
International Journal of Automotive Technology, Vol. ?, No. ?, pp. ?−?(year)                                           Copyright  2000 KSAE 
Serial#Given by KSAE 

Reducing Memory Footprint of OSEK-based Systems via Stack Sharing and 
Light-Weight Ready Queues 

Daedong Park1), Jonghun Yoo1), Jiyong Park1) and Seongsoo Hong1),2)* 

1) School of Electrical Engineering and Computer Science, Seoul National University, Republic of Korea 
2) Department of Intelligent Convergence Systems, The Graduate School of Convergence Science and Technology, 

Seoul National University, Republic of Korea 

(Received 8 March 2010; revised 7 October 2010) 

ABSTRACT− OSEK OS is an open real-time operating system standard for ECU software in vehicles. Since it was 
originally designed to be used in an extremely resource-constrained environment, an OSEK compliant operating 
system must incur low processing overhead and memory usage. Unfortunately, as OSEK OS evolves over time, it 
now specifies non-trivial kernel features along with multiple conformance classes and application modes. This may 
lead to unwanted dynamic resource usage in a resultant system unless the standard is carefully interpreted and 
designed into an OSEK OS implementation. In this paper, we analyze the various kernel features of OSEK OS and 
their interactions in order to identify places in the standard that can warrant further resource usage optimization. We 
particularly attempt to reduce run-time memory footprint. Based on our analyses, we present two kernel mechanisms: 
(1) stack sharing among tasks and (2) light-weight ready queue handling specialized for OSEK OS conformance 
classes. We also offer implementation methods for the proposed mechanisms by extending OIL and associated tools. 
Finally, we show the effectiveness of the proposed mechanisms via extensive experiments. Our mechanisms allow 
OSEK-based systems to take up only 36% of the memory requirement of conventional OSEK-based systems on 
average. 
 
KEY WORDS: OSEK OS, RTOS, Memory optimization, Automotive software 

1. INTRODUCTION 

OSEK OS (OSEK Group, 2004) is an open real-time 
operating system standard for ECU software in vehicles. 
It has attracted wide industry adoptions since its first 
release in 1993 due to its capabilities for real-time 
multitasking, effective I/O control and abstraction, 
resource management and flexible timer/event handling. 
In addition to such functionalities, it yields a run-time 
system with extremely low memory footprint and 
timing overhead. As a result, an OSEK compliant 
operating system is ideal for ECU software that has to 
run in an extremely resource-constrained environment 
where only low-end microcontrollers and a small 
amount of physical memory are available (Yoon et al., 
2005). 

 Unfortunately, OSEK OS has evolved over time, and 
thus it now specifies non-trivial kernel features along 

with multiple conformance classes and application 
modes. Once being implemented, these features interact  
with each other in complex ways depending on a given 
conformance class and application mode. This may lead 
to unwanted resource usage in a resultant system unless 
the standard is carefully interpreted and designed into an 
OSEK OS implementation. This problem can get 
aggravated since OSEK OS specifies only kernel 
interfaces and functionalities and does not mention 
internal kernel structures and mechanisms in detail. 
Consequently, the resource requirements of an OSEK 
compliant operating system and its applications become 
dependent on a specific implementation. Some OSEK 
compliant operating systems may fall behind with 
others in terms of dynamic memory requirements and 
timing overhead if resource-saving kernel mechanisms 
are not exploited. 

In this paper, we analyze the kernel features specified 
in the OSEK OS standard and their interactions in order 
to identify places for optimizing the dynamic memory 
footprint of OSEK OS implementations and applications. 
We particularly examine task and resource subsystems 
since they are collectively responsible for task 

 

 * Corresponding author: sshong@redwood.snu.ac.kr 



Daedong Park, Jonghun Yoo, Jiyong Park and Seongsoo Hong 

scheduling and affect the ready queue design of OSEK 
compliant operating systems. We further examine OIL 
(OSEK Implementation Language) configurations, 
conformance classes and application modes. An OIL 
configuration describes task attributes of an application 
to the OIL interpreter and C code generator. A 
conformance class determines the range of the possible 
characteristics that an application task can have. An 
application mode defines a task set that can run together 
since OSEK OS allows only tasks with the same 
application mode to run concurrently at a given time. 

Based on our analyses, we propose two kernel 
mechanisms for reducing the dynamic memory 
requirement of OSEK-based systems. The first one is 
stack sharing among multiple tasks. We first reveal that 
stack spaces for two mutually exclusive tasks can be 
safely shared by them. We then present a list of task 
conditions for stack sharing by enumerating 
combinations over task attributes, conformance classes 
and application modes. The second is light-weight ready 
queue handling. Based on the analysis of conformance 
classes and task synchronization, we propose a ready 
queue design specialized for conformance classes. Then, 
we propose a priority reassignment scheme which is 
needed by the proposed ready queue design. 

