Computer Communications xxx (2010) XXX-XXX

Contents lists available at ScienceDirect

computer
communications

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

Preventing TCP performance interference on asymmetric links using ACKs-first
variable-size queuing

Jiyong Park?, Daedong Park?, Seongsoo Hong *”*, Jungkeun Park ¢

2School of Electrical Engineering and Computer Science, Seoul National University, Republic of Korea
b Department of Intelligent Convergence Systems, The Graduate School of Convergence Science and Technology, Seoul National University, Republic of Korea
¢ Department of Aerospace Information Engineering, Konkuk University, Republic of Korea

ARTICLE INFO ABSTRACT

Article history:

Received 18 February 2009

Received in revised form 5 April 2010
Accepted 23 September 2010
Available online xxxx

In developing network-enabled embedded systems, developers are often forced to spend a great deal of
time and effort analyzing and solving network performance problems. In this paper, we address one such
problem: TCP performance interference on an asymmetric link. The upload or download throughput
abruptly degrades if there is simultaneously upload and download TCP traffic on the link. While the prob-
lem has been addressed by many researchers, their solutions are incomplete as they only improve
throughput in one direction, require TCP protocol modifications in end-user devices or are effective for

Keywords: - a limited range of network configurations.
Asymmetric link
TCP In order to overcome such limitations, we propose ACKs-first variable-size queuing (AFVQ) for a gate-

way. In doing so, we have derived an analytic model of the steady-state TCP performance with bidirec-
tional traffic to clearly identify the two sources of the problem: the excessive queuing delay of ACK
packets and the excessive number of ACK packets in the queue. Our AFVQ mechanism is designed to
directly eliminate the two causes. Specifically, we have based AFVQ on two policies. First, ACKs-first
scheduling is used to shorten the queuing delay of ACK packets. Second, the queue size for ACK packets
is dynamically adjusted depending on the number of data packets queued in the gateway so that the
number of ACK packets is reduced when packets are congested in the gateway. By applying the two pol-
icies simultaneously at the uplink and downlink output queue in the gateway, AFVQ achieves balanced
TCP throughput improvements in both directions. In this way, it breaks circular dependencies between
upload and download traffic.

We have implemented AFVQ in our ADSL-based residential gateway using the traffic control module of
the Linux kernel. Our gateway yields 95.2% and 93.8% of the maximum download and upload bandwidth,
respectively. We have also evaluated the proposed mechanism using the ns-2 simulator over a wide
range of network configurations and have shown that AFVQ achieves better upload and download
throughput than other representative gateway-based mechanisms such as ACQ, ACKs-first scheduling
and ACK Filtering.

Performance interference
Queue scheduling

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

As embedded systems are required to provide diverse network
connectivity, a network subsystem has become an indispensable
component in embedded systems design. Unfortunately, it is very
challenging to realize network protocols in embedded systems
and analyze their network performance since embedded systems
usually operate in unconventional network configurations and
under tight resource constraints. This causes unexpected interrela-
tionships among network devices and protocols which in turn have

* Corresponding author at: School of Electrical Engineering and Computer
Science, Seoul National University, Republic of Korea. Tel.: +82 2 880 8370; fax:
+82 2 882 4656.

E-mail address: sshong@redwood.snu.ac.kr (S. Hong).

0140-3664/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.comcom.2010.09.010

a non-linear effect on network performance. Moreover, network
performance problems should be carefully addressed since a
straightforward solution approach may require modifications of
the protocol standards or the end-user devices which developers
cannot amend in most cases. As a result, developers often have
to put a large amount of additional time and effort into getting
the required network performance, even after they have completed
development.

In this paper, we address an instance of network performance
problems in a residential gateway when it is connected to an asym-
metric link. A residential gateway is an embedded device that con-
nects a home network to the Internet [1]. It provides various
additional services such as security, authentication, content
management, remote control and network resource management.
As such, a residential gateway is a highly complex device that

put. Commun. (2010), doi:10.1016/j.comcom.2010.09.010

Please cite this article in press as:]. Park et al., Preventing TCP performance interference on asymmetric links using ACKs-first variable-size queuing, Com-

http://dx.doi.org/10.1016/j.comcom.2010.09.010
mailto:sshong@redwood.snu.ac.kr
http://dx.doi.org/10.1016/j.comcom.2010.09.010
http://www.sciencedirect.com/science/journal/01403664
http://www.elsevier.com/locate/comcom
http://dx.doi.org/10.1016/j.comcom.2010.09.010

2 J. Park et al./ Computer Communications xxx (2010) xXx-xXX

provides composite features. For simplicity, we hereon refer to a
residential gateway as a gateway.

Usually, a gateway is connected to the Internet using an asym-
metric link technology such as Asymmetric Digital Subscriber Line
(ADSL) [2], Data Over Cable Service Interface Specifications (DOC-
SIS) [3] and Passive Optical Networks (PONs) [4]. They are called
asymmetric since more bandwidth is allocated to the downlink
than the uplink. This decision is made based on the observation
that most Internet traffic patterns favor download traffic. This effi-
cient use of the limited total bandwidth makes the technology cost
effective. Consequently, most of the residential Internet accesses
are serviced via the asymmetric link technology.

However, as new types of devices and application domains
emerge, upload traffic in home networks is also rapidly increasing.
For example, devices such as interactive TVs, IP phones and web
cameras frequently upload video and audio data across the Inter-
net. Home PCs also incur a significant amount of upload traffic as
new communication applications such as Peer-to-Peer (P2P) file
sharing and webcasting become popular. As a result, upload speed
as well as download speed is becoming an important factor in
determining network performance.

The increased upload traffic on an asymmetric link may cause
an unexpected interference in the presence of congestion since
existing transport protocols such as TCP [5] are not designed to
handle asymmetric traffic patterns. We call this the TCP perfor-
mance interference problem on an asymmetric link where the traffic
speed in one direction is interfered with by traffic in another
direction. For simplicity, from now on we will refer to this as the
performance interference problem.

1.1. Related work

Similar performance problems have been anticipated in the lit-
erature since early 1990s [6-14]. They examined the upload or
download throughput degradation of TCP traffic over asymmetric
links such as ADSL, cable and satellite link. Authors in [8,11]
pointed out that the bandwidth asymmetry causes a phenomenon
called ACK starvation in that ACK packets are delayed by data pack-
ets on a slower link. TCP performance degradation is also observed
on a wireless link with a high bit-error rate such as satellite links
[13,14].

Followed by such observations and analyzes, solution mecha-
nisms have been proposed. Widely known solutions are ACC [8],
ACE [15], ACK Filtering [8], SAD/AR [16], SACK Filtering [17],
ACKs-first scheduling [8,18], REFWA [19], TCP sender adaptation
[8], TCP New Jersey [20,21], ACQ [22,23], VAQ [22], DBCQ [24]
and DQM [25].

ACC, ACE, ACK Filtering, SAD/AR and SACK Filtering attempt to
reduce bandwidth consumed for transmitting ACK packets so that
more bandwidth is provided for data packets. Particularly, they try
to do so by limiting an ACK generation rate at an end-user device or
selectively dropping ACK packets at a gateway. However, this de-
creases the download throughput since the queuing delay of ACK
packets in the slow uplink is increased.

ACKs-first scheduling tries to shorten the queuing delay of ACK
packets in the slow uplink by transmitting them prior to data pack-
ets in a gateway. Although this improves the download through-
put, it has a downside as well. If the asymmetry between the
uplink and downlink bandwidth is large, the upload output queue
is flooded by ACK packets and thus the upload throughput is seri-
ously compromised.

TCP New Jersey, TCP sender adaptation and REFWA are conges-
tion control mechanisms that can also be used to alleviate the ACK
starvation problem. They dynamically limit the transmission rate
of data packets towards the slow uplink depending on the conges-
tion level or the available bandwidth of the link. As a result, ACK

packets for download traffic can avoid starvation but only at the
cost of reduced upload throughput.

To avoid this problem, ACQ, VAQ, DBCQ and DQM store ACK and
data packets in separate queues and schedule them using schedul-
ing algorithms. While this prevents both ACK and data packets
from being starved, it increases the average queuing delays of both
ACK and data packets. This, in turn, degrades the throughput in
both directions. RFC 3449 [26] covers a complete list of existing
solutions and detailed comparisons among them.

None of the existing solutions are complete in the sense that
they can improve the TCP performance only in one direction or
are effective for a limited range of network configurations with dif-
ferent asymmetry ratios and Internet delays. Moreover, many of
the solutions make use of per-connection data structures,
weighted fair queuing and rate control mechanisms. Since these
incur non-trivial run-time memory and performance overheads,
they are not suitable for resource-constrained residential gate-
ways. More importantly, some of the existing solutions cannot be
applied to gateways since they require modifications to the TCP
protocol stack implementations on end-user devices.

