a
boot-up procedure by exploiting the domain profile information.
The boot-up procedure is composed of (1) DomainManager
configuration using DMD, (2) DeviceManager configuration
using the DCD, and (3) Application configuration using SADs.

5.3. Deployment Process
The boot-up process, the restoration of the deployment state,

is mainly composed of (1) setting up the deployment
environment and (2) activating applications that were executing
when the system was shut down.

Our deployment model provides different deployment
processes according to the component types being deployed.
Specifically, our deployment process supports lazy application
instantiation where an application may not be activated
immediately after it is installed but it may be activated
selectively afterward. But components that implement control
and service interfaces in the SCA framework that are always
instantiated such as Device are instantiated immediately after
installation. Note that the CCM deployment process, intended
for server systems, installed components are instantiated
immediately after installation. However in our framework for
SDR embedded systems, multiple waveform applications are
installed together and they are selectively instantiated on a case-
by-case basis.

Application component upgrades are facilitated through a
replace() operation we have added to DomainManager.
Upgrading an instantiated application can be done in two ways:
run-time or lazy upgrade. The lazy upgrade uninstalls the
package of the target component, installs the new package, and
updates the corresponding SAD descriptor. The upgrade takes
effect only after the application is re-instantiated. The run-time
upgrade follows the procedure of the lazy upgrade but after
updating the SAD stops all the resource objects within the target
application, disconnects connections between objects of the
target component and others, instantiates the replaced
component, restores connections related with the newly replaced
component. The choice of such an upgrade strategy is dependent
on the properties of components or applications. For this reason
we have added to both the SAD and the SCD an XML element
upgradetype which can be either runtime or lazy. Only
when both values are runtime, the run-time upgrade is
performed.

As such, installation process and instantiation process for
application components are explicitly separated. This is from
consideration of the characteristics of the SDR embedded
systems, where multiple waveform applications are installed
together and they are selectively instantiated on a case-by-case
basis.

6. Conclusion

We have presented a SCA-based software framework
supporting dynamic deployment of SDR components that is
composed of a component model, a package model, and a
deployment model. Our component model provides a common
component interface for connecting objects contained in its
component. Components are defined as specialized CORBA
objects supporting object management functionality, isolating
functions that are not applied to an application domain. Our
package model provides deployment unit packaging that exploits
the SCA domain profile. Finally, our deployment model
provides (1) a deployment environment based on SCA core
framework interfaces, (2) a boot-up process to restore the

deployment state, and (3) a deployment process supporting lazy
application instantiation and dynamic component replacement.

The main contributions of the paper are three fold. First, we
have proposed the component model specialized to embedded
systems with consistent notion of ports. Second, we have
proposed the deployment model based on the current SDR
software standard, complementing it. Finally, we have presented
the component framework specialized for embedded systems
addressing the characteristics of embedded systems applications
with static connection management of components, the boot-up
process to restore deployment state, and lazy application
instantiation policies.

We are currently developing deployment tools for supporting
the proposed framework to show its utility. Designing a
lightweight container for embedded systems that supports such a
component model also seems promising. Future considerations
also include specifying non-functional QoS aspect of
components such as response time, fault-tolerance, security and
tools for evaluating them.

References

1. Object Management Group (OMG), http://www.omg.org.
2. Unified Modeling Language Specification Version 1.4

Appendix B - Glossary, Object Management Group,
September 2001.

3. Software Defined Radio (SDR) Forum,
http://www.sdrform.org.

4. Software Communications Architecture (SCA) Specification
MSRC-5000SCA V2.2, Joint Tactical Radio Systems,
November 17, 2001, Available at
http://www.jtrs.saalt.army.mil/SCA/SCA.html.

5. Joint Tactical Radio System (JTRS),
http://www.jtrs.saalt.army.mil/.

6. The Common Object Request Broker: Architecture and
Specification, Version 3.0, Object Management Group, June
2002.

7. CORBA Component Model Version 3.0, Object
Management Group, June 2002.

8. Enterprise JavaBeans Technology, Sun Microsystems, Inc,
http://java.sun.com/products/ejb/.

9. The Distributed Component Object Model (DCOM),
Microsoft Corporation,
http://www.microsoft.com/com/tech/DCOM.asp.

10. W. Emmerich and N. Kaveh, Component Technologies:
Java Beans, COM, CORBA, RMI, EJB and the CORBA
Component Model, In Proceedings of International
Conference on Software Engineering, pp. 691-692, 2002.

11. Benjamin H. Wang, Pangan Ting, S. Charles Tsao, Hung-
Lin Chou, and Nanson Huang, Integration of System
Software and SDR Hardware Platforms, SDRF-01-I-0052-
V0.00, Software Defined Radio Forum Contribution, August
2001.