We have implemented the proposed mechanisms into 
an OSEK compliant operating system that we developed 
for an evaluation board equipped with an MPC5554 
processor. We have extended the OIL to support our 
mechanisms and augmented the OIL interpreter and C 
code generator. Then, we have performed extensive 
experiments and compared the memory requirement of 
our implementation with that of others to show its 
effectiveness. The results show that our mechanisms 
allow OSEK-based systems to take up only 36% of the 
memory requirement of conventional OSEK-based 
systems on average. 

This paper is organized as follows. In Section 2, we 
analyze the kernel features and present a list of task 
conditions for stack sharing. Section 3 proposes the 
light-weight ready queue handling mechanism 
specialized for conformance classes. Section 4 describes 
extensions to the OIL for the proposed mechanisms. 
Section 5 reports on the results of experimental 
evaluation. Section 6 describes related work and Section 
7 provides our conclusion.  

2. STACK SHARING AMONG MULTIPLE 
TASKS 

OSEK OS specifies a non-trivial kernel structure with 
multiple conformance classes and application modes. 
Once being implemented, these features interact with 
each other in complex ways depending on a given 
conformance class and application mode. In this section, 

we analyze the kernel features of OSEK OS and their 
interactions in order to identify places for optimizing the 
dynamic memory footprint of OSEK-based systems. We 
particularly examine mutually related task and resource 
subsystems since they are collectively responsible for 
task scheduling and affect ready queue design. We 
further examine OIL configurations, conformance 
classes and application modes in turn. An OIL 
configuration describes task attributes of an application 
to the OIL interpreter and C code generator. A 
conformance class determines the range of the possible 
characteristics that an application task can have. An 
application mode defines a task set that can run together 
since OSEK OS allows only tasks with the same 
application mode to run concurrently at a given time.  

 
2.1. Examining Task Attributes and Application 

Modes 
 
OSEK OS specifies four attributes for each 

application task: task type, multiple activations, 
preemption and scheduling policy. As for task types, 
OSEK OS defines a basic task type and an extended 
task type where an extended task can invoke the 
WaitEvent() system call while a basic task cannot. 
Upon an invocation to WaitEvent(), an extended task 
stops its current execution and puts itself into a waiting 
state where it waits until other tasks or alarms wake it 
up. Obviously, a basic task cannot be in a waiting state. 
Figure 1 gives the state transition diagrams of an 
extended task and a basic task. 

OSEK OS allows multiple activations for a basic task. 
An activation is a command that triggers a task state 
transition from a suspended state to a ready state. 

 
Figure 1. OSEK task state transition diagrams. 

 
Figure 2. Task activations in two different application 
modes. 



Reducing Memory Footprint of OSEK-based Systems via Stack Sharing and Light-Weight Ready Queues 

 

Multiple activations mean that a basic task which was 
already activated can get more activation commands 
during its execution. OSEK OS dictates that such 
multiple commands be stored to reactivate a receiving 
task immediately after the termination of its current 
execution. By default, an extended task has multiple 
activations 

OSEK OS uses a priority-based scheduling policy. 
The priority of each task is determined at design time by 
a programmer. In addition to priority, a task may has a 
preemption attribute. The kernel scheduler can preempt 
a task with a preemption attribute whenever a task with 
higher priority arrives at the system. On the other hand, 
if a running task does not have a preemption attribute, 
the scheduler can preempt it only after it releases the 
processor or terminates itself. 

Application modes are used to group appropriate 
applications for execution based on conditions related to 
an ECU. Application programmers can define multiple 
application modes one of which is selected for 
execution during the boot-up process of the system. 
Once an application mode is selected, it cannot be 
changed until the system restarts. An application mode 
specifies a set of tasks and alarms that should be 
activated at the boot-up process. Such tasks and alarms 
can activate other tasks and alarms which are not 
automatically activated (Nelson et al., 2004). Figure 2 
shows two application modes and their tasks. When the 
OSEK kernel starts with application mode 1, task A is 
automatically activated. After the boot-up process, tasks 
B and C are activated by task A. In this example, tasks 
A, B and C execute in application mode 1. In this paper, 
we use application modes to determine mutually 
exclusive task sets for stack sharing 

 
2.2. Deriving Task Conditions for Stack Sharing 
 

The OSEK OS standard, which does not allow 
dynamic task creation, mandates that a stack with a pre-
determined size be statically allocated for each task. 
This policy leads to the wastage of run-time memory 
because a task occupies a stack space in memory 
regardless of its status. For instance, a task in a 
terminated state does not need any stack spaces. Zuberi 
et al. propose to recycle unused stack spaces in 
EMERALDS-OSEK (Zuberi et al., 2000). They further 
propose to share a stack among multiple tasks by 
observing two conditions that guarantee stack sharing 
among tasks. In principle, any two tasks can share the 
same stack if they never execute simultaneously. 