In this paper, we propose the ACKs-first variable-size queuing
(AFVQ) mechanism that overcomes the above limitations of the
existing solutions. In doing so, we have derived an analytic model
for the steady-state TCP performance with bidirectional traffic to
clearly identify the sources of the performance interference prob-
lem, namely the excessive queuing delay of ACK packets and the
excessive number of ACK packets in the queue. Our AFVQ mecha-
nism is designed to directly eliminate these two causes. Specifi-
cally, we base AFVQ on two policies. First, ACKs-first scheduling
is used to shorten the queuing delay of ACK packets. Second, the
queue size for ACK packets is dynamically adjusted depending on
the number of data packets queued in the gateway so that the
number of ACK packets is reduced when packets are congested in
the gateway. The two policies are designed such that they change
only the queuing policy in the gateway and do not rely on any per-
connection data structures or rate control algorithms. Clearly,
AFVQ is a gateway-only solution that improves TCP performance
in both directions on an asymmetric link. It is also effective for a
wide range of asymmetry ratios and Internet delays and does not
incur significant run-time overheads since it does not rely on costly
run-time mechanisms such as those mentioned above.

We have implemented the AFVQ mechanism in our ADSL-based
residential gateway using the traffic control module of the Linux
kernel. In order to show that AFVQ improves the TCP performance
in both directions and is effective for a wide range of networks, we
have conducted a series of experiments both in a real-world and
simulated networks. The real-world experiments were performed
across a home network and the Internet that were interconnected
via a commercial ADSL link. Our gateway yields 95.2% and 93.8% of
the maximum download and upload bandwidth, respectively. We
have also evaluated the proposed mechanism using the ns-2 sim-
ulator over a number of different network configurations and
shown that AFVQ achieves better upload and download through-
put than other representative gateway-based mechanisms such
as ACQ, ACKs-first scheduling and ACK Filtering.

1.2. Organization of the paper

The rest of the paper is organized as follows. In Section 2, we
give the implementation of the residential gateway and its operat-
ing environment. Then the network performance interference
problem is described in detail. Section 3 provides the network
model of the gateway using an asymmetric link. In order to aid
in the understanding of the rest of the paper, we also give an over-
view of the TCP congestion control mechanism. In Section 4, we
derive an analytic model of the steady-state TCP throughput in

put. Commun. (2010), doi:10.1016/j.comcom.2010.09.010

Please cite this article in press as:]. Park et al., Preventing TCP performance interference on asymmetric links using ACKs-first variable-size queuing, Com-

http://dx.doi.org/10.1016/j.comcom.2010.09.010

J. Park et al./ Computer Communications xxx (2010) xXx-xXX 3

our network configuration and provide our solution strategy. In
Section 5, we present the AFVQ mechanism as a solution mecha-
nism. Section 6 provides experimental results. Finally, Section 7
serves as our conclusion.

2. Problem description

Linux is one of the most suitable operating systems for imple-
menting network devices due to the proliferation of supported
protocols and versatile traffic control mechanisms. Unfortunately,
the straightforward adoption of the native Linux network subsys-
tem may incur severe performance problems depending on traffic
patterns, workloads and network configurations. Our ADSL gate-
way also experiences a performance interference problem in that
the upload or download speed is abruptly reduced when there is
simultaneous upload and download TCP traffic on an ADSL link.
In this section, we first explain the implementation of our
Linux-based residential gateway and identify the performance
interference problem. We then formulate the problem in terms
of packet scheduling policies over the Linux traffic control
mechanisms.

Table 1
Implementation of the residential gateway.

Hardware Main processor SoC based on ARM architecture
(No MMU, clock speed: 40 MHz)
Network Proprietary ADSL DSP
processor
Memory SDRAM: 8 Mbytes
Flash memory: 2 Mbytes
Network ADSL and Ethernet
interfaces
Software Operating uClinux version 2.4.17 (Linux for MMU-less
system processor)
Provided Web server, NAT, SNMP, Firewall, IP-

functionalities
Protocol stacks

filtering, DHCP and etc.
e RFC 2684 (bridged Ethernet)
e RFC 2364 (PPP over AAL5)
e RFC 1577 (IPv4 PDU)

2.1. Analyzing gateway implementation and identifying performance
interference

Our gateway was developed using uClinux, a version of Linux
specialized for MMU-less CPUs [27]. Table 1 summarizes the
implementation of the gateway. It has one ADSL and one Ethernet
interface. It is connected to the Internet through the ADSL interface
and to the PC as well as various consumer devices through the
Ethernet interface. Inside the gateway, there are three different
protocol stacks, RFC 2684, RFC 2364 and RFC 1577. One of them
is selected and used according to the gateway configuration.
Though all three protocol stacks carry out the task of transferring
a packet received from one network interface to another, the differ-
ence lies in how they analyze and handle packets.

The conventional structure and packet processing mechanism
of the Linux network subsystem in the residential gateway is de-
picted in Fig. 1. It consists of three elements: (1) network device
drivers, (2) the TCP network protocol stack and (3) an input queue
and two output queues. There are two network device drivers, used
for interfacing with the home network and the Internet, respec-
tively. They perform two tasks: copying incoming packets into
memory and copying outgoing packets stored in memory into
the network interface. The network protocol stack does the actual
packet processing. Specifically, it analyzes a packet header, dis-
cards a packet if its header matches one of the firewall rules, looks
up the routing table, determines the network interface where the
packet will be sent and modifies the packet header when Network
Address Translation (NAT) is enabled. After being processed, a
packet is stored in a specific memory location for transmission.
The input and output queues are in-memory data structures used
for storing packets in transit between the device drivers and the
network protocol stack. Packets are queued and dequeued accord-
ing to the FIFO policy. It is important to note that a separate output
queue exists for each device driver whereas there is only one input
queue for all of them. Thus, packets arriving at the gateway are
processed one at a time in the FIFO order.

Fig. 2 shows the operating environment of the residential gate-
way. It consists of a local host, a residential gateway, the Internet
and a remote host. The local host and the gateway are connected

Network D - Network Ublink Network
device driver ownlin protocol pin device driver
(home network) output queue stack output queue (the Internet)

RN

R - B
P

P -

Input queue

Legends R
4 . I
— upload traffic Packet arrival hardware
interrupt handler
"""" * download traffic
¢ Packet sending completion
» hardware interrupt handler
1) Protocol processing
;] software interrupt handler
o J

Fig. 1. The structure and packet processing mechanism of the conventional network subsystem in a residential gateway.

put. Commun. (2010), doi:10.1016/j.comcom.2010.09.010

Please cite this article in press as:]. Park et al., Preventing TCP performance interference on asymmetric links using ACKs-first variable-size queuing, Com-

http://dx.doi.org/10.1016/j.comcom.2010.09.010

4 J. Park et al./ Computer Communications xxx (2010) xXx-xXX

Upload traffic

Download traffic

FTP
server

TCP

FTP
client
TCP
FTP
client
10 Mbps
Local host 10 Mbos Residential
(PC) ps gateway
Ethernet

800 Kbps

ADSL

Remote host
(server)

10 Mbps

Ethernet

Fig. 2. Operating environment of the residential gateway for demonstrating performance interference problem. The lower part shows hardware configuration and the upper

part shows software configuration.

via an Ethernet link and the gateway is connected to the Internet
through an ADSL link. While the Ethernet is a symmetric link that
offers the same speed in both directions, the ADSL is an asymmet-
ric link that has different upload and download speeds. The upload
speed from the gateway to the Internet is faster than the download
speed in the opposite direction. For example, the ADSL2, which is
one of the most widely used ADSL specifications, offers 12 Mbps
for download traffic and 3.5 Mbps for upload speed.

In order to observe network performance degradation, we built
an operating environment with the ADSL Lite [28] service that
many Internet Service Providers (ISPs) offer. It offers 2.1 Mbps for
download traffic and 800 Kbps for upload traffic. We used FTP pro-
grams to simultaneously generate continuous upload and down-
load traffic. We executed a multi-threaded FTP server program in
the remote host and two FTP client programs in the local host. They
exchanged data using TCP. One FTP client sent a file to the server
and the other got a file from the server. The file used in each trans-
fer was an arbitrary file that was bigger than 100 Mbytes. Each cli-
ent constantly re-transferred the same file. This configuration was
created to reflect the characteristics of network applications such
as P2P.We then measured the file transfer throughputs for upload
and download directions in three cases: (1) only upload transfer is
activated, (2) only download transfer is activated and (3) both
transfers are activated. The results are given in Fig. 3. We can see
that the upload speed is reduced abruptly from 750 Kbps to
250 Kbps when we activate transfers in both directions. This
corresponds to a 67% decrease in speed. Contrary to our intuition,
download speed is not affected.

The performance interference problem was observed when TCP
was used regardless of other traffic patterns. We confirmed this by
replacing the FTP programs by the TFTP [29] programs that use
UDP and performing the same experiments. This revealed that
UDP traffic alone did not incur any performance interference. How-
ever, we could observe the similar performance interference when

2000
Download ;
£ 1500
=)
=
£ 1000
B4 Upload
o
=
= 500
0
Up | Up & Down

we ran the FTP and TFTP programs together. In this case, the TCP
throughput in both directions was reduced by the amount of band-
width consumed for the UDP traffic. This was further confirmed by
another experiment where UDP traffic generated by video stream-
ing applications co-existed with TCP traffic.

In order to reveal the diverse behaviors of the problem, we also
performed a number of experiments with different configuration
parameters. Increasing the uplink output queue size from 100 to
200, we observed an opposite phenomenon: the upload speed re-
mained the same while the download speed decreased by 56.1%
from 1.8 Mbps to 790 kbps. This indicates that the performance
interference problem could degrade the TCP performance in both
directions depending on network configurations.

In line with the experimental results, we define the perfor-
mance interference problem as below.

The performance interference problem is a phenomenon where
the upload or download speed is abruptly reduced when there is
simultaneous upload and download TCP traffic on an asymmetric
link.

Clearly, it is very important to avoid the problem to smoothly
support new applications in home networks.

2.2. Formulating network performance interference problem into
packet queuing policy selection

The performance interference problem forces us to carefully re-
engineer the network subsystem of the Linux-based gateway
implementation. Since it is often considered as one of the most
complicated components of the Linux kernel, it is critical to first
characterize the network congestion model and then map it into
a set of packet queuing policies that collectively define the entire
packet handling process of a network subsystem. This implies
that the network performance interference problem becomes a

Time
| Down | Up & Down | Up

Fig. 3. File transfer throughput for the upload and download traffic according to the combinations of upload and download file transfer activities. “Up” and “Down” indicate

upload and download file transfer is activated, respectively.

put. Commun. (2010), doi:10.1016/j.comcom.2010.09.010

Please cite this article in press as:]. Park et al., Preventing TCP performance interference on asymmetric links using ACKs-first variable-size queuing, Com-

http://dx.doi.org/10.1016/j.comcom.2010.09.010

J. Park et al./ Computer Communications xxx (2010) xXx-xXX 5

problem of selecting packet queuing policies. We categorize the
packet queuing policies in a top-down manner as listed below.

e Queue locations for applying new policies: We need to select
where to apply our new queuing policies inside the network
subsystem. As shown in Fig. 1, there are three candidate places,
the input queue, the uplink output queue and the downlink out-
put queue.

Packet enqueing policy: After we determine the queue loca-
tions, we need to determine how packets are enqueued at each
location. We may enqueue all packets into a single queue, or
classify packets into several classes and store them into sepa-
rate queues.

Queue scheduling policy: In case of multiple queues, we need to
conduct queue scheduling in order to pick a queue for packet
dequeuing. Possible queue scheduling policies include round-
robin scheduling, priority scheduling and weighted fair
scheduling.

For each queue, following three policies should be further
determined.

e Queuing policy: Queuing policy determines how packets are
handled inside a queue after they are enqueued. We may use
the default FIFO queuing or choose different queuing policies
such as the token bucket queuing and the priority queuing.

e Queue size: Along with the queuing policy, we also have to
determine the size of each queue. In Linux, the default size is
200 packets per queue. We can override the default value and
even change the size dynamically.

e Drop policy: Each queue needs a drop policy. It determines
which packets to drop when a queue is full. In Linux, the
drop-tail policy is used by default. We may use other policies
such as the drop-head, the Random Early Detection (RED) and
so on.

After the above six policies are determined, we need to realize
them into the Linux-based network subsystem. Fortunately, the Li-
nux kernel provides for a clear separation of packet handling poli-
cies and mechanisms via the traffic control module [30]. It allows
us to modify the configurations of the network input and output
queues via a command-line tool at run-time. We can replace the
default FIFO queue with others with different policies and
construct multiple queues in a hierarchical manner.

3. Network model and TCP mechanism

Before analyzing the performance interference problem in de-
tail, we first designed a network model in which the problem can

Logical uplink

be observed. In addition to the model, we also give an overview
of the TCP congestion control and avoidance mechanisms in order
to aid in the understanding of the performance analysis in the next
section.

3.1. Network model

Our network model is a point-to-point network consisting of a
local and a remote host. They are connected to each other via
two logical links in opposite directions: a logical uplink and a
downlink. A logical link is an end-to-end path covering the home
network, the gateway and the Internet. Since we are looking for
a gateway-only solution, we abstracted the home network and
the Internet and simply model them as delays. We model the gate-
way in a logical link as a combination of a queuing system and a
delay where the former models the output queue and the latter
packet processing time in the gateway. We do not have to model
the input queue of the gateway as a queuing system since its queu-
ing delay is almost zero as explained in Subsection 2.1. We can
simplify the entire model by adding the three different delays into
a single propagation delay. The entire model is depicted in Fig. 4.

Our model is instantiated with four types of parameters: a
transfer rate, a queue size, a propagation delay and a packet loss
probability. The transfer rate denotes the speed of packet transmis-
sion from an output queue and the packet loss probability denotes
the probability that a packet is lost on the path.

Table 2 summarizes notations used throughout the paper. In the
table, upper case subscripts D and U denote a logical downlink and
an uplink, respectively, and lower case subscripts d and u denote
download and upload traffic, respectively. More notations are
defined in following sections.

3.2. Overview of TCP congestion control and avoidance mechanisms

Generally, for reliable data transmission, a sender needs to wait
for an acknowledgement (ACK) packet after transmitting a data
packet. However, this stop-and-wait mechanism may well lead
to low throughput. TCP uses a sliding window mechanism [31] that
allows a sender to transmit multiple data packets without waiting
for corresponding ACK packets. Since this may cause buffer over-
flows on the receiving side, a TCP receiver notifies the sender of
its free buffer space via ACK packets. This is called a receiver
window, denoted as rwnd, and is used to limit the number of
unacknowledged data packets that the sender can send.

The sliding window mechanism was used in the early imple-
mentations of TCP but it caused the congestion collapse to the
Internet gateways and routers due to excessive data packets. In or-
der to rectify this problem, Jacobson [5] devised congestion control
and avoidance mechanisms which are also known as TCP Tahoe.
They were later enhanced and called TCP Reno [32,33] and TCP

drop
*

Hy [_' >
@! SN

EPL

Local host

Remote host

Tp |
< ' : L tp <
1 Pp

v Logical downlink

drop

Fig. 4. The network model for the performance interference problem.

put. Commun. (2010), doi:10.1016/j.comcom.2010.09.010

Please cite this article in press as:]. Park et al., Preventing TCP performance interference on asymmetric links using ACKs-first variable-size queuing, Com-

http://dx.doi.org/10.1016/j.comcom.2010.09.010

6 J. Park et al./ Computer Communications xxx (2010) xXx-xXX

Table 2

Symbols used in the paper. Upper case subscripts D and U indicate that a symbol is for
logical downlink and uplink, respectively. Lower case subscripts d and u indicate that
a symbol is for download and upload traffic, respectively.

Symbols Meanings

Hus Up Transfer rate of a logical link (in bytes per second)

Su, Sp Size of a queue (in number of packets)

Ty Tp Delay of a logical link (in seconds)

DPus Pp Packet loss probability of a logical link

maxwnd,, maxwndy Maximum windows size (in number of packets)

D Size of a TCP data packet (in bytes)

A Size of a TCP ACK packet (in bytes)

b Number of data packets required for a TCP receiver to
generate an ACK packet

D A Steady-state TCP throughput (in bytes per second)

RTT,, RTT,4 Round-trip time of a TCP connection (in seconds)

ngflufﬂ? ngfg“ Average number of data packets in the queue of the
logical link

n;’ﬁm} n%m Number of data packets in the delay line of the logical
link

ngck, nock Number of ACK packets in the queue of the logical link

Number of ACK packets in the delay line of the logical
link

Queuing delay of data packets

Queuing delay of ACK packets

ack ack
M > Mg
qgam> qgum
qﬂCk< ngk

Vegas [34]. In the congestion control mechanism, the concept of a
congestion window, denoted as cwnd, was introduced. It is the sen-
der-side limit on the number of unacknowledged data packets.
Therefore, a sender is allowed to send wnd = min(cwnd,rwnd) data
packets without being acknowledged. The cwnd is a variable that is
incremented each time a new ACK packet arrives. This allows a TCP
sender to increase the packet transmission rate as it successfully
receives ACK packets.

The limit that wnd cannot exceed is called ‘maximum window
size’ and is denoted as constant maxwnd. In fact, it is equal to the
size of the receive buffer in the TCP receiver since wnd is less than
or equal to rwnd, which is at most equal to the size of the receive
buffer. As in Table 2, we use maxwnd, and maxwnd, to denote the
maximum window size of the upload and download traffic, respec-
tively. The sizes of a data and an ACK packet are denoted as D and
A, respectively.