In addition to the conditions revealed by Zuberi et al. 
(2000), we derive two additional conditions for further 
stack sharing. These four conditions altogether are listed 
in Table 1. The first three conditions group mutually 
exclusive tasks in a given application mode. The last 
indicates that any two tasks in two different application 
modes are mutually exclusive by definition. Condition 
C1 says that any two non-preemptive basic tasks are 
mutually exclusive since no other task can preempt a 
non-preemptive basic task since a basic task always runs 
to completion. Condition C2 holds true since accesses to 
an internal resource serialize the execution of accessing 
tasks. Condition C3 holds true since a preemptive basic 
task can be preempted only by higher priority tasks. 
While Zuberi et al. (2000) use only conditions C1 and 

Table 1. Four conditions for stack sharing 

• If tasks in a given application mode are 
C1. Non-preemptive basic tasks 
C2. Basic tasks sharing the same internal resource 
C3. Basic tasks with the same priority 

 
• If tasks are 

C4.  In distinct application modes 

 

Task name T1 T2 T3 T4 T5  

 

Type 
(B: Basic, E:Extended) 

B B B B E 
 

preemptability 
(P: Preemptable, 

N: Non-preemptable) 
N P N P P 

 

Stack size (bytes) 50 100 120 150 180  

Internal resource - ResA ResA - 
 

 

Priority 20 20 10 30 40  

Application modes A, B A, B A, B A B  

(a) An example task set  (b) Stack size reduction for the example task set 

Figure 3. Example task set and stack size reduction. 



Daedong Park, Jonghun Yoo, Jiyong Park and Seongsoo Hong 

C3, our approach utilizes all of the four for extensive 
stack sharing. 

We demonstrate the stack sharing mechanism using 
an example task set listed in Figure 3. Using the 
conditions in Table 1, we derive two mutually exclusive 
task sets {T1, T2, T3} and {T4, T5}, each of which shares 
a single task stack. Specifically, tasks T1, T2 and T3 are 
mutually exclusive since (1) C1 is true for T1 and T3, (2) 
C2 for T2 and T3 and (3) C3 for T1 and T2. Tasks T4 and 
T5 are mutually exclusive since C4 is true for them. We 
can allocate a shared stack to each task set. A stack of 
120 bytes is allocated for T1, T2 and T3, and a stack of 
180 bytes for T4 and T5. As a result, the total stack size 
is reduced from 600 bytes to 300 bytes, as shown in 
Figure 3. 

3. LIGHT-WEIGHT READY QUEUE 
HANDLING 

A ready queue is a kernel data structure that holds a list 
of tasks which are ready to execute whenever the CPU 
is available to them. OSEK OS mandates that the OSEK 
kernel should maintain ready tasks in priority order so 
that it can efficiently select a task for dispatching. In 
many OSEK OS implementations, a ready queue is 
constructed with a simple array for efficiency. Each 
element in the array corresponds to a priority level. 
Since OSEK OS allows multiple tasks to have the same 
priority in some configurations, an element becomes 
another array. This gives rise to a ready queue with a 
two-dimensional array. In other OSEK configurations, 
all tasks are forced to have distinct priorities. In this 
case, the two-dimensional array design of a ready queue 
leads to memory wastage. 

In this section, we present a light-weight ready queue 
design specialized for various OSEK kernel 
configurations. In doing so, we take into consideration 

dynamic priority changes due to task synchronization. 
 
3.1. Examining Conformance Classes and Task 

Synchronization 
 
OSEK OS provides different OS profiles called 

conformance classes (CC) so as to prevent excessive 
resource usage by offering only minimally needed 
services for an application. Specifically, it defines two 
types of conformance classes CC1 and CC2. They differ 
from each other such that CC2 allows multiple tasks 
with the same priority and multiple activations for a 
basic task whereas CC1 does not. For both basic and 
extended tasks, there are four class combinations such 
as BCC1, BCC2, ECC1 and ECC2.  