As cwnd increases, the probability of losing data packets in-
creases due to link errors or buffer overflows caused by congestion
in a gateway or routers. A TCP sender detects the loss either via tri-
ple-duplicate ACK packets or timer expirations. When such a data
packet loss is detected, the sender decreases cwnd in order to re-
solve the congestion. The exact amount of the increment and dec-
rement of cwnd varies among different versions of TCP. Specifically,
Additive-Increase/Multiplicative-Decrease (AIMD) [5] and its vari-
ants were used from the early versions of TCP, but they are being
replaced by other policies such as Additive-Increase/Additive-De-
crease (AIAD) [35]. However, since the difference does not affect
our analysis, we do not provide any further details on the TCP con-
gestion control mechanism.

4. Analytic modeling of the problem and deriving solution
strategy

In this section, we analytically analyze the performance inter-
ference problem and derive our solution strategy. Since we are
looking for a gateway-only solution, we derive relationships be-
tween the steady-state TCP throughput and queue parameters in
the gateway. We derive two quadratic equations each of which is
for the steady-state TCP throughput in upload and download direc-
tion, respectively. These equations reveal that the throughput can
be controlled by two parameters in the gateway: the number of

ACK packets in the output queue and the queuing delay of ACK
packets. Specifically, the throughput can be increased close to the
maximum link bandwidth by minimizing the two parameters. This
result leads to our AFVQ mechanism.

We first derive an equation for the steady-state TCP throughput
of the download traffic. There has been effort to analytically derive
the steady-state TCP throughput [11,36-38]. We adopt the sto-
chastic model presented in [38]. The steady-state download
throughput 4, is derived as

maxwndyD
RTT
Zd = D

RITy /222247 min (1.3 ”’%)pn(uang)

if maxwnd, < Ejwnd})
otherwise.

(1)

As defined in the previous section, D, maxwnd, and pp are the data
packet size, the maximum window size and the packet loss proba-
bility, respectively. To, b and RTTy are the initial timeout value, the
number of data packets required for a TCP receiver to generate an
ACK packet and the round-trip time for the download traffic,
respectively. Ejwndy] is the mean value of the unconstrained win-
dow size that is given as below.

w 2+b [8(1- 2+pp\°
Efwnd] = = +\/ (3pr”)+< 3pr>. 2)

We simplify Eq. (1) by introducing constants C; and C, below.
Thus, we have

maxwndsD i maxwndy < Ejwnd®
)»d{ RIT; d [dl 3)

b .
RT,CTC otherwise,

where

Gy =/ and

4
C, = Tomin (1,3 ”%)pn(l-&-ﬂp%). @

In Eq. (3), RTTy is the only unknown variable since D, maxwndy,
b, pp, To and E[wndy] are constants. Recall that RTT; denotes the
time duration from when the remote host sends a data packet to
when the host gets an ACK packet acknowledging the data packet.
As shown in Fig. 5, it can be decomposed into t4%¢ and t4%. The for-
mer is the delay of a data packet along the logical downlink and the
latter is the delay of an ACK packet along the logical uplink. The de-
lay along a logical link is further decomposed into a queuing delay,
a transmission delay and a propagation delay. The round-trip time
is thus

RTTd _ tgata 4 I‘ZCR — <qgam +B+ TD> + <qgck +A+ TU>7 (5)
Hp Hy

where g4 and g% are the queuing delay experienced by data and

ACK packets for the download traffic, respectively. If we repeat the

above formulation for the upload traffic, we can similarly derive

equations for the upload throughput.

From Egs. (3) and (5), it is easily inferred that the download
throughput increases as g4 and g4 decrease. Similarly, the up-
load throughput increases as q%® and q?* decrease. However, since
ACK and data packets share a common queue, increasing the up-
load throughput by decreasing g and q%“ may increase gi*®
and q%*. This in turn decreases the download throughput. There-
fore, it is necessary to clearly model circular dependencies between
upload and download traffic in order to come up with a way to
simultaneously increase both upload and download throughput.

We model the interference of the upload traffic on the down-
load traffic. We first examine the downlink output queue where

put. Commun. (2010), doi:10.1016/j.comcom.2010.09.010

Please cite this article in press as:]. Park et al., Preventing TCP performance interference on asymmetric links using ACKs-first variable-size queuing, Com-

http://dx.doi.org/10.1016/j.comcom.2010.09.010

J. Park et al./ Computer Communications xxx (2010) xXx-xXX 7

l»t(;ck
ack
q, LAy Ty
k
oW .
—~ ni'
Hy 7
date
data nél ‘i !
Local host v Remote host
qﬁ @
TD | D / ;ul) f/:;“m

data
lzl

mm Data packet

ACK packet

Fig. 5. The decomposed round-trip time and the number of packets for the download traffic.

download packets experience delay due to upload ACK packets. We
denote the average numbers of data and ACK packets in the queue
as nd”m and ngﬁﬂ‘, respectively. The total amount of information in
bytes in the queueis D - ngf]d‘” +A- ngf[j. It is transmitted at the speed
of up bytes per second. Thus, an incoming data packet experiences
the following queuing delay on the average.
gion - 2D TATG ©
Hp

We elaborate on ngﬂ}” in Eq. (6). As shown in Fig. 5, the packets
for the download traffic can be categorized into four groups: 1)
data packets in the downlink output queue, 2) in-transit data pack-
ets in the delay line, 3) ACK packets in the uplink output queue and
4) in-transit ACK packets in the delay line. The number of packets
in each group is denoted as nd%¢, nf4, ni% and n{¢". Subscripts q and
I indicate a queue and a delay line, respectively. The packets that
are currently being processed by the gateway are considered as
still being queued. The first two groups contain data packets that
have been transmitted but not acknowledged by the TCP receiver.
Since a TCP receiver transmits an ACK packet for every b data pack-

ets received, ni% + nf¢ ACK packets acknowledge b(n“" +n,“§">

data packets. In most TCP implementations, b is greater than or
equal to 2. As a result, the number of data packets that have been
transmitted but whose acknowledgements have not been received

is nd4e + nfgte 4 b(n“" + n“") By the definition of a window size in
Section 3.2, this number is equal to current window size wnd, for
download traffic. Hence, we get

data 4 ndgm + b(gc[l](4 nack) — Wﬂdd. (7)

However, since we deal with the steady-state TCP throughput, we
use average window size avgwndy instead of wnd,. Padhye et al.
[38] show that the average window size is

if maxwnd,
otherwise.

E[wndy],
maxwndy,

< Ejwndy)

avgwnd, = { (8)

Therefore, the number of data packets in the downlink output
queue is

data _ avgwndd _ ndata _ b(gcg + n%k) (9)

We analyze nf'y and (ng + n?g") in Eq. (9). First, we start with
nf‘"“ Since the download throughput is 14 bytes per second and the
size of a data packet is D bytes, data packets are pushed into the
downlink delay line at the rate of /4/D packets per second. The
number of data packets in the delay line is determined by using
the bandwidth-delay product as follows

nfge =242,

We examine (ni% + nf¢). Since the ACK packets are on the log-
ical uplink, we cons1der the entire link as a queue-less delay line
whose propagation delay is ti%. As mentioned above, the local host
sends an ACK packet at every b data packets received. Therefore,
the rate of ACK packets toward the uplink is 14/bD. Again, the band-
width-delay product gives us the total number of ACK packets on
the logical uplink as below.

Jqtack

(10)

(mock + migk) = . (11)
From Egs. (5), (9), (10) and (11),
T y) tack
data _ _Md'D AdYq
ngy = avgwnd, D D
)Ld ack A
=avgwnd; — = (T +Tu +q5 +—). (12)
D My

By plugging this result into Eqgs. (8), (6), (5) and (3), we obtain
the following equation for the download throughput /4:

maxwndyD
An ack . i)
Tip (maxwndg+1)+—E Tp+Ty+q4° +#U 1-a5

u
E[wnd]
D
k
L (rn+ru+q“5"+uu> (1 “D> }+C2

This equation is equivalent to quadratic equation fy(14) = 0 where
X125 — (D(maxwndy + 1) + X3) /g + dpmaxwnd,D,
if maxwnd, < E[wndy]
C]X])ui — {C] (D(E[Wﬂdéﬂ +
otherwise

) if maandd <
Ad =

GC
G { 2 (E[wndy] +1) !

otherwise.

Ad) =
fd(d)])—‘,—Xz)"r,uDCZ}/‘LdJ":uDD’

(14)

put. Commun. (2010), doi:10.1016/j.comcom.2010.09.010

Please cite this article in press as:]. Park et al., Preventing TCP performance interference on asymmetric links using ACKs-first variable-size queuing, Com-

http://dx.doi.org/10.1016/j.comcom.2010.09.010

8 J. Park et al./ Computer Communications xxx (2010) xXx-xXX

where
_ ack | A
Xi=1Tp+Tu+qz*+ and

(15
Xa = ppX1 +A-nick.)