OSEK OS uses the well-known Priority Ceiling 
Protocol (PCP) for task synchronization (Goodenough 
et al., 1988, Locke et al., 1988). It deals with a race 
condition where multiple tasks try to use a shared 
resource simultaneously. The PCP helps avoid 
unbounded priority inversions and deadlocks. In the 
PCP, each shared resource is assigned its own priority 
and the OSEK OS specification provides the following 
rule for safe priority assignment. 

 
• The resource priority shall be set at least to the 

highest priority of all tasks that access a 
resource or any of the resources linked to this 
resource. The resource priority shall be lower 
than the lowest priority of all tasks that do not 
access the resource, and which have priorities 
higher than the highest priority of all tasks that 
access the resource (OSEK Group, 2004, 
pp.31). 

 
When a task starts using a shared resource, it 

temporarily inherits the resource priority if its priority is 

 
Figure 4. Ready queue design for CC1 and CC2. 



Reducing Memory Footprint of OSEK-based Systems via Stack Sharing and Light-Weight Ready Queues 

 

lower than the resource’s. Due to such dynamic priority 
inheritance of the PCP, any two distinct tasks may have 
the same priority even though the OSEK kernel is 
configured as CC1. This surely complicates the ready 
queue design for CC1. 
 

3.2. Ready Queue Specialization and Non-
Overlapping Priority Reassignment 

 
We propose a ready queue design specialized for 

conformance classes. Conceptually, a prioritized ready 
queue needs to be implemented with a two-dimensional 
array to support tasks with the same priority as in CC2. 
On the other hand, a ready queue for CC1 can be 
simplified into a one-dimensional array since task and 
resource priorities do not overlap. Figure 4 depicts a 
general ready queue structure that works for CC2 and a 
light-weight ready queue structure for CC1. We can 
further shorten the one-dimensional array by removing 
priorities which are not used by any tasks or resources. 
Figure 4 also shows such optimization with a case 
where tasks use only four distinct priorities.  

Unfortunately, such a straightforward design of the 

CC1 ready queue can run into a problem when the PCP 
is used for task synchronization. Figure 5 illustrates the 
case where there exists priority overlap between a task 
and a shared resource. When task T1 acquires resource 
myRes at time t1, its priority is promoted to 30. At t2, 
task T3 is activated and preempts task T1. The scheduler 
stores T1 into the ready queue at priority 30. At t3, task 
T2 is activated and immediately enters the ready queue 
at priority 30. However, the scheduler cannot store T2 
into the one-dimensional array ready queue since that 
priority is already occupied.  

In order to rectify this problem, we propose a priority 
reassignment scheme that avoids priority overlap 
between tasks and resources. It attempts to reassign 
tasks and resources distinct priorities while maintaining 
their relative priority order. Figure 6 illustrates, with the 
same task set as Figure 5, how task priorities are 
reassigned. In this example, tasks T1, T2 and T3 are 
reassigned priorities 0, 1 and 3, respectively.  Resource 
myRes is reassigned priority 2. As a result, when T1 
acquires myRes at t1, its priority becomes 3. At t3, the 
scheduler can safely store T2 into the ready queue. 

Clearly, such a priority reassignment is not always 

 
Figure 5. Problem caused by priority overlap. 

 

 
Figure 6. Priority reassignment scheme to avoid priority overlap. 



Daedong Park, Jonghun Yoo, Jiyong Park and Seongsoo Hong 

possible. Then, even a CC1 application needs to be 
configured to use the CC2 ready queue. Fortunately, 
such applications are rare in practice. 

4. EXTENDING OIL FOR PROPOSED 
MECHANISMS 

An OIL interpreter and code generator realize the stack 
sharing and light-weight ready queue handling 
mechanisms into an OSEK OS implementation after 
obtaining the kernel and application configuration 
information written in OIL. It is thus necessary to 
extend the original OIL with extra task attributes needed 
for the proposed mechanisms. In this section, we review 
the OIL and its accompanying tools. And then we 
identify task attributes that must be included in the 
extended OIL and show a revised code generation 
process via a code example.  

 
4.1. Configuring Applications and Generating 

Code using OIL 
 

OSEK OS offers the OIL as a configuration language 
so that developers can describe task attributes and 
declare kernel objects in their application. Since OSEK 
OS defines only a library kernel, application code is 
statically linked with the kernel code and built into a 
single executable image. Also, OSEK OS mandates that 
all kernel objects such as tasks, alarms, events and 
resources be statically created. Such static linking and 
kernel object creation help avoid dynamic memory 
allocation which increases the complexity of kernel 
design and decreases the predictability of task execution. 
Figure 7 depicts a code fragment of an application 
configuration written in OIL. Configurations of Task3, 
Resource1, Alarm1 and Event1 are described in the 
example. From the descriptions, we know that Task3 is 
a non-preemptive basic task and its priority is 20. The 
task requires 100 bytes for its stack, executes in 
application modes A and B, and does not invoke the 
Schedule() API. In the subsection that follows, we 
explain the code generation process for the extended 
OIL. 

The OIL comes with two tools, an OIL interpreter 
and a C code generator. They parse an OIL file and 

TASK Task3 { 
      TYPE = BCC1; 
      SCHEDULE = NON; 
      ACTIVATION = 1; 
      AUTOSTART = FALSE; 
      RESOURCE = Resource1;  
      PRIORITY = 20; 
      StackSize = 100;  
      UsedMode = A, B;  
      UsingSchedule = NO; 
}; 
 
RESOURCE Resource1 { 
      RESOURCEPROPERTY = STANDARD; 
}; 

 

 ALARM Alarm1 { 
      COUNTER = SystemTimer; 
      ACTION = ACTIVATETASK 
      { 
         TASK = Task3; 
      }; 
      AUTOSTART = TRUE 
      { 
         AlarmUnit = Ticks; 
         StaticAlarm = FALSE; 
      }; 
 }; 
 
 EVENT Event1 { 
      MASK = AUTO; 
 }; 

Figure 7. Example application configuration in an OIL file. 

 

 
Figure 8. OSEK application development process with OIL. 



Reducing Memory Footprint of OSEK-based Systems via Stack Sharing and Light-Weight Ready Queues 

 

generate C source code files as described in the OIL file. 
Figure 8 demonstrates the OSEK application 
development process in our implementation. File 
“intvect.c” contains an interrupt vector table and 
“tcb.h” and “tcb.c” together describe task 
attributes, alarms, events and resources. These files are 
dependent on our mechanisms since they contain kernel 
data structures such as task control blocks. They are also 
dependent on underlying hardware architecture since it 
describes an interrupt vector table and priorities of 
interrupts. Thus, it is necessary to redesign the OIL 
interpreter and C code generator. As shown in Figure 8, 
generated files are compiled with the OSEK kernel code 
and application code. They altogether become an 
executable image for the target hardware.  

 
4.2. Extending OIL for Augmented Task 

Attributes 
 
An OIL file describes the properties of tasks such as 

priority, preemptability, multiple activations, auto-start, 
resource usage, events and messages. We identify all 
task properties required for the proposed mechanisms 
and introduce new properties to the OIL if they are not 
originally supported. 

First, we identify extra information required for the 
stack sharing mechanism. It includes application mode, 
existence of a call to Schedule() and task stack size. 
We respectively denote them by UsedMode, 
UsingSchedule and StackSize fields. Note that a non-
preemptive task that shares an internal resource with 
others must not call Schedule(). The UsingSchedule 
field is false if Schedule() is not called in the task. 

The StackSize field explicitly describes the stack size of 
a task. 

Second, we derive additional information required 
for the light-weight ready queue design. In order to 
select an appropriate ready queue design to use for an 
application, developers need to know task types, 
multiple activations and the number of tasks with the 
same priority. They can obtain such information from 
an ordinary OIL file.  

 
4.3. Code Generation using Extended OIL 
 
We demonstrate how the OIL interpreter and C code 

generator work with task descriptions in an extended 
OIL file. In Figure 9, we show a code fragment 
generated for the stack sharing tasks example of Figure 
3. Recall that tasks T1, T2 and T3 can share a stack of 
120 bytes and that tasks T4 and T5 can share a stack of 
180 bytes. The code fragment contains the stack 
declaration of the tasks saying that T1, T2 and T3 share 
stack0 and T4 and T5 share stack1.  

Figure 10 shows a code fragment initializing task 
context. Conventional OSEK OS implementations build 
the context of a task onto the task stack during the boot-
up process of the system. Our OSEK OS 
implementation, however, cannot initialize the context 
of stack sharing tasks during the boot-up process since 
they use the same stack. Instead, the context of such 
tasks is initialized during context switching time. To do 
so, the scheduler must know whether the context of a 
task to run next is already initialized. The stackAlloc 
flag keeps such information. It is set to false when the 
task’s state is changed from suspended to ready and it 
becomes true after context initialization. 