Download throughput /4 is determined as one of the roots of Eq.
(14). Upload throughput /, can be derived by following the same
formulation steps as above. The equations for the upload through-
put are the same as Egs. (14) and (15) only with subscripts D and
d being respectively changed to U and u, and vice versa. Therefore,
we do not present the equations for the sake of simplicity.

Having derived the quadratic equations for the upload and
download throughput, we present a solution strategy to maximize
the throughputs simultaneously. Our strategy is based on the
following theorem.

Theorem 1. Root 4 € (0, up) of Eq. (14) monotonically increases as
qi* and nik decrease.

Proof. The proof is given in Appendix. O

For the upload throughput, we can establish a similar theorem
via the same proof steps; that is, the upload throughput monoton-
ically increases as i and ni% decrease.

According to these theorems, we can maximize the download
and the upload throughput simultaneously by minimizing g4
and ng% at the uplink output queue and gi* and ni% at the down-
link output queue. This requires us to minimize the queuing delay
experienced by ACK packets and the number of ACK packets in
each of the two output queues.

This result is consistent with our intuition. If the number of ACK
packets in a queue decreases, the spare bandwidth can be used to
transfer more data packets and this in turn increases the through-
put for the opposite direction traffic. If the queuing delay of ACK
packets decreases, so does the round-trip time. As discussed ear-
lier, the throughput increases as the round-trip time decreases.

5. Realizing the AFVQ Mechanism into the Gateway

Based on our previous analysis, we devise the ACKs-First Vari-
able-size Queuing (AFVQ) mechanism. We will first give an over-
view of the mechanism and then present its implementation in
our gateway running Linux.

5.1. The AFVQ mechanism

AFVQ solves the performance interference problem by using
two major policies: ACKs-first scheduling and variable-size queu-
ing. The former reduces the queuing delay of ACK packets by sep-
arating ACK and data packets and transmitting ACK packets prior
to data packets. The latter reduces the number of queued ACK
packets by limiting the number of ACK packets in an output queue.
This causes the dropping of excessive ACK packets and as a result
more bandwidth is provided for transmitting data packets. Drop-
ping ACK packets is allowed since ACK packets are cumulative.
The newest ACK packet informs the TCP sender that all data pack-
ets were successfully transmitted even though some prior ACK
packets may have been lost and not received. Unless all ACK pack-
ets are lost, the TCP sender does not reduce transmission speed.
These policies are applied both at the uplink and the downlink out-
put queue in the gateway. The input queue remains unmodified
since the queue is almost empty and thus applying any queuing
policy can hardly affect the entire packet handling process. Queu-
ing seldom occurs at the input queue because packets inside the
queue is dequeued by the CPU which processes the packets much
faster than the packet arrival rate.

Fig. 6 depicts how our policies are realized in AFVQ. It shows the
packet handling process in one of the two output queues. It con-
sists of three separate FIFO queues, a packet classifier, a priority
scheduler, a round-robin scheduler and a queue size modifier.
The three separate queues and the packet classifier are used to iso-
late TCP ACK, TCP data and non-TCP packets from each other.
When a packet is delivered from the network protocol stack, the
packet classifier inspects the packet header and stores the packet
into the corresponding queue according to the header type. Since
one of our goals is to avoid the use of per-connection data struc-
tures that cause run-time memory overheads, the classifier does
not distinguish packets for different TCP connections.

The priority scheduler realizes the ACKs-first scheduling policy.
The ACK queue gets the high priority while the other two queues
get the low priority. Packets in the two queues can be selected
for transmission only when the ACK queue is empty. The round-ro-
bin scheduler is used to provide the equal amount of bandwidth to
the TCP data queue and the non-TCP queue. This is to prevent the
TCP data packets from being starved by non-TCP packets. Since
non-TCP protocols such as UDP do not have a rate control mecha-
nism, non-TCP packets tend to consume the bandwidth as much as
possible and thus remain no bandwidth for TCP data packets.

random dropping when overflow

unusable slots .

from network
protocol stack

Packet
classifier

size

Queue

modifier

high
priority

to device
driver

Priority
scheduler

TCP ACK packet

mm TCP data packet

mmmm Non-TCP packet

—— Empty slot

Fig. 6. The structure and the packet handling process of the AFVQ mechanism.

put. Commun. (2010), doi:10.1016/j.comcom.2010.09.010

Please cite this article in press as:]. Park et al., Preventing TCP performance interference on asymmetric links using ACKs-first variable-size queuing, Com-

http://dx.doi.org/10.1016/j.comcom.2010.09.010

J. Park et al./ Computer Communications xxx (2010) xXx-xXX 9

The queue size modifier realizes the variable-size queuing pol-
icy. It adjusts the size of the ACK queue depending on the number
of packets stored in the TCP data queue. As the number of queued
TCP data packets increases, the modifier gradually shrinks the ACK
queue. When the number exceeds a threshold, the ACK queue size
is set to its minimum 1. At least one ACK packet needs to be
queued not to lose all ACK packets. The behavior of the modifier
is expressed below.

s (—snf:fn-s—smuﬂ if 0 <n<ng (16)
1 otherwise

Here, n is the number of packets in the TCP data queue and s is the
size of the ACK queue. S;,qx and ng, are the maximum size of the
ACK queue and the threshold, respectively.

When the ACK queue overflows, we use the drop-random policy
in which a randomly selected packet is dropped from the queue.
This policy is preferred to the ordinary drop-head and drop-tail
policies where the oldest and the newest packets are dropped,
respectively. This is because the drop-random policy prevents an
acknowledgement number seen by the TCP sender from being in-
creased abruptly whereas the other two policies do not. Such an
abrupt increase in an acknowledgement number is undesirable
since it leads to a sudden fluctuation of the number of transmitted
data packets and may cause buffer overflows at routers [39]. Table
3 summarizes the complete list of policies explained so far.

5.2. Implementing AVFQ in the residential gateway

As described in Section 2.1, since AFVQ is a gateway-only solu-
tion, the mechanism could be implemented by only changing the
queuing policy at the two output queues in the residential gate-
way. Specifically, we modified each output queue using the traffic
control module in the Linux kernel as shown in Fig. 7. Our mecha-
nism is implemented across the kernel-space and the user-space.
In the kernel-space, we add a CBQ queuing discipline at the top le-
vel. The top-level queuing discipline provides a packet enqueing
and dequeing interface for the protocol stack. Inside the queuing
discipline, we further add three pFIFO queuing disciplines to the
CBQ for TCP ACK packets, TCP data packets and non-TCP packets.
In the traffic control module, a pFIFO queuing discipline imple-
ments a FIFO queue with the drop-tail policy. Since we use the
drop-random policy for ACK packets, we modify the existing pFIFO
to support both policies. For separating the three types of packets,
we add a filter object and configure it to forward each incoming
packet to the corresponding pFIFO queuing discipline. We imple-
ment the priority scheduler and the round-robin scheduler by
associating each pFIFO queuing discipline with a CBQ class. Specif-
ically, we assign the highest priority to the CBQ class for ACK pack-
ets than the CBQ class for the other two. The CBQ classes for TCP
data packets and non-TCP packets get the equal weight of 0.5 to
share the bandwidth equally.

In the user-space, we implement the queue size modifier as a
shell script. It uses the tc command-line program [30] to monitor
and control the two pFIFO queuing disciplines for TCP ACK and data

Table 3
List of packet queuing policies used in AFVQ.

Legends
I:l queuing discipline
C) class 0 = + dequeue

. ——> control data
O filter

I:I program s l T n

—— Cnqueue

Queue size modifier
(written in shell script)

tc tool
User-space | T 7 |
Kernel-space
to device . CBQ [pFIFO
driver " |(prio = 0, weight = 1.0) (drop-random)
PR
CBQ
_— .
from network i
protocol stack R CBQ pFIFO
(prio = 1, weight = 0.5) (drop-tail)
{5 TCP ack DY
CBQ pFIFO
(prio = 1, weight = 0.5) (drop-tail)

Fig. 7. Implementation of the AFVQ mechanism in the residential gateway.

packets. It reads the number of queued TCP data packets and config-
ures the size of the queue for ACK packets. Since the tc tool uses sys-
tem calls to enter the kernel, the monitoring and controlling are
expensive operations. However, the overall overheads are insignifi-
cant since the queue size modifier runs slowly at the rate of 1 Hz.
The rate can also be adjusted depending on the load of the gateway.