Figure 11 gives an code example of our light-weight 
ready queue design. The ready queue for CC1 is a 
simple array of characters and that for CC2 is an array 
of structures. As explained earlier on, a ready queue 

// in Schedule() API 

 

uint32_t hID = 
getHighestPriorityTaskID(); 

if (TCB[hID].stackAlloc == FALSE) { 
TCB[hID].stackPointer = 

createContext(taskStack[hID], ...); 
TCB[hID].stackAlloc = TRUE; 

} 
// make this task run 

 

restoreContext(TCB[hID].stackPointer[hID]); 

Figure 10. Context initialization code included in the 
schedule() API. 

uint8 stack0[120]; 
uint8 stack1[180]; 
uint8 taskStack[5] = {stack0, stack0, 

stack0, stack1, stack1}; 

Figure 9. Task stack declarations for example tasks 
of Figure 3. 

#if defined (BCC1) || defined (ECC1) 
typedef readyQ_t uint8; 
 
#elif defined (BCC2) || defined (ECC2) 
typedef struct readyQueueType { 

uint8 head; 
uint8 tail; 

} readyQ_t; 
#endif 
 
readyQ_t readyQueue[numOfDifferentPriority 

+ 
numOfDifferentCeilingPriority]; 

uint8 priorityQueue0[]; 
uint8 priorityQueue1[]; 
… 

Figure 11. Specialized ready queue implementation 
for CC1 and CC2. 

 



Daedong Park, Jonghun Yoo, Jiyong Park and Seongsoo Hong 

holds as many elements as distinct task priorities and 
resources priorities altogether. In CC2, each element 
points to a circular queue that holds multiple tasks with 
the same priority. priorityQueue arrays in the 
example are used for this purpose. 

5. EXPERIMENTAL EVALUATION 

We have implemented the proposed mechanisms into an 
OSEK compliant operating system that we developed 
for an evaluation board equipped with an MPC5554 
processor. We have extended OIL as explained in 
Section 5 and augmented the OIL interpreter and C code 
generator. For experiments, we made OIL files which 
described synthetically produced task sets and generated 
the source code of tasks using the OIL files. Each task 
set consisted of 50 randomly generated tasks. We then 
measured the total stack size demand of each task set by 
summing individual task stack sizes declared in the 
generated source code. The proposed mechanisms 
achieve memory footprint reduction by extending OIL 
and modifying the C code generator, while dynamic 
behavior of tasks remains unchanged. Thus there is no 
performance degradation for reducing memory footprint. 
For comparing our approach with others, we measured 
three different total stack size demands as follows. 

• S1: Total stack size when stack sharing is not 
applied. 

• S2: Total stack size when the two conditions 
proposed in (Zuberi et al. 2000) are applied. 

• S3: Total stack size when all the conditions 
proposed in this paper are applied. 

Task attributes such as task type, preemptability, 
resource usage, priority, stack size and application mode 
affect total stack sizes. In our experiments, we used 

three of them as test variables: (1) the number of basic 
tasks in a task set, being either 20 or 40, (2) the number 
of non-preemptable tasks in a task set, ranging from 0 to 
50, and (3) the number of basic tasks sharing an internal 
resource, ranging from 0 to 50. We did not choose the 
application mode as a test variable since it is 
straightforward to estimate the effect of condition C4 
that involves the application mode. We used only one 
application mode in our experiments. Other task 
attributes were randomly selected. Each task’s priority 
was a uniformly distributed random value in the range 
of [0, 63]. Each task stack size was also a uniformly 
distributed random value in the range of [100, 500] KB.  

We have performed two kinds of experiments. First, 
we varied the number of non-preemptable tasks while 
the other two test variables were fixed. Second, we 
varied the number of tasks that shared an internal 
resource while the other two test variables were fixed. 
For each task set, we measured two total stack sizes, one 
with 20 basic tasks and the other with 40 basic tasks. 
We have performed measurements 100 times and 
averaged the total stack sizes. 

Figure 12 depicts the total stack size as the number of 
non-preemptable tasks is varied. We set to 10 the 
number of basic tasks that shared an internal resource. 
The result shows that S3 is only 40% of S1 on average. 
S3 is smaller than or equal to S2 since the conditions in 
our mechanism subsume those proposed in (Zuberi et al. 
2000). 

Figure 13 depicts the total stack size of task sets as 
the number of tasks that shared an internal resource is 
varied. We set the number of non-preemptable tasks to 
20. Since only condition C2 is related to internal 
resources, S2 is not affected in this case. The result 
shows that S3 is only 32% of S1 on average. S3 is also 
smaller than or equal to S2 which is 59% of S1.  