6. Experimental results

As clearly explained in previous sections, AFVQ is a gateway-
only solution since it does not attempt to modify protocol stack
implementations on end-user devices and is entirely implemented
within a gateway. Moreover, it runs very efficiently in a gateway
since it does not rely on costly per-connection data structures or
any expensive run-time mechanisms. In this section, we attempt
to show the most important property of AFVQ. That is, we demon-
strate that it actually solves the performance interference problem
or significantly improves the TCP performance in both directions
on an asymmetric link. Also, we show that the AFVQ is effective
over a wide range of asymmetry ratios and Internet delays while
achieving better upload and download throughput than other rep-
resentative gateway-based mechanisms, such as ACQ, ACKs-first
scheduling and ACK Filtering. To do so, we have conducted exper-
iments with the AFVQ implementation in our ADSL-based residen-
tial gateway and performed a series of simulations.

6.1. Real-world experiments
Real-world experiments were performed in a network configu-

ration similar to Fig. 2 in Section 2. It consisted of a local host, a
home network, a residential gateway, the Internet and a remote

Queue locations
Packet enqueing policy
Queue scheduling policy

Uplink output queue and downlink output queue
Packets are classified into TCP ACK, TCP data and non-TCP packets and stored into separate queues depending on their type
ACKs-first scheduling among TCP ACK queue and the other two queues

TCP data and non-TCP queues are scheduled using the round-robin policy

Queuing policy FIFO (for all queues)

Queue size TCP ACK queue: dynamically decreases as the number of packets in the TCP data queue increases
TCP data and non-TCP queues: the system default value is used
Drop policy TCP ACK queue: random dropping

TCP data and non-TCP queues: tail dropping

put. Commun. (2010), doi:10.1016/j.comcom.2010.09.010

Please cite this article in press as:]. Park et al., Preventing TCP performance interference on asymmetric links using ACKs-first variable-size queuing, Com-

http://dx.doi.org/10.1016/j.comcom.2010.09.010

10 J. Park et al./ Computer Communications xxx (2010) xXx-xXX

host. The local host was connected to the gateway via the home
network which was realized with a 100 Mbps Ethernet link and
the gateway was again connected to the Internet through an ADSL
link whose service was offered by a commercial Internet Service
Provider (ISP). The raw upload and download bandwidth of the
ADSL link were measured to be 2.1 Mbps and 800 Kbps, respec-
tively.

The local host was implemented with a lap top PC running Win-
dows XP and the remote host with a PC running Linux 2.4. The re-
mote host was a public FTP server located about 200 km away from
the local host. On the local host, a multithreaded FTP client pro-
gram ran to continuously generate upload and download traffic
to and from the FTP server simultaneously. The network configura-
tion parameters of the two operating systems were set to their de-
fault values and remained unchanged during the experiments. Two
parameters S;qx and ng,, introduced by AFVQ were set to 5 and 36,
respectively. The values were determined by measuring the num-
ber of packets in the ACK and data queues while activating the traf-
fic in one direction. Specifically, the former was chosen as the
maximum number of packets in the ACK queue. This is to prevent
ACK packets from being dropped when the performance interfer-
ence problem does not occur. The latter was chosen as the average
number of packets in the data queue. This is to allocate the maxi-
mum allowable bandwidth for data packets by minimizing the ACK
queue size when the number of queued data packets exceeds the
average.

We measured the file transfer rates of upload and download
traffic at the local host with and without AFVQ. Initially, we ran
the gateway with the original FIFO queuing for a predetermined
period of time and then we activated the AFVQ in the gateway.
Note that it is possible to dynamically activate AFVQ since the traf-
fic controller supports the run-time reconfiguration of queuing
policies. Fig. 8 shows the results of our experiments. With AFVQ,
download and upload speed yielded 2.0 Mbps and 750 Kbps,
respectively, which are 95.2% and 93.8% of the maximum down-
load and upload bandwidth. Without AFVQ, the upload speed
was seriously degraded to 300 Kbps. This clearly suggests that
the AFVQ mechanism and its implementation effectively solve
the performance interference problem.

Observe that both upload and download speed with AFVQ are
slightly less than the maximum attainable bandwidths of ADSL.
They are reduced by 6.3% and 4.8%, respectively.This is due to
the extra bandwidth required for transferring ACK packets.

6.2. Simulation experiments

In order to show that AFVQ outperforms other existing
approaches in diverse network configurations, we performed

2400
THT 7IE|=|' ik ! 1
g 1800 Download
o)
=)
5
£
& 1200
=)
o
=
!—
600 Upload
0

Using the original FIFO |

extensive simulation analyzes with different network parameter
settings. We particularly focused on the effect of the asymmetry
ratio of a link and the Internet delay since there exist a wide variety
of link technologies with different asymmetry ratios and the Inter-
net delay often has a significant effect on the TCP throughput. We
thus chose the following two test variables.

AsymmetryRatio x InternetDelay

The asymmetry ratio is defined as a ratio of the downlink band-
width to the uplink bandwidth.

To effectively quantify the performance of AFVQ and other ap-
proaches, we defined two metrics, an aggregated utilization and
a utilization variance. The former is the sum of the upload and
the download utilization of a link and the latter is the variance be-
tween the two. The upload utilization is defined as the average TCP
throughput over a raw uplink transfer rate and the download uti-
lization is similarly defined. It measures how much of the raw
bandwidth is used for transferring TCP data packets. AFVQ at-
tempts to achieve a large aggregate utilization by preventing the
performance interference problem. Clearly, the aggregated utiliza-
tion of 2 is the ideal value. On the other hand, it is equally impor-
tant to achieve balanced upload and download utilizations;
otherwise, a high utilization in one direction may be achieved by
sacrificing the utilization in the other. Thus, a utilization variance
close to 0 is preferred.

We implemented our simulation environment using the ns-2
network simulator [40]. It consisted of a local and a remote host,
a residential gateway, a home network, an asymmetric link and
the Internet, as did our experimental environment. We configured
the home network to have 100 Mbps transfer rate and 0.1 ms prop-
agation delay. This was to model the popular Fast Ethernet. The
propagation delay and drop probability of the asymmetric link
were respectively set to 10 ms and 1% in both directions. These val-
ues are higher than those values that can be observed in about 90%
of Internet accesses via asymmetric links [41]. We chose such con-
servative values for our simulation since we wanted to observe the
performance behaviors in the worst case scenarios. We also set
the transfer rate of the Internet to a value greater than that of
the asymmetric link so as to prevent the exact value of the Internet
transfer rate from affecting the TCP throughput. Note that the end-
to-end throughput is limited by the slowest link, which is the
asymmetric link in our simulation.

We configured the protocol stack implementation as well. The
maximum TCP window size was set to 200 data packets. The queue
size of each node was set to an arbitrarily large value to model the
large buffer size inside routers. In the local and remote host, we
used the most widely deployed version of TCP, TCP Reno, with
the delayed ACK feature.

Using AFVQ Time

Fig. 8. Changes in upload and download throughputs when AFVQ is used or not.

put. Commun. (2010), doi:10.1016/j.comcom.2010.09.010

Please cite this article in press as:]. Park et al., Preventing TCP performance interference on asymmetric links using ACKs-first variable-size queuing, Com-

http://dx.doi.org/10.1016/j.comcom.2010.09.010

J. Park et al./ Computer Communications xxx (2010) xXx-xXX 11

To design test cases for our simulation, we varied the asymmetry
ratio of the link 1.0 to 200.0 by changing the uplink transfer rate
from 20 Mbps to 100 Kbps while maintaining the downlink transfer
rate to 20 Mbps. This covers the wide variety of existing asymmetric
link technologies as discussed in [41]. We also varied the Internet
delay from 1 ms to 100 ms to emulate diverse distances between
end hosts and various Internet traffic congestion situations.

For each test case, we ran a simulation and evaluated AFVQ and
three representative gateway-based approaches, ACQ [22,23],
ACKs-first [8,18] and ACK Filtering (AF) [8]. We chose them be-
cause they could be used for our gateway implementation and
their performance behaviors subsumed other minor variations.
As the ACQ mechanism required to define two tunable parameters,
we used the same values provided in [23]. The ACKs-first and the
AF mechanism did not have any tunable parameter. For our AFVQ
mechanism, we set the parameter values in the same way that we
used in the previous experiment. During the simulation, we ran

2
1.8 e
. —e— ACQ
_ . ---X---- ACKs-first
2 14 A
=
=12
=
= 1
2
go 0.8
en
0.6
<
0.4
0.2}
. .) .
o 50 100 150 200

Asymmetry ratio
(downlink transmission rate / uplink transmission rate)

(A)

0.4
§ —e— ACQ
< .
§ 03l ---%---- ACKs-first
= —%— AF
2
'§ 0.2
=)
0.1

TCP applications on the local and the remote host that generate
continuous data streams in both directions.

Fig. 9 shows the results of the simulation with different asymme-
try ratios and the fixed Internet delay of 20 ms. In Fig. 9 (A), we see
that AFVQ achieves a higher aggregated utilization than the others
for all asymmetry ratios. ACQ and ACKs-first perform closely to
AFVQ only when the asymmetry ratio is smaller than 6 or higher
than 57. AF yields the lowest aggregated utilization among the four
mechanisms. In Fig. 9 (B), we observe that AFVQ achieves the second
lowest utilization variance after ACQ. However, when asymmetry
ratio is in between 0 and 25, AFVQ shows the lowest utilization var-
iance among the four. For all asymmetry ratios, the utilization var-
iance of AFVQ does not exceed 0.3, which indicates that AFVQ fairly
improves both upload and download utilization.

Fig. 10 shows the simulation result when we varied the Internet
delay while the uplink and the downlink transmission rates were
fixed to 100 Kbps and 3000 Kbps, respectively. In Fig. 10(A), we

0.6

0.5

—a— AFVQ

0 50

100

150 200

Asymmetry ratio
(downlink transmission rate / uplink transmission rate)

(B)

Fig. 9. The influence of the asymmetry ratio to the TCP performance: (A) the aggregated utilization versus asymmetry ratio; and (B) the utilization variance versus

asymmetry ratio.

1.7

—4— AFVQ
Lo —+—ACQ
1.5 ---%---- ACKs-first

—¥— AF

Aggregated utilization

0.8 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90

Internet delay (ms)

A)

100 110

0.6

U] RV VRV VI VIR VRGO I

—&— AFVQ
—o— ACQ

---%¢--- ACKs-first
0.3 Je-n¢-5¢--¢-3¢%¢-%

—¥— AF

Utilization variance

0.2

0.1

0

0 10 20 30 40 50 60 70 80 90 100 110
Internet delay (ms)

(B)

Fig. 10. The influence of the Internet delay to the TCP performance: (A) the aggregated utilization versus Internet delay; and (B) the utilization variance versus Internet delay.

put. Commun. (2010), doi:10.1016/j.comcom.2010.09.010

Please cite this article in press as:]. Park et al., Preventing TCP performance interference on asymmetric links using ACKs-first variable-size queuing, Com-

http://dx.doi.org/10.1016/j.comcom.2010.09.010

12 J. Park et al./ Computer Communications xxx (2010) xXx-xXx

fa ()
95t =g <q

Fig. 11. Plots of the function f; when ¢%* is q; and g, < ;.

see that AFVQ achieves the highest aggregate utilization for all
Internet delays. Similar to the previous experiments, ACQ and
ACKs-first perform closely to AFVQ only when the Internet delay
is longer than 100 ms. In Fig. 10(B), we observe that AFVQ yields
the variance under 0.03 for all the Internet delays.

7. Conclusions

In this paper, we have addressed the TCP performance interfer-
ence problem on an asymmetric link in which upload or download
throughput abruptly degrades in the presence of bidirectional TCP
traffic on the link. In order to solve the problem, we derived an
analytic model for the steady-state TCP performance with bidirec-
tional traffic to clearly identify the sources of the problem. The
sources we identified are the excessive queuing delay of ACK pack-
ets and the excessive number of ACK packets in the queue. We de-
signed the AFVQ mechanism to directly eliminate the two causes.
Specifically, we based AFVQ on two policies. First, ACKs-first sched-
uling was used to shorten the queuing delay of ACK packets. Sec-
ond, the queue size for ACK packets was dynamically adjusted
depending on the number of queued data packets so that the num-
ber of ACK packets was reduced when packets were congested.

We have implemented the AFVQ mechanism in our ADSL-based
residential gateway using the traffic control module of the Linux
kernel. In order to show that AFVQ improves the TCP performance
in both directions and is effective for a wide range of networks, we
have conducted a series of experiments both in real-world and
simulated networks. The real-world experiments have been per-
formed across a home network and the Internet that were inter-
connected via a commercial ADSL link. Our gateway yielded
95.2% and 93.8% of the maximum download and upload band-
width, respectively. We have also evaluated the proposed mecha-
nism using the ns-2 simulator over a number of network
configurations with different asymmetry ratios and Internet delays
and shown that AFVQ achieves better upload and download
throughput than other representative gateway-based mechanismes,
such as ACQ, ACKs-first scheduling and ACK Filtering.

There are two research directions along which our solution can
be extended. First, we are extending the proposed mechanism for
latency-asymmetric links such as satellite links and hybrid coaxial
cables in which different paths are used for upload and download
traffic. Second, we are also looking to enhance AFVQ so that it can
adopt itself in dynamically changing networks such as the ad hoc
wireless networks. Using a close loop control mechanism is cur-
rently being considered a candidate solution. The results look
promising.

Appendix A

In order to prove Theorem 1, we first show that Eq. (14) has only
one root in internal (0, up).

Lemma 1. Eq. (14) always has only one root in interval (0,up).

Proof. Since function f; in Eq. (14) is a continuous quadratic func-
tion, we prove the lemma by showing f;(0)fy(up) < 0. We proceed
with two cases.

Case 1:
fa(0) =
folty) = —pp (D+A - e,

Clearly, up >0, maxwndy >0, D > 0, A>0 and ni% > 0 since they are

physical quantities. Thus, fy(0)>0 and fi(¢p)<0, and finally,

fa(0)fa(pp) < 0.
Case 2: maxwndy > E[wndg]. Calculating f4(0) and fy(up) gives

fa(0)=p,D

fd(,LlD) =[JD{C1X1 —ClDE[WTldm —C]D—C]Xz —,LlDCZ +D}
= ttp{ ~C1DE[wndj] — C1D— C1A- ik — 11,Co + D by Eq.(15)
= tp{D(1~C1 ~ CiE[wndj]) — CiA-nigk — 1, Ca |
<tp{D(1-C1—CiE[wndy]) }

maxwndy < E[wndy). In this case,

upmaxwndyD

Since all variables in the above equations are positive, f;(0) > 0. We
now show (1 — C; — C1E[wndy]) < 0. Using Egs. (2) and (4), we get

1-C -
/prD\/ (1 —PD +pD>2 <1
3pp 3pD
2b(p3 + 4p, + 4)
27pp ’

C1E[wndd

(2pr2+4b
V3

2bpp [(2+Dp\” . 3
3 (W since0<pp<1=1-

As a result, showing (1-C;
showing
2b(p3 +4pp +4)
27pp
2b(p3 +4pp +4)
27pp

— CiE[wndy]) < 0 is equivalent to

<0
>1

27
<:>p,23+<4—%>pn+4>0.

The last inequality holds since

5 27 27 227 27
PD+< “ap)Po A=\ \gp2)) th N en

27 27
>?<1 16b> >0 since b >

This concludes the proof. O

Proof of Theorem 1. Function f; is a multivariable function of A4,
g4 and ngf{j. We show that f; is a monotonically decreasing func-
tion of gi* and ni% and that its root monotonically increases as
q4* and ni% decrease. We consider two cases.

Case 1: maxwnd, < E[wndy]. To show that f; is a monotonically
decreasing function of qi* and ni%, we calculate its par-
tial derivatives with respect to the two variables.

fa

0
fd /JD)d =)d(ld — :uD) nack —A},d

aqgck

put. Commun. (2010), doi:10.1016/j.comcom.2010.09.010

Please cite this article in press as:]. Park et al., Preventing TCP performance interference on asymmetric links using ACKs-first variable-size queuing, Com-

http://dx.doi.org/10.1016/j.comcom.2010.09.010

J. Park et al./ Computer Communications xxx (2010) xXx-xXX 13

Since /4> 0, 2¢< up and A> 0 as shown in Lemma 1, 9f;/9qs* < 0
and ofy/oni%¥ < 0. As q¢* and ni% are mutually independent, we
have

fo(7a: 41 8% < fu(7a. 02 m85%). i 0 < gy <4,

fa(2a, 5% 1) < fa(ha,q5%,m2) if O <y < my.

Let /; be the root of Eq. (14) when g% = q,. By substituting 14 with
/1 in the first ineqLBality jzlst above, we have

1 k 1 k i
fd A11q27ng,cu >fd /ﬂvq]?ng,cu) 1f0<q2<q1‘

Since fa(/1,q,,13%) = 0, we have fy(/1,q,,n%%) > 0 for 0< g, <qy.
On the other hand, as shown in the proof of Lemma 1,
fa (,ud,qz, ng_ﬁ’f) < 0. Thus, we have

fa (M 142, ”gi’f)fd (#av 2, nSiﬂ‘) <0.

This implies that f; (Zd,qz,ngfL’f) =0 has root /, in interval (11, up).
Since the interval does not include /;, we conclude that A, > ;. In
other words, the download throughput increases as we decrease
the queuing delay of ACK packets for download traffic. Fig. 11 visu-
alizes the function when ¢4 = q; and ¢%* = g,.
Similarly, via the same process, we can show that i, > i3 where /3
and /4 are respectively the roots of fy(%4,q5*,n;) =0 and
fa(%a,q5*,n;) = 0 where n, <ny. This implies that the download
throughput increases as we decreases the number of queued ACK
packets for the opposite side traffic.