 
Figure 12. Total stack size reduction for different number of non-preemptable basic tasks. 



Reducing Memory Footprint of OSEK-based Systems via Stack Sharing and Light-Weight Ready Queues 

 

6. RELATED WORK 

The run-time memory of an executing program can be 
subdivided into three disjoint segments: code, data and 
stack segments. In the literature, most of attempts to 
reduce the run-time memory requirement of an OSEK 
OS implementation focus on code and stack segments 
since there are little room for optimizing a data segment 
for a given microcontroller. Zuberi et al. (2000), Chen, 
T. et al. (2005) and Chen, W. et al. (2005) address stack 
size reduction via sharing the same stack among 
multiple tasks. These approaches differ in task 
conditions for stack sharing. In principle, any two 
disjoint tasks can occupy the same stack if they never 
execute simultaneously. In (Chen, T. et al., 2005) and 
(Chen, W. et al., 2005), only non-preemptable basic 
tasks are allowed to share a stack. In (Zuberi et al., 
2000), basic tasks at the same priority level are 
additionally included for stack sharing, based on the fact 
that a basic task runs to completion and can be 
preempted only by higher priority tasks. In our approach, 
we further include for stack sharing basic tasks 
accessing the same internal resource and tasks 
belonging to different application modes. This 
effectively increases the number of stack sharing tasks. 
In order to realize such extensive stack sharing, we add 
two extra fields in the OIL task descriptions such as an 
application mode in which a task runs and a flag 
denoting whether a task invokes a schedule API call. 
We also develop an OIL interpreter and C code 
generator that support the extended OIL. 

In (Zuberi et al., 2000), (Chen, T. et al., 2005), (Chen, 
W. et al., 2005) and (Barthelmann, 2004), multiple 
stack emulation is proposed to reduce the per-task stack 

space. It is quite often the case in automotive 
applications that an OSEK OS implementation is hosted 
on a low-end microcontroller that has only a single 
stack pointer register. For the sake of simplicity and 
efficiency, legacy OSEK kernels support only per-task 
stacks and use them for interrupt handling and alarm 
handling as well as task execution. This leads to the per-
task stack size increase since an extra space is reserved 
in each task stack for interrupt and alarm handling. To 
avoid this problem, Zuberi et al. (2000), Chen, T. et al. 
(2005) and Chen, W. et al. (2005) offer an additional 
interrupt stack separate from a task stack by emulating 
multiple stack pointers and stack switching. ProOSEK 
discussed in (Barthelmann, 2004) uses a separate kernel 
stack as well as an interrupt stack. 

In (Barthelmann, 2004), inter-task register allocation 
is adopted for ProOSEK in that a compiler allocates a 
separate register group to each task. This helps reduce 
the stack size of a task because the number of registers 
that need to be saved in a stack during context switching 
is decreased. Also, it is important to precisely estimate 
the maximum stack size requirement of a task since 
such information is specified in an OIL file. The C code 
generator uses this information later to statically 
allocate a task stack. In (Gu et al., 2005) and 
(Barthelmann, 2004), a compiler is used to calculate the 
tight stack size bound of a task while other legacy 
OSEK kernels reply on manually calculated stack size 
information. 

There are several attempts to reduce the memory 
space used by kernel data structures such as a ready 
queue. In (Zuberi et al., 2000), (Chen, T. et al., 2005) 
and (Chen, W. et al., 2005), a one-dimensional array, 
instead of a two-dimensional one, is used as a ready 
queue for conformance classes BCC1 and ECC1. In this 

 
Figure 13. Total stack size reduction for different number of tasks sharing an internal resource. 



Daedong Park, Jonghun Yoo, Jiyong Park and Seongsoo Hong 

case, the length of the array is equal to the number of 
priorities supported by the kernel. Our approach uses 
the same ready queue for BCC1 and ECC1. However, it 
is different from (Zuberi et al., 2000), (Chen, T. et al., 
2005) and (Chen, W. et al., 2005) in a sense that it 
further reduces the size of the ready queue by 
reassigning distinct priorities to resources and tasks so 
as to eliminate unused priorities and hence unused array 
elements. 

7. CONCLUSION 

In this paper, we proposed two kernel mechanisms for 
reducing the dynamic memory requirement of OSEK-
based systems. They are stack sharing among tasks and 
light-weight ready queue handling specialized for 
OSEK OS conformance classes. Our stack sharing 
mechanism saves memory by exploiting conditions 
derived from the run-to-completion property of a basic 
task. The light-weight ready queue safely works due to 
the priority reassignment scheme that avoids the priority 
overlap problem. We also presented implementation 
methods for the proposed mechanisms by extending 
OIL and associated tools. 