Case 2: maxwnd, > E[wndy]. We show that of,;/9q%* <0 and

9fa/On% < 0. From Eq. (14), we get

8fd _ 12 axl R 8X2
aqgck =1 daqgck — L1 aqgck
= Ci4a(% — Hp) by Eq.(15),
Ofa o, 0K
onggy " ongk

pc

— —Cy4A by Eq.(15).

Since /4 < up and all the variables in the two equations are positive,

Of1/0q5* < 0 and 9fy/oni% < 0. The remainder of the proof is the

same as in the former case. O

Acknowledgment

The work reported in this paper was supported by the National
Research Foundation of Korea (NRF) grant funded by the Korean
government (MEST) (No. 2010-0027809 and No. 2010-0001201).

References

[1] HGI. What is a residential gateway for?, Home Gateway Initiative.

[2] ITU, ITU-T Rec. G.992.1 (07-1999) Asymmetrical digital subscriber line (ADSL)
transceivers, 1999.

[3] ITU, ITU-T Rec. J.112 (03/98) Transmission systems for interactive cable
television services, 1998.

[4] ITU. ITU-T Rec. G.983.1-4 (01/2005) Broadband optical access systems based
on Passive Optical Networks (PON), 2008.

[5] V. Jacobson, M.J. Karels, Congestion Avoidance and Control, 1988.

[6] S. Shenker, L. Zhang, D.D. Clark, Some observations on the dynamics of a
congestion control algorithm, ACM Computer Communications Review 20
(1990) 30-39.

[7] L. Zhang, S. Shenker, D.D. Clark, Observations on the dynamics of a congestion
control algorithm: the effects of two-way trafficc, ACM Computer
Communications Review 21 (1991) 133-147.

[8] H. Balakrishnan, V.N. Padmanabhan, R.H. Katz, The Effects of Asymmetry on
TCP Performance International Conference on Mobile Computing and
Networking, Budapest, Hungary, 1997.

[9] T.R. Henderson, R.H. Katz, TCP Performance over Satellite Channels, University
of California, Berkeley, 1999.

[10] L. Kalampoukas, A. Varma, K.K. Ramakrishnan, Two-way TCP traffic over rate
controlled channels: effects and analysis, IEEE/ACM Transactions on
Networking 6 (1998) 729-743.

[11] T.V. Lakshman, U. Madhow, The performance of TCP/IP for networks with high
bandwidth-delay products and random loss, IEEE/ACM Transactions on
Networking 5 (1997) 336-350.

[12] K. Phanse, L.A. DaSilva, K. Kidambi, Effects of Competing Traffic on the
Performance of TCP/IP over Asymmetric Links 25th Annual IEEE Conference on
Local Computer Networks, Tampa, Florida, USA, 2000, pp. 542-543.

[13] Y. Tian, K. Xu, N. Ansari, TCP in wireless environments: problems and
solutions, IEEE Communications Magazine 43 (2005) S27-S32.

[14] P. Papadimitriou, V. Tsaoussidis, On TCP performance over asymmetric
satellite links with real-time constraints, Computer Communications 30
(2007) 1451-1465.

[15] LT. Ming-Chit, D. Jinsong, W. Wang, Improving TCP performance over
asymmetric networks, ACM Computer Communications Review 30 (2000)
45-54.

[16] S. Kalyanaraman, D. Shekhar, K. Kidambi, TCP/IP Performance Optimization
over ADSL, 1999.

[17] L. Yu, Y. Minhua, Z. Huimin, The Improvement of TCP Performance in
Bandwidth Asymmetric Network 14th IEEE International Symposium on
Personal, Indoor and Mobile Radio Communication, IEEE, Beijing, China,
2003, pp. 482-486.

[18] J. Park, S. Hong, Preventing network performance interference with ACK-
separation queuing mechanism in a home network gateway using an
asymmetric link 13th IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications, Daegu, Korea, 2007, pp. 550-555.

[19] T. Taleb, N. Kato, Y. Nemoto, REFWA: an efficient and fair congestion control
scheme for LEO satellite networks, IEEE/ACM Transactions on Networking 14
(2006) 1031-1044.

[20] K. Xu, Y. Tian, N. Ansari, TCP-Jersey for wireless IP communications, IEEE
Journal on Selected Areas in Communications 22 (2004) 747-756.

[21] K. Xu, Y. Tian, N. Ansari, Improving TCP performance in integrated wireless
communications networks, Computer Networks 47 (2005) 219-237.

[22] F. Louati, C. Barakat, W. Dabbous, Handling Two-Way TCP Traffic in Bandwidth
Asymmetric Networks, INRIA, 2003.

[23] F. Louati, C. Barakat, W. Dabbous, Handling Two-Way TCP Traffic in
Asymmetric Networks 7th IEEE International Conference on High Speed
Networks and Multimedia Communications, Toulous, France, 2004.

[24] W. Al-Khatib, K. Gunavathi, A new approach to improve TCP performance over
asymmetric networks, Electronics and Electrical Engineering 7 (2006).

[25] Q. Xia, X. Jin, M. Hamdi, Dual queue management for improving TCP
performance in multi-rate infrastructure WLANs IEEE International
Conference on Communications, 2008, pp. 2531-2535.

[26] H. Balakrishnan, V.N. Padmanabhan, G. Fairhurst, M. Sooriyabandara, RFC
3449-TCP Performance Implications of Network Path Asymmetry, 2002.

[27] Arcturus. uClinux: Embeded Linux/Microcontroller Project.

[28] ITU. ITU-T Rec. G.992.2 (07/99) Splitterless Asymmetrical Digital Subscriber
Line (ADSL) Transceivers, 1999.

[29] KR. Sollins, RFC 783-TFTP Protocol (revision 2), 1981.

[30] B. Hubert, Linux Advanced Routing & Traffic Control HOWTO.

[31] L.L. Peterson, B.S. Davie, Computer Networks: A Systems Approach, Morgan
Kaufmann, 2000.

[32] V. Jacobson, Modified TCP Congestion Avoidance Algorithm end2end-interest
mailing list, 1990.

[33] W. Stevens, RFC 2001-TCP Slow Start, Congestion Avoidance, Fast Retransmit,
and Fast Recovery Algorithms, 1997.

[34] LS. Brakmo, S.W. O'Malley, L.L. Peterson, TCP vegas: new techniques for
congestion detection and avoidance, ACM Computer Communications Review
24 (1994).

[35] K. Xu, N. Ansari, Stability and fairness of rate estimation based AIAD
congestion control in TCP, IEEE Communications Letters 9 (2005) 378-380.

[36] M. Mathis, J. Semke, J. Mahdavi, T. Ott, The macroscopic behavior of the TCP
congestion avoidance algorithm, ACM SIGCOMM Computer Communication
Review 27 (1997) 67-82.

[37] S.H. Low, A duality model of TCP and queue management algorithms, IEEE/
ACM Transactions on Networking 11 (2003) 525-536.

[38] J. Padhye, V. Firoiu, D.F. Towsley,].F. Kurose, Modeling TCP reno performance:
a simple model and its empirical validation, IEEE/ACM Transactions on
Networking 8 (2000) 133-145.

[39] G. Hasegawa, M. Murata. Analysis of dynamic behaviors of many TCP
connections sharing tail-drop/RED routers IEEE Global Telecommunications
Conference, 2001.

[40] S. McCanne, S. Floyd. ns-Network Simulator.

[41] M. Dischinger, A. Haeberlen, K.P. Gummadi, S. Saroiu. Characterizing
Residential Broadband Networks Internet Measurement Conference 2007,
San Diego, CA, USA, 2007.

put. Commun. (2010), doi:10.1016/j.comcom.2010.09.010

Please cite this article in press as:]. Park et al., Preventing TCP performance interference on asymmetric links using ACKs-first variable-size queuing, Com-

http://dx.doi.org/10.1016/j.comcom.2010.09.010

	Preventing TCP performance interference on asymmetric links using ACKs-first variable-size queuing
	Introduction
	Related work
	Organization of the paper

	Problem description
	Analyzing gateway implementation and identifying performance interference
	Formulating network performance interference problem into packet queuing policy selection

	Network model and TCP mechanism
	Network model
	Overview of TCP congestion control and avoidance mechanisms

	Analytic modeling of the problem and deriving solution strategy
	Realizing the AFVQ Mechanism into the Gateway
	The AFVQ mechanism
	Implementing AVFQ in the residential gateway

	Experimental results
	Real-world experiments
	Simulation experiments

	Conclusions
	Appendix A
	Acknowledgment
	References