We have performed extensive experiments to 
measure the amount of memory footprint reduction. The 
results show that our approach cut the memory 
requirement by 36% on average, in comparison with 
conventional OSEK OS implementations. This result is 
achieved without incurring run-time performance 
degradation. 

We are currently looking to extend the proposed 
mechanisms so that they can be applied to OSEKTime 
which is a kernel standard for a time-triggered real-time 
operating system (OSEK Group, 2001). Since 
OSEKtime has a different scheduling policy from 
OSEK OS, it may require additional stack sharing 
conditions. 

 
ACKNOWLEDGEMENT−The work reported in this paper 
was supported by the National Research Foundation of Korea 
(NRF) grant funded by the Korean government (MEST) (No. 
2010-0027809 and No. 2010-0001201). 

REFERENCES 

Barthelmann, V. (2004). Advanced Compiling 
Techniques to Reduce RAM Usage of Static 
Operating Systems, PhD thesis, Friedrich-Alexander 
University of Erlangen-Nuremberg, Erlangen. 

Chen, T., Chen, W., Wang, X. and Hu, W. (2005). 
Implementing and Evaluation of an OSEK/VDX-
Compliant Configurable Real-time Kernel, IEEE 
Networking, Sensing and Control, 555-559. 

Chen, W., Wu, Z. and Wang, X. (2005). Minimizing 
Memory Utilization of Task Sets in SmartOSEK, 
Advanced Information Networking and Applications 
2, 552-558. 

Goodenough, J. B. and Sha, L. (1988). The Priority 
Ceiling Protocol: A Method for Minimizing the 
Blocking of High Priority Ada Tasks, Proceedings of 
the 2nd International Workshop on Real-time Ada 
Issues. 

Gu, Y., Wu, Z. and Yue, L. (2005). AlphaOS, An 
Automotive RTOS Based on OSEK/VDX: Design 
and Test, IEEE Networking, Sensing and Control, 
174-179. 

John, D. (1998). OSEK/VDX History and Structure, 
IEE Seminar 523 OSEK/VDX Open Systems in 
Automotive Networks, 2/1-2/13. 

Locke, C. D. et al. (1988). Priority Inversion and Its 
Control: An Experimental Investigation, ACM 
SIGADA Ada Letters 8, 7, 39-42. 

Nelson, E. C., Prasad, K. V., Rasin, V. and Simonds, C. 
J. (2004). An Embedded Architectural Framework for 
Interaction Between Automobiles and Consumer 
Devices, Proceedings of the 10th IEEE RTAS. 

OSEK/VDX. (2005). Operating System Specification 
2.2.3, OSEK Group. 

OSEK/VDX. (2004). System Generation, OIL: OSEK 
Implementation Language 2.5, OSEK Group. 

OSEK/VDX. (2001). Time-Triggered Operating System 
Specification 1.0, OSEK Group. 

Yoon, M., Lee, W. and Sunwoo, M. (2005). 
Development and Implementation of Distributed 
Hardware-in-the-loop Simulator for Automotive 
Engine Control Systems, Int. J. Automotive 
Technology 6, 2, 107-117. 

Zuberi, K. M. et al. (2000). EMERALDS-OSEK: A 
Small Real-time Operating System for Automotive 
Control and Monitoring, SAE transactions 108, 6. 

 
 
 
 
 
 
 
 
 
 

 

 



Reducing Memory Footprint of OSEK-based Systems via Stack Sharing and Light-Weight Ready Queues 

 

LIST OF FIGURES 

Figure 1. OSEK task state transition diagrams. 
Figure 2. Task activations in two different application modes. 
Figure 3. Example task set and stack size reduction. 
Figure 4. Ready queue design for CC1 and CC2. 
Figure 5. Problem caused by priority overlap. 
Figure 6. Priority reassignment scheme to avoid priority overlap. 
Figure 7. Example application configuration in an OIL file. 
Figure 8. OSEK application development process with OIL. 
Figure 9. Task stack declarations for example tasks of Figure 3. 
Figure 10. Context initialization code included in the schedule() API. 
Figure 11. Specialized ready queue implementation for CC1 and CC2. 
Figure 12. Total stack size reduction for different number of non-preemptable basic tasks. 
Figure 13. Total stack size reduction for different number of tasks sharing an internal resource. 


	ACKNOWLEDGEMENT(The work reported in this paper was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (No. 2010-0027809 and No. 2010-0001201).

